/*
* soc-core.c -- ALSA SoC Audio Layer
*
* Copyright 2005 Wolfson Microelectronics PLC.
* Copyright 2005 Openedhand Ltd.
* Copyright (C) 2010 Slimlogic Ltd.
* Copyright (C) 2010 Texas Instruments Inc.
*
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
* with code, comments and ideas from :-
* Richard Purdie <richard@openedhand.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* TODO:
* o Add hw rules to enforce rates, etc.
* o More testing with other codecs/machines.
* o Add more codecs and platforms to ensure good API coverage.
* o Support TDM on PCM and I2S
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/ctype.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <sound/ac97_codec.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dpcm.h>
#include <sound/initval.h>
#define CREATE_TRACE_POINTS
#include <trace/events/asoc.h>
#define NAME_SIZE 32
#ifdef CONFIG_DEBUG_FS
struct dentry *snd_soc_debugfs_root;
EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
#endif
static DEFINE_MUTEX(client_mutex);
static LIST_HEAD(platform_list);
static LIST_HEAD(codec_list);
static LIST_HEAD(component_list);
/*
* This is a timeout to do a DAPM powerdown after a stream is closed().
* It can be used to eliminate pops between different playback streams, e.g.
* between two audio tracks.
*/
static int pmdown_time = 5000;
module_param(pmdown_time, int, 0);
MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
struct snd_ac97_reset_cfg {
struct pinctrl *pctl;
struct pinctrl_state *pstate_reset;
struct pinctrl_state *pstate_warm_reset;
struct pinctrl_state *pstate_run;
int gpio_sdata;
int gpio_sync;
int gpio_reset;
};
/* returns the minimum number of bytes needed to represent
* a particular given value */
static int min_bytes_needed(unsigned long val)
{
int c = 0;
int i;
for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
if (val & (1UL << i))
break;
c = (sizeof val * 8) - c;
if (!c || (c % 8))
c = (c + 8) / 8;
else
c /= 8;
return c;
}
/* fill buf which is 'len' bytes with a formatted
* string of the form 'reg: value\n' */
static int format_register_str(struct snd_soc_codec *codec,
unsigned int reg, char *buf, size_t len)
{
int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
int regsize = codec->driver->reg_word_size * 2;
int ret;
char tmpbuf[len + 1];
char regbuf[regsize + 1];
/* since tmpbuf is allocated on the stack, warn the callers if they
* try to abuse this function */
WARN_ON(len > 63);
/* +2 for ': ' and + 1 for '\n' */
if (wordsize + regsize + 2 + 1 != len)
return -EINVAL;
ret = snd_soc_read(codec, reg);
if (ret < 0) {
memset(regbuf, 'X', regsize);
regbuf[regsize] = '\0';
} else {
snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
}
/* prepare the buffer */
snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
/* copy it back to the caller without the '\0' */
memcpy(buf, tmpbuf, len);
return 0;
}
/* codec register dump */
static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
size_t count, loff_t pos)
{
int i, step = 1;
int wordsize, regsize;
int len;
size_t total = 0;
loff_t p = 0;
wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
regsize = codec->driver->reg_word_size * 2;
len = wordsize + regsize + 2 + 1;
if (!codec->driver->reg_cache_size)
return 0;
if (codec->driver->reg_cache_step)
step = codec->driver->reg_cache_step;
for (i = 0; i < codec->driver->reg_cache_size; i += step) {
if (!snd_soc_codec_readable_register(codec, i))
continue;
if (codec->driver->display_register) {
count += codec->driver->display_register(codec, buf + count,
PAGE_SIZE - count, i);
} else {
/* only support larger than PAGE_SIZE bytes debugfs
* entries for the default case */
if (p >= pos) {
if (total + len >= count - 1)
break;
format_register_str(codec, i, buf + total, len);
total += len;
}
p += len;
}
}
total = min(total, count - 1);
return total;
}
static ssize_t codec_reg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
}
static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
static ssize_t pmdown_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
return sprintf(buf, "%ld\n", rtd->pmdown_time);
}
static ssize_t pmdown_time_set(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
int ret;
ret = kstrtol(buf, 10, &rtd->pmdown_time);
if (ret)
return ret;
return count;
}
static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
#ifdef CONFIG_DEBUG_FS
static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
ssize_t ret;
struct snd_soc_codec *codec = file->private_data;
char *buf;
if (*ppos < 0 || !count)
return -EINVAL;
buf = kmalloc(count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = soc_codec_reg_show(codec, buf, count, *ppos);
if (ret >= 0) {
if (copy_to_user(user_buf, buf, ret)) {
kfree(buf);
return -EFAULT;
}
*ppos += ret;
}
kfree(buf);
return ret;
}
static ssize_t codec_reg_write_file(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
char buf[32];
size_t buf_size;
char *start = buf;
unsigned long reg, value;
struct snd_soc_codec *codec = file->private_data;
int ret;
buf_size = min(count, (sizeof(buf)-1));
if (copy_from_user(buf, user_buf, buf_size))
return -EFAULT;
buf[buf_size] = 0;
while (*start == ' ')
start++;
reg = simple_strtoul(start, &start, 16);
while (*start == ' ')
start++;
ret = kstrtoul(start, 16, &value);
if (ret)
return ret;
/* Userspace has been fiddling around behind the kernel's back */
add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE);
snd_soc_write(codec, reg, value);
return buf_size;
}
static const struct file_operations codec_reg_fops = {
.open = simple_open,
.read = codec_reg_read_file,
.write = codec_reg_write_file,
.llseek = default_llseek,
};
static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
{
struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
codec->debugfs_codec_root = debugfs_create_dir(codec->name,
debugfs_card_root);
if (!codec->debugfs_codec_root) {
dev_warn(codec->dev,
"ASoC: Failed to create codec debugfs directory\n");
return;
}
debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
&codec->cache_sync);
debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
