// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021 Facebook */
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <sys/syscall.h> /* For SYS_xxx definitions */
#include <sys/types.h>
#include <sys/eventfd.h>
#include <sys/mman.h>
#include <test_progs.h>
#include <bpf/btf.h>
#include "task_local_storage_helpers.h"
#include "task_local_storage.skel.h"
#include "task_local_storage_exit_creds.skel.h"
#include "task_ls_recursion.skel.h"
#include "task_storage_nodeadlock.skel.h"
#include "uptr_test_common.h"
#include "task_ls_uptr.skel.h"
#include "uptr_update_failure.skel.h"
#include "uptr_failure.skel.h"
#include "uptr_map_failure.skel.h"
static void test_sys_enter_exit(void)
{
struct task_local_storage *skel;
int err;
skel = task_local_storage__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
skel->bss->target_pid = sys_gettid();
err = task_local_storage__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
sys_gettid();
sys_gettid();
/* 3x syscalls: 1x attach and 2x gettid */
ASSERT_EQ(skel->bss->enter_cnt, 3, "enter_cnt");
ASSERT_EQ(skel->bss->exit_cnt, 3, "exit_cnt");
ASSERT_EQ(skel->bss->mismatch_cnt, 0, "mismatch_cnt");
out:
task_local_storage__destroy(skel);
}
static void test_exit_creds(void)
{
struct task_local_storage_exit_creds *skel;
int err, run_count, sync_rcu_calls = 0;
const int MAX_SYNC_RCU_CALLS = 1000;
skel = task_local_storage_exit_creds__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
err = task_local_storage_exit_creds__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
/* trigger at least one exit_creds() */
if (CHECK_FAIL(system("ls > /dev/null")))
goto out;
/* kern_sync_rcu is not enough on its own as the read section we want
* to wait for may start after we enter synchronize_rcu, so our call
* won't wait for the section to finish. Loop on the run counter
* as well to ensure the program has run.
*/
do {
kern_sync_rcu();
run_count = __atomic_load_n(&skel->bss->run_count, __ATOMIC_SEQ_CST);
} while (run_count == 0 && ++sync_rcu_calls < MAX_SYNC_RCU_CALLS);
ASSERT_NEQ(sync_rcu_calls, MAX_SYNC_RCU_CALLS,
"sync_rcu count too high");
ASSERT_NEQ(run_count, 0, "run_count");
ASSERT_EQ(skel->bss->valid_ptr_count, 0, "valid_ptr_count");
ASSERT_NEQ(skel->bss->null_ptr_count, 0, "null_ptr_count");
out:
task_local_storage_exit_creds__destroy(skel);
}
static void test_recursion(void)
{
int err, map_fd, prog_fd, task_fd;
struct task_ls_recursion *skel;
struct bpf_prog_info info;
__u32 info_len = sizeof(info);
long value;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_NEQ(task_fd, -1, "sys_pidfd_open"))
return;
skel = task_ls_recursion__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
err = task_ls_recursion__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
/* trigger sys_enter, make sure it does not cause deadlock */
skel->bss->test_pid = getpid();
sys_gettid();
skel->bss->test_pid = 0;
task_ls_recursion__detach(skel);
/* Refer to the comment in BPF_PROG(on_update) for
* the explanation on the value 201 and 100.
*/
map_fd = bpf_map__fd(skel->maps.map_a);
err = bpf_map_lookup_elem(map_fd, &task_fd, &value);
ASSERT_OK(err, "lookup map_a");
ASSERT_EQ(value, 201, "map_a value");
ASSERT_EQ(skel->bss->nr_del_errs, 1, "bpf_task_storage_delete busy");
map_fd = bpf_map__fd(skel->maps.map_b);
err = bpf_map_lookup_elem(map_fd, &task_fd, &value);
ASSERT_OK(err, "lookup map_b");
ASSERT_EQ(value, 100, "map_b value");
prog_fd = bpf_program__fd(skel->progs.on_update);
memset(&info, 0, sizeof(info));
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "on_update prog recursion");
prog_fd = bpf_program__fd(skel->progs.on_enter);
memset(&info, 0, sizeof(info));
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "on_enter prog recursion");
out:
close(task_fd);
task_ls_recursion__destroy(skel);
}
static bool stop;
static void waitall(const pthread_t *tids, int nr)
{
int i;
stop = true;
for (i = 0; i < nr; i++)
pthread_join(tids[i], NULL);
}
static void *sock_create_loop(void *arg)
{
struct task_storage_nodeadlock *skel = arg;
int fd;
while (!stop) {
fd = socket(AF_INET, SOCK_STREAM, 0);
close(fd);
if (skel->bss->nr_get_errs || skel->bss->nr_del_errs)
stop = true;
}
return NULL;
}
static void test_nodeadlock(void)
{
struct task_storage_nodeadlock *skel;
struct bpf_prog_info info = {};
__u32 info_len = sizeof(info);
const int nr_threads = 32;
pthread_t tids[nr_threads];
int i, prog_fd, err;
cpu_set_t old, new;
/* Pin all threads to one cpu to increase the chance of preemption
* in a sleepable bpf prog.
