summaryrefslogtreecommitdiff
path: root/arch/arm64
diff options
context:
space:
mode:
authorArd Biesheuvel <ardb@kernel.org>2024-11-05 17:09:02 +0100
committerHerbert Xu <herbert@gondor.apana.org.au>2024-11-15 19:52:51 +0800
commit67dfb1b73f423622a0096ea43fb1f5b7336f49e0 (patch)
tree4dfecc1dab5aeb4742415d20f3443d2c3e0c1534 /arch/arm64
parent7048c21e6b50e4dec0de1ed48b12db50b94b3f57 (diff)
downloadlwn-67dfb1b73f423622a0096ea43fb1f5b7336f49e0.tar.gz
lwn-67dfb1b73f423622a0096ea43fb1f5b7336f49e0.zip
crypto: arm64/crct10dif - Use faster 16x64 bit polynomial multiply
The CRC-T10DIF implementation for arm64 has a version that uses 8x8 polynomial multiplication, for cores that lack the crypto extensions, which cover the 64x64 polynomial multiplication instruction that the algorithm was built around. This fallback version rather naively adopted the 64x64 polynomial multiplication algorithm that I ported from ARM for the GHASH driver, which needs 8 PMULL8 instructions to implement one PMULL64. This is reasonable, given that each 8-bit vector element needs to be multiplied with each element in the other vector, producing 8 vectors with partial results that need to be combined to yield the correct result. However, most PMULL64 invocations in the CRC-T10DIF code involve multiplication by a pair of 16-bit folding coefficients, and so all the partial results from higher order bytes will be zero, and there is no need to calculate them to begin with. Then, the CRC-T10DIF algorithm always XORs the output values of the PMULL64 instructions being issued in pairs, and so there is no need to faithfully implement each individual PMULL64 instruction, as long as XORing the results pairwise produces the expected result. Implementing these improvements results in a speedup of 3.3x on low-end platforms such as Raspberry Pi 4 (Cortex-A72) Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'arch/arm64')
-rw-r--r--arch/arm64/crypto/crct10dif-ce-core.S121
1 files changed, 104 insertions, 17 deletions
diff --git a/arch/arm64/crypto/crct10dif-ce-core.S b/arch/arm64/crypto/crct10dif-ce-core.S
index 5604de61d06d..d2acaa2b5a01 100644
--- a/arch/arm64/crypto/crct10dif-ce-core.S
+++ b/arch/arm64/crypto/crct10dif-ce-core.S
@@ -1,8 +1,11 @@
//
// Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions
//
-// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
-// Copyright (C) 2019 Google LLC <ebiggers@google.com>
+// Copyright (C) 2016 Linaro Ltd
+// Copyright (C) 2019-2024 Google LLC
+//
+// Authors: Ard Biesheuvel <ardb@google.com>
+// Eric Biggers <ebiggers@google.com>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2 as
@@ -122,6 +125,13 @@
sli perm2.2d, perm1.2d, #56
sli perm3.2d, perm1.2d, #48
sli perm4.2d, perm1.2d, #40
+
+ // Compose { 0,0,0,0, 8,8,8,8, 1,1,1,1, 9,9,9,9 }
+ movi bd1.4h, #8, lsl #8
+ orr bd1.2s, #1, lsl #16
+ orr bd1.2s, #1, lsl #24
+ zip1 bd1.16b, bd1.16b, bd1.16b
+ zip1 bd1.16b, bd1.16b, bd1.16b
.endm
.macro __pmull_pre_p8, bd
@@ -196,6 +206,92 @@ SYM_FUNC_START_LOCAL(__pmull_p8_core)
ret
SYM_FUNC_END(__pmull_p8_core)
+ .macro pmull16x64_p64, a16, b64, c64
+ pmull2 \c64\().1q, \a16\().2d, \b64\().2d
+ pmull \b64\().1q, \a16\().1d, \b64\().1d
+ .endm
+
+ /*
+ * Pairwise long polynomial multiplication of two 16-bit values
+ *
+ * { w0, w1 }, { y0, y1 }
+ *
+ * by two 64-bit values
+ *
+ * { x0, x1, x2, x3, x4, x5, x6, x7 }, { z0, z1, z2, z3, z4, z5, z6, z7 }
+ *
+ * where each vector element is a byte, ordered from least to most
+ * significant.