&codec->cache_only);
codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
codec->debugfs_codec_root,
codec, &codec_reg_fops);
if (!codec->debugfs_reg)
dev_warn(codec->dev,
"ASoC: Failed to create codec register debugfs file\n");
snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root);
}
static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
{
debugfs_remove_recursive(codec->debugfs_codec_root);
}
static void soc_init_platform_debugfs(struct snd_soc_platform *platform)
{
struct dentry *debugfs_card_root = platform->card->debugfs_card_root;
platform->debugfs_platform_root = debugfs_create_dir(platform->name,
debugfs_card_root);
if (!platform->debugfs_platform_root) {
dev_warn(platform->dev,
"ASoC: Failed to create platform debugfs directory\n");
return;
}
snd_soc_dapm_debugfs_init(&platform->dapm,
platform->debugfs_platform_root);
}
static void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
{
debugfs_remove_recursive(platform->debugfs_platform_root);
}
static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
ssize_t len, ret = 0;
struct snd_soc_codec *codec;
if (!buf)
return -ENOMEM;
list_for_each_entry(codec, &codec_list, list) {
len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
codec->name);
if (len >= 0)
ret += len;
if (ret > PAGE_SIZE) {
ret = PAGE_SIZE;
break;
}
}
if (ret >= 0)
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
static const struct file_operations codec_list_fops = {
.read = codec_list_read_file,
.llseek = default_llseek,/* read accesses f_pos */
};
static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
ssize_t len, ret = 0;
struct snd_soc_component *component;
struct snd_soc_dai *dai;
if (!buf)
return -ENOMEM;
list_for_each_entry(component, &component_list, list) {
list_for_each_entry(dai, &component->dai_list, list) {
len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
dai->name);
if (len >= 0)
ret += len;
if (ret > PAGE_SIZE) {
ret = PAGE_SIZE;
break;
}
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
static const struct file_operations dai_list_fops = {
.read = dai_list_read_file,
.llseek = default_llseek,/* read accesses f_pos */
};
static ssize_t platform_list_read_file(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
ssize_t len, ret = 0;
struct snd_soc_platform *platform;
if (!buf)
return -ENOMEM;
list_for_each_entry(platform, &platform_list, list) {
len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
platform->name);
if (len >= 0)
ret += len;
if (ret > PAGE_SIZE) {
ret = PAGE_SIZE;
break;
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
static const struct file_operations platform_list_fops = {
.read = platform_list_read_file,
.llseek = default_llseek,/* read accesses f_pos */
};
static void soc_init_card_debugfs(struct snd_soc_card *card)
{
card->debugfs_card_root = debugfs_create_dir(card->name,
snd_soc_debugfs_root);
if (!card->debugfs_card_root) {
dev_warn(card->dev,
"ASoC: Failed to create card debugfs directory\n");
return;
}
card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
card->debugfs_card_root,
&card->pop_time);
if (!card->debugfs_pop_time)
dev_warn(card->dev,
"ASoC: Failed to create pop time debugfs file\n");
}
static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
{
debugfs_remove_recursive(card->debugfs_card_root);
}
#else
static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
{
}
static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
{
}
static inline void soc_init_platform_debugfs(struct snd_soc_platform *platform)
{
}
static inline void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
{
}
static inline void soc_init_card_debugfs(struct snd_soc_card *card)
{
}
static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
{
}
#endif
struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card,
const char *dai_link, int stream)
{
int i;
for (i = 0; i < card->num_links; i++) {
if (card->rtd[i].dai_link->no_pcm &&
!strcmp(card->rtd[i].dai_link->name, dai_link))
return card->rtd[i].pcm->streams[stream].substream;
}
dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link);
return NULL;
}
EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream);
struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card,
const char *dai_link)
{
int i;
for (i = 0; i < card->num_links; i++) {
if (!strcmp(card->rtd[i].dai_link->name, dai_link))
return &card->rtd[i];
}
dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link);
return NULL;
}
EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime);
#ifdef CONFIG_SND_SOC_AC97_BUS
/* unregister ac97 codec */
static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
{
if (codec->ac97->dev.bus)
device_unregister(&codec->ac97->dev);
return 0;
}
/* stop no dev release warning */
static void soc_ac97_device_release(struct device *dev){}
/* register ac97 codec to bus */
static int soc_ac97_dev_register(struct snd_soc_codec *codec)
{
int err;
codec->ac97->dev.bus = &ac97_bus_type;
codec->ac97->dev.parent = codec->card->dev;
codec->ac97->dev.release = soc_ac97_device_release;
dev_set_name(&codec->ac97->dev, "%d-%d:%s",
codec->card->snd_card->number, 0, codec->name);
err = device_register(&codec->ac97->dev);
if (err < 0) {
dev_err(codec->dev, "ASoC: Can't register ac97 bus\n");
codec->ac97->dev.bus = NULL;
return err;
}
return 0;
}
#endif
static void codec2codec_close_delayed_work(struct work_struct *work)
{
/* Currently nothing to do for c2c links
* Since c2c links are internal nodes in the DAPM graph and
* don't interface with the outside world or application layer
* we don't have to do any special handling on close.
*/
}
#ifdef CONFIG_PM_SLEEP
/* powers down audio subsystem for suspend */
int snd_soc_suspend(struct device *dev)
{
struct snd_soc_card *card = dev_get_drvdata(dev);
struct snd_soc_codec *codec;
int i;
/* If the initialization of this soc device failed, there is no codec
* associated with it. Just bail out in this case.
*/
if (list_empty(&card->codec_dev_list))
return 0;
/* Due to the resume being scheduled into a workqueue we could
* suspend before that's finished - wait for it to complete.