*/
CPU_ZERO(&new);
CPU_SET(0, &new);
err = sched_getaffinity(getpid(), sizeof(old), &old);
if (!ASSERT_OK(err, "getaffinity"))
return;
err = sched_setaffinity(getpid(), sizeof(new), &new);
if (!ASSERT_OK(err, "setaffinity"))
return;
skel = task_storage_nodeadlock__open_and_load();
if (!ASSERT_OK_PTR(skel, "open_and_load"))
goto done;
/* Unnecessary recursion and deadlock detection are reproducible
* in the preemptible kernel.
*/
if (!skel->kconfig->CONFIG_PREEMPTION) {
test__skip();
goto done;
}
err = task_storage_nodeadlock__attach(skel);
ASSERT_OK(err, "attach prog");
for (i = 0; i < nr_threads; i++) {
err = pthread_create(&tids[i], NULL, sock_create_loop, skel);
if (err) {
/* Only assert once here to avoid excessive
* PASS printing during test failure.
*/
ASSERT_OK(err, "pthread_create");
waitall(tids, i);
goto done;
}
}
/* With 32 threads, 1s is enough to reproduce the issue */
sleep(1);
waitall(tids, nr_threads);
info_len = sizeof(info);
prog_fd = bpf_program__fd(skel->progs.socket_post_create);
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "prog recursion");
ASSERT_EQ(skel->bss->nr_get_errs, 0, "bpf_task_storage_get busy");
ASSERT_EQ(skel->bss->nr_del_errs, 0, "bpf_task_storage_delete busy");
done:
task_storage_nodeadlock__destroy(skel);
sched_setaffinity(getpid(), sizeof(old), &old);
}
static struct user_data udata __attribute__((aligned(16))) = {
.a = 1,
.b = 2,
};
static struct user_data udata2 __attribute__((aligned(16))) = {
.a = 3,
.b = 4,
};
static void check_udata2(int expected)
{
udata2.result = udata2.nested_result = 0;
usleep(1);
ASSERT_EQ(udata2.result, expected, "udata2.result");
ASSERT_EQ(udata2.nested_result, expected, "udata2.nested_result");
}
static void test_uptr_basic(void)
{
int map_fd, parent_task_fd, ev_fd;
struct value_type value = {};
struct task_ls_uptr *skel;
pid_t child_pid, my_tid;
__u64 ev_dummy_data = 1;
int err;
my_tid = sys_gettid();
parent_task_fd = sys_pidfd_open(my_tid, 0);
if (!ASSERT_OK_FD(parent_task_fd, "parent_task_fd"))
return;
ev_fd = eventfd(0, 0);
if (!ASSERT_OK_FD(ev_fd, "ev_fd")) {
close(parent_task_fd);
return;
}
skel = task_ls_uptr__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = &udata;
value.nested.udata = &udata;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST);
if (!ASSERT_OK(err, "update_elem(udata)"))
goto out;
err = task_ls_uptr__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
child_pid = fork();
if (!ASSERT_NEQ(child_pid, -1, "fork"))
goto out;
/* Call syscall in the child process, but access the map value of
* the parent process in the BPF program to check if the user kptr
* is translated/mapped correctly.
*/
if (child_pid == 0) {
/* child */
/* Overwrite the user_data in the child process to check if
* the BPF program accesses the user_data of the parent.
*/
udata.a = 0;
udata.b = 0;
/* Wait for the parent to set child_pid */
read(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data));
exit(0);
}
skel->bss->parent_pid = my_tid;
skel->bss->target_pid = child_pid;
write(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data));
err = waitpid(child_pid, NULL, 0);
ASSERT_EQ(err, child_pid, "waitpid");
ASSERT_EQ(udata.result, MAGIC_VALUE + udata.a + udata.b, "udata.result");
ASSERT_EQ(udata.nested_result, MAGIC_VALUE + udata.a + udata.b, "udata.nested_result");
skel->bss->target_pid = my_tid;
/* update_elem: uptr changes from udata1 to udata2 */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(MAGIC_VALUE + udata2.a + udata2.b);
/* update_elem: uptr changes from udata2 uptr to NULL */
memset(&value, 0, sizeof(value));
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(0);
/* update_elem: uptr changes from NULL to udata2 */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(MAGIC_VALUE + udata2.a + udata2.b);
/* Check if user programs can access the value of user kptrs
* through bpf_map_lookup_elem(). Make sure the kernel value is not
* leaked.