+ *
+ * This can be implemented using 8x8 long polynomial multiplication, by
+ * reorganizing the input so that each pairwise 8x8 multiplication
+ * produces one of the terms from the decomposition below, and
+ * combining the results of each rank and shifting them into place.
+ *
+ * Rank
+ * 0 w0*x0 ^ | y0*z0 ^
+ * 1 (w0*x1 ^ w1*x0) << 8 ^ | (y0*z1 ^ y1*z0) << 8 ^
+ * 2 (w0*x2 ^ w1*x1) << 16 ^ | (y0*z2 ^ y1*z1) << 16 ^
+ * 3 (w0*x3 ^ w1*x2) << 24 ^ | (y0*z3 ^ y1*z2) << 24 ^
+ * 4 (w0*x4 ^ w1*x3) << 32 ^ | (y0*z4 ^ y1*z3) << 32 ^
+ * 5 (w0*x5 ^ w1*x4) << 40 ^ | (y0*z5 ^ y1*z4) << 40 ^
+ * 6 (w0*x6 ^ w1*x5) << 48 ^ | (y0*z6 ^ y1*z5) << 48 ^
+ * 7 (w0*x7 ^ w1*x6) << 56 ^ | (y0*z7 ^ y1*z6) << 56 ^
+ * 8 w1*x7 << 64 | y1*z7 << 64
+ *
+ * The inputs can be reorganized into
+ *
+ * { w0, w0, w0, w0, y0, y0, y0, y0 }, { w1, w1, w1, w1, y1, y1, y1, y1 }
+ * { x0, x2, x4, x6, z0, z2, z4, z6 }, { x1, x3, x5, x7, z1, z3, z5, z7 }
+ *
+ * and after performing 8x8->16 bit long polynomial multiplication of
+ * each of the halves of the first vector with those of the second one,
+ * we obtain the following four vectors of 16-bit elements:
+ *
+ * a := { w0*x0, w0*x2, w0*x4, w0*x6 }, { y0*z0, y0*z2, y0*z4, y0*z6 }
+ * b := { w0*x1, w0*x3, w0*x5, w0*x7 }, { y0*z1, y0*z3, y0*z5, y0*z7 }
+ * c := { w1*x0, w1*x2, w1*x4, w1*x6 }, { y1*z0, y1*z2, y1*z4, y1*z6 }
+ * d := { w1*x1, w1*x3, w1*x5, w1*x7 }, { y1*z1, y1*z3, y1*z5, y1*z7 }
+ *
+ * Results b and c can be XORed together, as the vector elements have
+ * matching ranks. Then, the final XOR (*) can be pulled forward, and
+ * applied between the halves of each of the remaining three vectors,
+ * which are then shifted into place, and combined to produce two
+ * 80-bit results.
+ *
+ * (*) NOTE: the 16x64 bit polynomial multiply below is not equivalent
+ * to the 64x64 bit one above, but XOR'ing the outputs together will
+ * produce the expected result, and this is sufficient in the context of
+ * this algorithm.