*/
snd_power_lock(card->snd_card);
snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
snd_power_unlock(card->snd_card);
/* we're going to block userspace touching us until resume completes */
snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
/* mute any active DACs */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *dai = card->rtd[i].codec_dai;
struct snd_soc_dai_driver *drv = dai->driver;
if (card->rtd[i].dai_link->ignore_suspend)
continue;
if (drv->ops->digital_mute && dai->playback_active)
drv->ops->digital_mute(dai, 1);
}
/* suspend all pcms */
for (i = 0; i < card->num_rtd; i++) {
if (card->rtd[i].dai_link->ignore_suspend)
continue;
snd_pcm_suspend_all(card->rtd[i].pcm);
}
if (card->suspend_pre)
card->suspend_pre(card);
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
struct snd_soc_platform *platform = card->rtd[i].platform;
if (card->rtd[i].dai_link->ignore_suspend)
continue;
if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
cpu_dai->driver->suspend(cpu_dai);
if (platform->driver->suspend && !platform->suspended) {
platform->driver->suspend(cpu_dai);
platform->suspended = 1;
}
}
/* close any waiting streams and save state */
for (i = 0; i < card->num_rtd; i++) {
flush_delayed_work(&card->rtd[i].delayed_work);
card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
}
for (i = 0; i < card->num_rtd; i++) {
if (card->rtd[i].dai_link->ignore_suspend)
continue;
snd_soc_dapm_stream_event(&card->rtd[i],
SNDRV_PCM_STREAM_PLAYBACK,
SND_SOC_DAPM_STREAM_SUSPEND);
snd_soc_dapm_stream_event(&card->rtd[i],
SNDRV_PCM_STREAM_CAPTURE,
SND_SOC_DAPM_STREAM_SUSPEND);
}
/* Recheck all analogue paths too */
dapm_mark_io_dirty(&card->dapm);
snd_soc_dapm_sync(&card->dapm);
/* suspend all CODECs */
list_for_each_entry(codec, &card->codec_dev_list, card_list) {
/* If there are paths active then the CODEC will be held with
* bias _ON and should not be suspended. */
if (!codec->suspended && codec->driver->suspend) {
switch (codec->dapm.bias_level) {
case SND_SOC_BIAS_STANDBY:
/*
* If the CODEC is capable of idle
* bias off then being in STANDBY
* means it's doing something,
* otherwise fall through.
*/
if (codec->dapm.idle_bias_off) {
dev_dbg(codec->dev,
"ASoC: idle_bias_off CODEC on over suspend\n");
break;
}
case SND_SOC_BIAS_OFF:
codec->driver->suspend(codec);
codec->suspended = 1;
codec->cache_sync = 1;
if (codec->using_regmap)
regcache_mark_dirty(codec->control_data);
/* deactivate pins to sleep state */
pinctrl_pm_select_sleep_state(codec->dev);
break;
default:
dev_dbg(codec->dev,
"ASoC: CODEC is on over suspend\n");
break;
}
}
}
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
if (card->rtd[i].dai_link->ignore_suspend)
continue;
if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
cpu_dai->driver->suspend(cpu_dai);
/* deactivate pins to sleep state */
pinctrl_pm_select_sleep_state(cpu_dai->dev);
}
if (card->suspend_post)
card->suspend_post(card);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_suspend);
/* deferred resume work, so resume can complete before we finished
* setting our codec back up, which can be very slow on I2C
*/
static void soc_resume_deferred(struct work_struct *work)
{
struct snd_soc_card *card =
container_of(work, struct snd_soc_card, deferred_resume_work);
struct snd_soc_codec *codec;
int i;
/* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
* so userspace apps are blocked from touching us
*/
dev_dbg(card->dev, "ASoC: starting resume work\n");
/* Bring us up into D2 so that DAPM starts enabling things */
snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
if (card->resume_pre)
card->resume_pre(card);
/* resume AC97 DAIs */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
if (card->rtd[i].dai_link->ignore_suspend)
continue;
if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
cpu_dai->driver->resume(cpu_dai);
}
list_for_each_entry(codec, &card->codec_dev_list, card_list) {
/* If the CODEC was idle over suspend then it will have been
* left with bias OFF or STANDBY and suspended so we must now
* resume. Otherwise the suspend was suppressed.
*/
if (codec->driver->resume && codec->suspended) {
switch (codec->dapm.bias_level) {
case SND_SOC_BIAS_STANDBY:
case SND_SOC_BIAS_OFF:
codec->driver->resume(codec);
codec->suspended = 0;
break;
default:
dev_dbg(codec->dev,
"ASoC: CODEC was on over suspend\n");
break;
}
}
}
for (i = 0; i < card->num_rtd; i++) {
if (card->rtd[i].dai_link->ignore_suspend)
continue;
snd_soc_dapm_stream_event(&card->rtd[i],
SNDRV_PCM_STREAM_PLAYBACK,
SND_SOC_DAPM_STREAM_RESUME);
snd_soc_dapm_stream_event(&card->rtd[i],
SNDRV_PCM_STREAM_CAPTURE,
SND_SOC_DAPM_STREAM_RESUME);
}
/* unmute any active DACs */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *dai = card->rtd[i].codec_dai;
struct snd_soc_dai_driver *drv = dai->driver;
if (card->rtd[i].dai_link->ignore_suspend)
continue;
if (drv->ops->digital_mute && dai->playback_active)
drv->ops->digital_mute(dai, 0);
}
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
struct snd_soc_platform *platform = card->rtd[i].platform;
if (card->rtd[i].dai_link->ignore_suspend)
continue;
if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
cpu_dai->driver->resume(cpu_dai);
if (platform->driver->resume && platform->suspended) {
platform->driver->resume(cpu_dai);
platform->suspended = 0;
}
}
if (card->resume_post)
card->resume_post(card);
dev_dbg(card->dev, "ASoC: resume work completed\n");
/* userspace can access us now we are back as we were before */
snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
/* Recheck all analogue paths too */
dapm_mark_io_dirty(&card->dapm);
snd_soc_dapm_sync(&card->dapm);
}
/* powers up audio subsystem after a suspend */
int snd_soc_resume(struct device *dev)
{
struct snd_soc_card *card = dev_get_drvdata(dev);
int i, ac97_control = 0;
/* If the initialization of this soc device failed, there is no codec
* associated with it. Just bail out in this case.
*/
if (list_empty(&card->codec_dev_list))
return 0;
/* activate pins from sleep state */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai;
if (cpu_dai->active)
pinctrl_pm_select_default_state(cpu_dai->dev);
if (codec_dai->active)
pinctrl_pm_select_default_state(codec_dai->dev);
}
/* AC97 devices might have other drivers hanging off them so
* need to resume immediately. Other drivers don't have that
* problem and may take a substantial amount of time to resume
* due to I/O costs and anti-pop so handle them out of line.