*/
err = bpf_map_lookup_elem(map_fd, &parent_task_fd, &value);
if (!ASSERT_OK(err, "bpf_map_lookup_elem"))
goto out;
ASSERT_EQ(value.udata, NULL, "value.udata");
ASSERT_EQ(value.nested.udata, NULL, "value.nested.udata");
/* delete_elem */
err = bpf_map_delete_elem(map_fd, &parent_task_fd);
ASSERT_OK(err, "delete_elem(udata2)");
check_udata2(0);
/* update_elem: add uptr back to test map_free */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST);
ASSERT_OK(err, "update_elem(udata2)");
out:
task_ls_uptr__destroy(skel);
close(ev_fd);
close(parent_task_fd);
}
static void test_uptr_across_pages(void)
{
int page_size = getpagesize();
struct value_type value = {};
struct task_ls_uptr *skel;
int err, task_fd, map_fd;
void *mem;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_OK_FD(task_fd, "task_fd"))
return;
mem = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (!ASSERT_OK_PTR(mem, "mmap(page_size * 2)")) {
close(task_fd);
return;
}
skel = task_ls_uptr__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = mem + page_size - offsetof(struct user_data, b);
err = bpf_map_update_elem(map_fd, &task_fd, &value, 0);
if (!ASSERT_ERR(err, "update_elem(udata)"))
goto out;
ASSERT_EQ(errno, EOPNOTSUPP, "errno");
value.udata = mem + page_size - sizeof(struct user_data);
err = bpf_map_update_elem(map_fd, &task_fd, &value, 0);
ASSERT_OK(err, "update_elem(udata)");
out:
task_ls_uptr__destroy(skel);
close(task_fd);
munmap(mem, page_size * 2);
}
static void test_uptr_update_failure(void)
{
struct value_lock_type value = {};
struct uptr_update_failure *skel;
int err, task_fd, map_fd;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_OK_FD(task_fd, "task_fd"))
return;
skel = uptr_update_failure__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = &udata;
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_F_LOCK);
if (!ASSERT_ERR(err, "update_elem(udata, BPF_F_LOCK)"))
goto out;
ASSERT_EQ(errno, EOPNOTSUPP, "errno");
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_EXIST);
if (!ASSERT_ERR(err, "update_elem(udata, BPF_EXIST)"))
goto out;
ASSERT_EQ(errno, ENOENT, "errno");
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST);
if (!ASSERT_OK(err, "update_elem(udata, BPF_NOEXIST)"))
goto out;
value.udata = &udata2;
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST);
if (!ASSERT_ERR(err, "update_elem(udata2, BPF_NOEXIST)"))
goto out;
ASSERT_EQ(errno, EEXIST, "errno");
out:
uptr_update_failure__destroy(skel);
close(task_fd);
}
static void test_uptr_map_failure(const char *map_name, int expected_errno)
{
LIBBPF_OPTS(bpf_map_create_opts, create_attr);
struct uptr_map_failure *skel;
struct bpf_map *map;
struct btf *btf;
int map_fd, err;
skel = uptr_map_failure__open();
if (!ASSERT_OK_PTR(skel, "uptr_map_failure__open"))
return;
map = bpf_object__find_map_by_name(skel->obj, map_name);
btf = bpf_object__btf(skel->obj);
err = btf__load_into_kernel(btf);
if (!ASSERT_OK(err, "btf__load_into_kernel"))
goto done;
create_attr.map_flags = bpf_map__map_flags(map);
create_attr.btf_fd = btf__fd(btf);
create_attr.btf_key_type_id = bpf_map__btf_key_type_id(map);
create_attr.btf_value_type_id = bpf_map__btf_value_type_id(map);
map_fd = bpf_map_create(bpf_map__type(map), map_name,
bpf_map__key_size(map), bpf_map__value_size(map),
0, &create_attr);
if (ASSERT_ERR_FD(map_fd, "map_create"))
ASSERT_EQ(errno, expected_errno, "errno");
else
close(map_fd);
done:
uptr_map_failure__destroy(skel);
}
void test_task_local_storage(void)
{
if (test__start_subtest("sys_enter_exit"))
test_sys_enter_exit();
if (test__start_subtest("exit_creds"))
test_exit_creds();
if (test__start_subtest("recursion"))
test_recursion();
if (test__start_subtest("nodeadlock"))
test_nodeadlock();
if (test__start_subtest("uptr_basic"))
test_uptr_basic();
if (test__start_subtest("uptr_across_pages"))
test_uptr_across_pages();
if (test__start_subtest("uptr_update_failure"))
test_uptr_update_failure();
if (test__start_subtest("uptr_map_failure_e2big")) {
if (getpagesize() == PAGE_SIZE)
test_uptr_map_failure("large_uptr_map", E2BIG);
else
test__skip();
}
if (test__start_subtest("uptr_map_failure_size0"))
test_uptr_map_failure("empty_uptr_map", EINVAL);
if (test__start_subtest("uptr_map_failure_kstruct"))
test_uptr_map_failure("kstruct_uptr_map", EINVAL);
RUN_TESTS(uptr_failure);
}