+ */
+ .macro pmull16x64_p8, a16, b64, c64
+ ext t7.16b, \b64\().16b, \b64\().16b, #1
+ tbl t5.16b, {\a16\().16b}, bd1.16b
+ uzp1 t7.16b, \b64\().16b, t7.16b
+ bl __pmull_p8_16x64
+ ext \b64\().16b, t4.16b, t4.16b, #15
+ eor \c64\().16b, t8.16b, t5.16b
+ .endm
+
+SYM_FUNC_START_LOCAL(__pmull_p8_16x64)
+ ext t6.16b, t5.16b, t5.16b, #8
+
+ pmull t3.8h, t7.8b, t5.8b
+ pmull t4.8h, t7.8b, t6.8b
+ pmull2 t5.8h, t7.16b, t5.16b
+ pmull2 t6.8h, t7.16b, t6.16b
+
+ ext t8.16b, t3.16b, t3.16b, #8
+ eor t4.16b, t4.16b, t6.16b
+ ext t7.16b, t5.16b, t5.16b, #8
+ ext t6.16b, t4.16b, t4.16b, #8
+ eor t8.8b, t8.8b, t3.8b
+ eor t5.8b, t5.8b, t7.8b
+ eor t4.8b, t4.8b, t6.8b
+ ext t5.16b, t5.16b, t5.16b, #14
+ ret
+SYM_FUNC_END(__pmull_p8_16x64)
+
.macro __pmull_p8, rq, ad, bd, i
.ifnc \bd, fold_consts
.err
@@ -218,14 +314,12 @@ SYM_FUNC_END(__pmull_p8_core)
.macro fold_32_bytes, p, reg1, reg2
ldp q11, q12, [buf], #0x20
- __pmull_\p v8, \reg1, fold_consts, 2
- __pmull_\p \reg1, \reg1, fold_consts
+ pmull16x64_\p fold_consts, \reg1, v8
CPU_LE( rev64 v11.16b, v11.16b )
CPU_LE( rev64 v12.16b, v12.16b )
- __pmull_\p v9, \reg2, fold_consts, 2
- __pmull_\p \reg2, \reg2, fold_consts
+ pmull16x64_\p fold_consts, \reg2, v9
CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 )
CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 )
@@ -238,11 +332,9 @@ CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 )
// Fold src_reg into dst_reg, optionally loading the next fold constants
.macro fold_16_bytes, p, src_reg, dst_reg, load_next_consts
- __pmull_\p v8, \src_reg, fold_consts
- __pmull_\p \src_reg, \src_reg, fold_consts, 2
+ pmull16x64_\p fold_consts, \src_reg, v8
.ifnb \load_next_consts
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
- __pmull_pre_\p fold_consts
.endif
eor \dst_reg\().16b, \dst_reg\().16b, v8.16b
eor \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b
@@ -296,7 +388,6 @@ CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
// Load the constants for folding across 128 bytes.
ld1 {fold_consts.2d}, [fold_consts_ptr]
- __pmull_pre_\p fold_consts
// Subtract 128 for the 128 data bytes just consumed. Subtract another
// 128 to simplify the termination condition of the following loop.
@@ -318,7 +409,6 @@ CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
// Fold across 64 bytes.
add fold_consts_ptr, fold_consts_ptr, #16
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
- __pmull_pre_\p fold_consts
fold_16_bytes \p, v0, v4
fold_16_bytes \p, v1, v5
fold_16_bytes \p, v2, v6
@@ -339,8 +429,7 @@ CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
// into them, storing the result back into v7.
b.lt .Lfold_16_bytes_loop_done_\@
.Lfold_16_bytes_loop_\@:
- __pmull_\p v8, v7, fold_consts
- __pmull_\p v7, v7, fold_consts, 2
+ pmull16x64_\p fold_consts, v7, v8
eor v7.16b, v7.16b, v8.16b
ldr q0, [buf], #16
CPU_LE( rev64 v0.16b, v0.16b )
@@ -387,9 +476,8 @@ CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
bsl v2.16b, v1.16b, v0.16b
// Fold the first chunk into the second chunk, storing the result in v7.
- __pmull_\p v0, v3, fold_consts
- __pmull_\p v7, v3, fold_consts, 2
- eor v7.16b, v7.16b, v0.16b
+ pmull16x64_\p fold_consts, v3, v0
+ eor v7.16b, v3.16b, v0.16b
eor v7.16b, v7.16b, v2.16b
.Lreduce_final_16_bytes_\@:
@@ -450,7 +538,6 @@ CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
// Load the fold-across-16-bytes constants.
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
- __pmull_pre_\p fold_consts
cmp len, #16
b.eq .Lreduce_final_16_bytes_\@ // len == 16