*/
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
ac97_control |= cpu_dai->driver->ac97_control;
}
if (ac97_control) {
dev_dbg(dev, "ASoC: Resuming AC97 immediately\n");
soc_resume_deferred(&card->deferred_resume_work);
} else {
dev_dbg(dev, "ASoC: Scheduling resume work\n");
if (!schedule_work(&card->deferred_resume_work))
dev_err(dev, "ASoC: resume work item may be lost\n");
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_resume);
#else
#define snd_soc_suspend NULL
#define snd_soc_resume NULL
#endif
static const struct snd_soc_dai_ops null_dai_ops = {
};
static int soc_bind_dai_link(struct snd_soc_card *card, int num)
{
struct snd_soc_dai_link *dai_link = &card->dai_link[num];
struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
struct snd_soc_component *component;
struct snd_soc_codec *codec;
struct snd_soc_platform *platform;
struct snd_soc_dai *codec_dai, *cpu_dai;
const char *platform_name;
dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num);
/* Find CPU DAI from registered DAIs*/
list_for_each_entry(component, &component_list, list) {
if (dai_link->cpu_of_node &&
component->dev->of_node != dai_link->cpu_of_node)
continue;
if (dai_link->cpu_name &&
strcmp(dev_name(component->dev), dai_link->cpu_name))
continue;
list_for_each_entry(cpu_dai, &component->dai_list, list) {
if (dai_link->cpu_dai_name &&
strcmp(cpu_dai->name, dai_link->cpu_dai_name))
continue;
rtd->cpu_dai = cpu_dai;
}
}
if (!rtd->cpu_dai) {
dev_err(card->dev, "ASoC: CPU DAI %s not registered\n",
dai_link->cpu_dai_name);
return -EPROBE_DEFER;
}
/* Find CODEC from registered CODECs */
list_for_each_entry(codec, &codec_list, list) {
if (dai_link->codec_of_node) {
if (codec->dev->of_node != dai_link->codec_of_node)
continue;
} else {
if (strcmp(codec->name, dai_link->codec_name))
continue;
}
rtd->codec = codec;
/*
* CODEC found, so find CODEC DAI from registered DAIs from
* this CODEC
*/
list_for_each_entry(codec_dai, &codec->component.dai_list, list) {
if (!strcmp(codec_dai->name, dai_link->codec_dai_name)) {
rtd->codec_dai = codec_dai;
break;
}
}
if (!rtd->codec_dai) {
dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n",
dai_link->codec_dai_name);
return -EPROBE_DEFER;
}
}
if (!rtd->codec) {
dev_err(card->dev, "ASoC: CODEC %s not registered\n",
dai_link->codec_name);
return -EPROBE_DEFER;
}
/* if there's no platform we match on the empty platform */
platform_name = dai_link->platform_name;
if (!platform_name && !dai_link->platform_of_node)
platform_name = "snd-soc-dummy";
/* find one from the set of registered platforms */
list_for_each_entry(platform, &platform_list, list) {
if (dai_link->platform_of_node) {
if (platform->dev->of_node !=
dai_link->platform_of_node)
continue;
} else {
if (strcmp(platform->name, platform_name))
continue;
}
rtd->platform = platform;
}
if (!rtd->platform) {
dev_err(card->dev, "ASoC: platform %s not registered\n",
dai_link->platform_name);
return -EPROBE_DEFER;
}
card->num_rtd++;
return 0;
}
static int soc_remove_platform(struct snd_soc_platform *platform)
{
int ret;
if (platform->driver->remove) {
ret = platform->driver->remove(platform);
if (ret < 0)
dev_err(platform->dev, "ASoC: failed to remove %d\n",
ret);
}
/* Make sure all DAPM widgets are freed */
snd_soc_dapm_free(&platform->dapm);
soc_cleanup_platform_debugfs(platform);
platform->probed = 0;
list_del(&platform->card_list);
module_put(platform->dev->driver->owner);
return 0;
}
static void soc_remove_codec(struct snd_soc_codec *codec)
{
int err;
if (codec->driver->remove) {
err = codec->driver->remove(codec);
if (err < 0)
dev_err(codec->dev, "ASoC: failed to remove %d\n", err);
}
/* Make sure all DAPM widgets are freed */
snd_soc_dapm_free(&codec->dapm);
soc_cleanup_codec_debugfs(codec);
codec->probed = 0;
list_del(&codec->card_list);
module_put(codec->dev->driver->owner);
}
static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order)
{
struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
int err;
/* unregister the rtd device */
if (rtd->dev_registered) {
device_remove_file(rtd->dev, &dev_attr_pmdown_time);
device_remove_file(rtd->dev, &dev_attr_codec_reg);
device_unregister(rtd->dev);
rtd->dev_registered = 0;
}
/* remove the CODEC DAI */
if (codec_dai && codec_dai->probed &&
codec_dai->driver->remove_order == order) {
if (codec_dai->driver->remove) {
err = codec_dai->driver->remove(codec_dai);
if (err < 0)
dev_err(codec_dai->dev,
"ASoC: failed to remove %s: %d\n",
codec_dai->name, err);
}
codec_dai->probed = 0;
list_del(&codec_dai->card_list);
}
/* remove the cpu_dai */
if (cpu_dai && cpu_dai->probed &&
cpu_dai->driver->remove_order == order) {
if (cpu_dai->driver->remove) {
err = cpu_dai->driver->remove(cpu_dai);
if (err < 0)
dev_err(cpu_dai->dev,
"ASoC: failed to remove %s: %d\n",
cpu_dai->name, err);
}
cpu_dai->probed = 0;
list_del(&cpu_dai->card_list);
if (!cpu_dai->codec) {
snd_soc_dapm_free(&cpu_dai->dapm);
module_put(cpu_dai->dev->driver->owner);
}
}
}
static void soc_remove_link_components(struct snd_soc_card *card, int num,
int order)
{
struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
struct snd_soc_platform *platform = rtd->platform;
struct snd_soc_codec *codec;
/* remove the platform */
if (platform && platform->probed &&
platform->driver->remove_order == order) {
soc_remove_platform(platform);
}
/* remove the CODEC-side CODEC */
if (codec_dai) {
codec = codec_dai->codec;
if (codec && codec->probed &&
codec->driver->remove_order == order)
soc_remove_codec(codec);
}
/* remove any CPU-side CODEC */
if (cpu_dai) {
codec = cpu_dai->codec;
if (codec && codec->probed &&
codec->driver->remove_order == order)
soc_remove_codec(codec);
}
}
static void soc_remove_dai_links(struct snd_soc_card *card)
{
int dai, order;
for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
order++) {
for (dai = 0; dai < card->num_rtd; dai++)
soc_remove_link_dais(card, dai, order);
}
for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
order++) {
for (dai = 0; dai < card->num_rtd; dai++)
soc_remove_link_components(card, dai, order);
}
card->num_rtd = 0;
}
static void soc_set_name_prefix(struct snd_soc_card *card,
struct snd_soc_codec *codec)
{
int i;
if (card->codec_conf == NULL)
return;
for (i = 0; i < card->num_configs; i++) {
struct snd_soc_codec_conf *map = &card->codec_conf[i];
if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
codec->name_prefix = map->name_prefix;
break;
}
}
}
static int soc_probe_codec(struct snd_soc_card *card,
struct snd_soc_codec *codec)
{
int ret = 0;
const struct snd_soc_codec_driver *driver = codec->driver;
struct snd_soc_dai *dai;
codec->card = card;
codec->dapm.card = card;
soc_set_name_prefix(card, codec);
if (!try_module_get(codec->dev->driver->owner))
return -ENODEV;
soc_init_codec_debugfs(codec);
if (driver->dapm_widgets) {
ret = snd_soc_dapm_new_controls(&codec->dapm,
driver->dapm_widgets,
driver->num_dapm_widgets);
if (ret != 0) {
dev_err(codec->dev,
"Failed to create new controls %d\n", ret);
goto err_probe;
}
}
/* Create DAPM widgets for each DAI stream */
list_for_each_entry(dai, &codec->component.dai_list, list) {
ret = snd_soc_dapm_new_dai_widgets(&codec->dapm, dai);
if (ret != 0) {
dev_err(codec->dev,
"Failed to create DAI widgets %d\n", ret);
goto err_probe;
}
}
codec->dapm.idle_bias_off = driver->idle_bias_off;
if (!codec->write && dev_get_regmap(codec->dev, NULL)) {
/* Set the default I/O up try regmap */
ret = snd_soc_codec_set_cache_io(codec, NULL);
if (ret < 0) {
dev_err(codec->dev,
"Failed to set cache I/O: %d\n", ret);
goto err_probe;
}
}
if (driver->probe) {
ret = driver->probe(codec);
if (ret < 0) {
dev_err(codec->dev,
"ASoC: failed to probe CODEC %d\n", ret);
goto err_probe;
}
WARN(codec->dapm.idle_bias_off &&
codec->dapm.bias_level != SND_SOC_BIAS_OFF,
"codec %s can not start from non-off bias with idle_bias_off==1\n",
codec->name);
}
if (driver->controls)
snd_soc_add_codec_controls(codec, driver->controls,
driver->num_controls);
if (driver->dapm_routes)
snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
driver->num_dapm_routes);
/* mark codec as probed and add to card codec list */
codec->probed = 1;
list_add(&codec->card_list, &card->codec_dev_list);
list_add(&codec->dapm.list, &card->dapm_list);
return 0;
err_probe:
soc_cleanup_codec_debugfs(codec);
module_put(codec->dev->driver->owner);
return ret;
}
static int soc_probe_platform(struct snd_soc_card *card,
struct snd_soc_platform *platform)
{
int ret = 0;
const struct snd_soc_platform_driver *driver = platform->driver;
struct snd_soc_component *component;
struct snd_soc_dai *dai;
platform->card = card;
platform->dapm.card = card;
if (!try_module_get(platform->dev->driver->owner))
return -ENODEV;
soc_init_platform_debugfs(platform);
if (driver->dapm_widgets)
snd_soc_dapm_new_controls(&platform->dapm,
driver->dapm_widgets, driver->num_dapm_widgets);
/* Create DAPM widgets for each DAI stream */
list_for_each_entry(component, &component_list, list) {
if (component->dev != platform->dev)
continue;
list_for_each_entry(dai, &component->dai_list, list)
snd_soc_dapm_new_dai_widgets(&platform->dapm, dai);
}
platform->dapm.idle_bias_off = 1;
if (driver->probe) {
ret = driver->probe(platform);
if (ret < 0) {
dev_err(platform->dev,
"ASoC: failed to probe platform %d\n", ret);
goto err_probe;
}
}
if (driver->controls)
snd_soc_add_platform_controls(platform, driver->controls,
driver->num_controls);
if (driver->dapm_routes)
snd_soc_dapm_add_routes(&platform->dapm, driver->dapm_routes,
driver->num_dapm_routes);
/* mark platform as probed and add to card platform list */
platform->probed = 1;
list_add(&platform->card_list, &card->platform_dev_list);
list_add(&platform->dapm.list, &card->dapm_list);
return 0;
err_probe:
soc_cleanup_platform_debugfs(platform);
module_put(platform->dev->driver->owner);
return ret;
}
static void rtd_release(struct device *dev)
{
kfree(dev);
}
static int soc_post_component_init(struct snd_soc_card *card,
struct snd_soc_codec *codec,
int num, int dailess)
{
struct snd_soc_dai_link *dai_link = NULL;
struct snd_soc_aux_dev *aux_dev = NULL;
struct snd_soc_pcm_runtime *rtd;
const char *name;
int ret = 0;
if (!dailess) {
dai_link = &card->dai_link[num];
rtd = &card->rtd[num];
name = dai_link->name;
} else {
aux_dev = &card->aux_dev[num];
rtd = &card->rtd_aux[num];
name = aux_dev->name;
}
rtd->card = card;
/* do machine specific initialization */
if (!dailess && dai_link->init)
ret = dai_link->init(rtd);
else if (dailess && aux_dev->init)
ret = aux_dev->init(&codec->dapm);
if (ret < 0) {
dev_err(card->dev, "ASoC: failed to init %s: %d\n", name, ret);
return ret;
}
/* register the rtd device */
rtd->codec = codec;
rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
if (!rtd->dev)
return -ENOMEM;
device_initialize(rtd->dev);
rtd->dev->parent = card->dev;
rtd->dev->release = rtd_release;
rtd->dev->init_name = name;
dev_set_drvdata(rtd->dev, rtd);
mutex_init(&rtd->pcm_mutex);
INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients);
INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients);
INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients);
INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients);
ret = device_add(rtd->dev);
if (ret < 0) {
/* calling put_device() here to free the rtd->dev */
put_device(rtd->dev);
dev_err(card->dev,
"ASoC: failed to register runtime device: %d\n", ret);
return ret;
}
rtd->dev_registered = 1;
/* add DAPM sysfs entries for this codec */
ret = snd_soc_dapm_sys_add(rtd->dev);
if (ret < 0)
dev_err(codec->dev,
"ASoC: failed to add codec dapm sysfs entries: %d\n", ret);
/* add codec sysfs entries */
ret = device_create_file(rtd->dev, &dev_attr_codec_reg);
if (ret < 0)
dev_err(codec->dev,
"ASoC: failed to add codec sysfs files: %d\n", ret);
#ifdef CONFIG_DEBUG_FS
/* add DPCM sysfs entries */
if (!dailess && !dai_link->dynamic)
goto out;
ret = soc_dpcm_debugfs_add(rtd);
if (ret < 0)
dev_err(rtd->dev, "ASoC: failed to add dpcm sysfs entries: %d\n", ret);
out:
#endif
return 0;
}
static int soc_probe_link_components(struct snd_soc_card *card, int num,
int order)
{
struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
struct snd_soc_platform *platform = rtd->platform;
int ret;
/* probe the CPU-side component, if it is a CODEC */
if (cpu_dai->codec &&
!cpu_dai->codec->probed &&
cpu_dai->codec->driver->probe_order == order) {
ret = soc_probe_codec(card, cpu_dai->codec);
if (ret < 0)
return ret;
}
/* probe the CODEC-side component */
if (!codec_dai->codec->probed &&
codec_dai->codec->driver->probe_order == order) {
ret = soc_probe_codec(card, codec_dai->codec);
if (ret < 0)
return ret;
}
/* probe the platform */
if (!platform->probed &&
platform->driver->probe_order == order) {
ret = soc_probe_platform(card, platform);
if (ret < 0)
return ret;
}
return 0;
}
static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order)
{
struct snd_soc_dai_link *dai_link = &card->dai_link[num];
struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
struct snd_soc_codec *codec = rtd->codec;
struct snd_soc_platform *platform = rtd->platform;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct snd_soc_dapm_widget *play_w, *capture_w;
int ret;
dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n",
card->name, num, order);
/* config components */
cpu_dai->platform = platform;
codec_dai->card = card;
cpu_dai->card = card;
/* set default power off timeout */
rtd->pmdown_time = pmdown_time;
/* probe the cpu_dai */
if (!cpu_dai->probed &&
cpu_dai->driver->probe_order == order) {
if (!cpu_dai->codec) {
cpu_dai->dapm.card = card;
if (!try_module_get(cpu_dai->dev->driver->owner))
return -ENODEV;
list_add(&cpu_dai->dapm.list, &card->dapm_list);
}
if (cpu_dai->driver->probe) {
ret = cpu_dai->driver->probe(cpu_dai);
if (ret < 0) {
dev_err(cpu_dai->dev,
"ASoC: failed to probe CPU DAI %s: %d\n",
cpu_dai->name, ret);
module_put(cpu_dai->dev->driver->owner);
return ret;
}
}
cpu_dai->probed = 1;
/* mark cpu_dai as probed and add to card dai list */
list_add(&cpu_dai->card_list, &card->dai_dev_list);
}
/* probe the CODEC DAI */
if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
if (codec_dai->driver->probe) {
ret = codec_dai->driver->probe(codec_dai);
if (ret < 0) {
dev_err(codec_dai->dev,
"ASoC: failed to probe CODEC DAI %s: %d\n",
codec_dai->name, ret);
return ret;
}
}
/* mark codec_dai as probed and add to card dai list */
codec_dai->probed = 1;
list_add(&codec_dai->card_list, &card->dai_dev_list);
}
/* complete DAI probe during last probe */
if (order != SND_SOC_COMP_ORDER_LAST)
return 0;
ret = soc_post_component_init(card, codec, num, 0);
if (ret)
return ret;
ret = device_create_file(rtd->dev, &dev_attr_pmdown_time);
if (ret < 0)
dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n",
ret);
if (cpu_dai->driver->compress_dai) {
/*create compress_device"*/
ret = soc_new_compress(rtd, num);
if (ret < 0) {
dev_err(card->dev, "ASoC: can't create compress %s\n",
dai_link->stream_name);
return ret;
}
} else {
if (!dai_link->params) {
/* create the pcm */
ret = soc_new_pcm(rtd, num);
if (ret < 0) {
dev_err(card->dev, "ASoC: can't create pcm %s :%d\n",
dai_link->stream_name, ret);
return ret;
}
} else {
INIT_DELAYED_WORK(&rtd->delayed_work,
codec2codec_close_delayed_work);
/* link the DAI widgets */
play_w = codec_dai->playback_widget;
capture_w = cpu_dai->capture_widget;
if (play_w && capture_w) {
ret = snd_soc_dapm_new_pcm(card, dai_link->params,
capture_w, play_w);
if (ret != 0) {
dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
play_w->name, capture_w->name, ret);
return ret;
}
}
play_w = cpu_dai->playback_widget;
capture_w = codec_dai->capture_widget;
if (play_w && capture_w) {
ret = snd_soc_dapm_new_pcm(card, dai_link->params,
capture_w, play_w);
if (ret != 0) {
dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
play_w->name, capture_w->name, ret);
return ret;
}
}
}
}
/* add platform data for AC97 devices */
if (rtd->codec_dai->driver->ac97_control)
snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
return 0;
}
#ifdef CONFIG_SND_SOC_AC97_BUS
static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
{
int ret;
/* Only instantiate AC97 if not already done by the adaptor
* for the generic AC97 subsystem.
*/
if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
/*
* It is possible that the AC97 device is already registered to
* the device subsystem. This happens when the device is created
* via snd_ac97_mixer(). Currently only SoC codec that does so
* is the generic AC97 glue but others migh emerge.
*
* In those cases we don't try to register the device again.
*/
if (!rtd->codec->ac97_created)
return 0;
ret = soc_ac97_dev_register(rtd->codec);
if (ret < 0) {
dev_err(rtd->codec->dev,
"ASoC: AC97 device register failed: %d\n", ret);
return ret;
}
rtd->codec->ac97_registered = 1;
}
return 0;
}
static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
{
if (codec->ac97_registered) {
soc_ac97_dev_unregister(codec);
codec->ac97_registered = 0;
}
}
#endif
static int soc_check_aux_dev(struct snd_soc_card *card, int num)
{
struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
struct snd_soc_codec *codec;
/* find CODEC from registered CODECs*/
list_for_each_entry(codec, &codec_list, list) {
if (!strcmp(codec->name, aux_dev->codec_name))
return 0;
}
dev_err(card->dev, "ASoC: %s not registered\n", aux_dev->codec_name);
return -EPROBE_DEFER;
}
static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
{
struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
struct snd_soc_codec *codec;
int ret = -ENODEV;
/* find CODEC from registered CODECs*/
list_for_each_entry(codec, &codec_list, list) {
if (!strcmp(codec->name, aux_dev->codec_name)) {
if (codec->probed) {
dev_err(codec->dev,
"ASoC: codec already probed");
ret = -EBUSY;
goto out;
}
goto found;
}
}
/* codec not found */
dev_err(card->dev, "ASoC: codec %s not found", aux_dev->codec_name);
return -EPROBE_DEFER;
found:
ret = soc_probe_codec(card, codec);
if (ret < 0)
return ret;
ret = soc_post_component_init(card, codec, num, 1);
out:
return ret;
}
static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
{
struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
struct snd_soc_codec *codec = rtd->codec;
/* unregister the rtd device */
if (rtd->dev_registered) {
device_remove_file(rtd->dev, &dev_attr_codec_reg);
device_unregister(rtd->dev);
rtd->dev_registered = 0;
}
if (codec && codec->probed)
soc_remove_codec(codec);
}
static int snd_soc_init_codec_cache(struct snd_soc_codec *codec)
{
int ret;
if (codec->cache_init)
return 0;
ret = snd_soc_cache_init(codec);
if (ret < 0) {
dev_err(codec->dev,
"ASoC: Failed to set cache compression type: %d\n",
ret);
return ret;
}
codec->cache_init = 1;
return 0;
}
static int snd_soc_instantiate_card(struct snd_soc_card *card)
{
struct snd_soc_codec *codec;
struct snd_soc_dai_link *dai_link;
int ret, i, order, dai_fmt;
mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT);
/* bind DAIs */
for (i = 0; i < card->num_links; i++) {
ret = soc_bind_dai_link(card, i);
if (ret != 0)
goto base_error;
}
/* check aux_devs too */
for (i = 0; i < card->num_aux_devs; i++) {
ret = soc_check_aux_dev(card, i);
if (ret != 0)
goto base_error;
}
/* initialize the register cache for each available codec */
list_for_each_entry(codec, &codec_list, list) {
if (codec->cache_init)
continue;
ret = snd_soc_init_codec_cache(codec);
if (ret < 0)
goto base_error;
}
/* card bind complete so register a sound card */
ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
card->owner, 0, &card->snd_card);
if (ret < 0) {
dev_err(card->dev,
"ASoC: can't create sound card for card %s: %d\n",
card->name, ret);
goto base_error;
}
card->dapm.bias_level = SND_SOC_BIAS_OFF;
card->dapm.dev = card->dev;
card->dapm.card = card;
list_add(&card->dapm.list, &card->dapm_list);
#ifdef CONFIG_DEBUG_FS
snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
#endif
#ifdef CONFIG_PM_SLEEP
/* deferred resume work */
INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
#endif
if (card->dapm_widgets)
snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
card->num_dapm_widgets);
/* initialise the sound card only once */
if (card->probe) {
ret = card->probe(card);
if (ret < 0)
goto card_probe_error;
}
/* probe all components used by DAI links on this card */
for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
order++) {
for (i = 0; i < card->num_links; i++) {
ret = soc_probe_link_components(card, i, order);
if (ret < 0) {
dev_err(card->dev,
"ASoC: failed to instantiate card %d\n",
ret);
goto probe_dai_err;
}
}
}
/* probe all DAI links on this card */
for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
order++) {
for (i = 0; i < card->num_links; i++) {
ret = soc_probe_link_dais(card, i, order);
if (ret < 0) {
dev_err(card->dev,
"ASoC: failed to instantiate card %d\n",
ret);
goto probe_dai_err;
}
}
}
for (i = 0; i < card->num_aux_devs; i++) {
ret = soc_probe_aux_dev(card, i);
if (ret < 0) {
dev_err(card->dev,
"ASoC: failed to add auxiliary devices %d\n",
ret);
goto probe_aux_dev_err;
}
}
snd_soc_dapm_link_dai_widgets(card);
snd_soc_dapm_connect_dai_link_widgets(card);
if (card->controls)
snd_soc_add_card_controls(card, card->controls, card->num_controls);
if (card->dapm_routes)
snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
card->num_dapm_routes);
for (i = 0; i < card->num_links; i++) {
dai_link = &card->dai_link[i];
dai_fmt = dai_link->dai_fmt;
if (dai_fmt) {
ret = snd_soc_dai_set_fmt(card->rtd[i].codec_dai,
dai_fmt);
if (ret != 0 && ret != -ENOTSUPP)
dev_warn(card->rtd[i].codec_dai->dev,
"ASoC: Failed to set DAI format: %d\n",
ret);
}
/* If this is a regular CPU link there will be a platform */
if (dai_fmt &&
(dai_link->platform_name || dai_link->platform_of_node)) {
ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
dai_fmt);
if (ret != 0 && ret != -ENOTSUPP)
dev_warn(card->rtd[i].cpu_dai->dev,
"ASoC: Failed to set DAI format: %d\n",
ret);
} else if (dai_fmt) {
/* Flip the polarity for the "CPU" end */
dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK;
switch (dai_link->dai_fmt &
SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
dai_fmt |= SND_SOC_DAIFMT_CBS_CFS;
break;
case SND_SOC_DAIFMT_CBM_CFS:
dai_fmt |= SND_SOC_DAIFMT_CBS_CFM;
break;
case SND_SOC_DAIFMT_CBS_CFM:
dai_fmt |= SND_SOC_DAIFMT_CBM_CFS;
break;
case SND_SOC_DAIFMT_CBS_CFS:
dai_fmt |= SND_SOC_DAIFMT_CBM_CFM;
break;
}
ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
dai_fmt);
if (ret != 0 && ret != -ENOTSUPP)
dev_warn(card->rtd[i].cpu_dai->dev,
"ASoC: Failed to set DAI format: %d\n",
ret);
}
}
snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
"%s", card->name);
snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
"%s", card->long_name ? card->long_name : card->name);
snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
"%s", card->driver_name ? card->driver_name : card->name);
for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) {
switch (card->snd_card->driver[i]) {
case '_':
case '-':
case '\0':
break;
default:
if (!isalnum(card->snd_card->driver[i]))
card->snd_card->driver[i] = '_';
break;
}
}
if (card->late_probe) {
ret = card->late_probe(card);
if (ret < 0) {
dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n",
card->name, ret);
goto probe_aux_dev_err;
}
}
if (card->fully_routed)
list_for_each_entry(codec, &card->codec_dev_list, card_list)
snd_soc_dapm_auto_nc_codec_pins(codec);
snd_soc_dapm_new_widgets(card);
ret = snd_card_register(card->snd_card);
if (ret < 0) {
dev_err(card->dev, "ASoC: failed to register soundcard %d\n",
ret);
goto probe_aux_dev_err;
}
#ifdef CONFIG_SND_SOC_AC97_BUS
/* register any AC97 codecs */
for (i = 0; i < card->num_rtd; i++) {
ret = soc_register_ac97_dai_link(&card->rtd[i]);
if (ret < 0) {
dev_err(card->dev,
"ASoC: failed to register AC97: %d\n", ret);
while (--i >= 0)
soc_unregister_ac97_dai_link(card->rtd[i].codec);
goto probe_aux_dev_err;
}
}
#endif
card->instantiated = 1;
snd_soc_dapm_sync(&card->dapm);
mutex_unlock(&card->mutex);
return 0;
probe_aux_dev_err:
for (i = 0; i < card->num_aux_devs; i++)
soc_remove_aux_dev(card, i);
probe_dai_err:
soc_remove_dai_links(card);
card_probe_error:
if (card->remove)
card->remove(card);
snd_card_free(card->snd_card);
base_error:
mutex_unlock(&card->mutex);
return ret;
}
/* probes a new socdev */
static int soc_probe(struct platform_device *pdev)
{
struct snd_soc_card *card = platform_get_drvdata(pdev);
/*
* no card, so machine driver should be registering card
* we should not be here in that case so ret error
*/
if (!card)
return -EINVAL;
dev_warn(&pdev->dev,
"ASoC: machine %s should use snd_soc_register_card()\n",
card->name);
/* Bodge while we unpick instantiation */
card->dev = &pdev->dev;
return snd_soc_register_card(card);
}
static int soc_cleanup_card_resources(struct snd_soc_card *card)
{
int i;
/* make sure any delayed work runs */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
flush_delayed_work(&rtd->delayed_work);
}
/* remove auxiliary devices */
for (i = 0; i < card->num_aux_devs; i++)
soc_remove_aux_dev(card, i);
/* remove and free each DAI */
soc_remove_dai_links(card);
soc_cleanup_card_debugfs(card);
/* remove the card */
if (card->remove)
card->remove(card);
snd_soc_dapm_free(&card->dapm);
snd_card_free(card->snd_card);
return 0;
}
/* removes a socdev */
static int soc_remove(struct platform_device *pdev)
{
struct snd_soc_card *card = platform_get_drvdata(pdev);
snd_soc_unregister_card(card);
return 0;
}
int snd_soc_poweroff(struct device *dev)
{
struct snd_soc_card *card = dev_get_drvdata(dev);
int i;
if (!card->instantiated)
return 0;
/* Flush out pmdown_time work - we actually do want to run it
* now, we're shutting down so no imminent restart. */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
flush_delayed_work(&rtd->delayed_work);
}
snd_soc_dapm_shutdown(card);
/* deactivate pins to sleep state */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai;
pinctrl_pm_select_sleep_state(codec_dai->dev);
pinctrl_pm_select_sleep_state(cpu_dai->dev);
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_poweroff);
const struct dev_pm_ops snd_soc_pm_ops = {
.suspend = snd_soc_suspend,
.resume = snd_soc_resume,
.freeze = snd_soc_suspend,
.thaw = snd_soc_resume,
.poweroff = snd_soc_poweroff,
.restore = snd_soc_resume,
};
EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
/* ASoC platform driver */
static struct platform_driver soc_driver = {
.driver = {
.name = "soc-audio",
.owner = THIS_MODULE,
.pm = &snd_soc_pm_ops,
},
.probe = soc_probe,
.remove = soc_remove,
};
/**
* snd_soc_codec_volatile_register: Report if a register is volatile.
*
* @codec: CODEC to query.
* @reg: Register to query.
*
* Boolean function indiciating if a CODEC register is volatile.
*/
int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
unsigned int reg)
{
if (codec->volatile_register)
return codec->volatile_register(codec, reg);
else
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
/**
* snd_soc_codec_readable_register: Report if a register is readable.
*
* @codec: CODEC to query.
* @reg: Register to query.
*
* Boolean function indicating if a CODEC register is readable.
*/
int snd_soc_codec_readable_register(struct snd_soc_codec *codec,
unsigned int reg)
{
if (codec->readable_register)
return codec->readable_register(codec, reg);
else
return 1;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_readable_register);
/**
* snd_soc_codec_writable_register: Report if a register is writable.
*
* @codec: CODEC to query.
* @reg: Register to query.
*
* Boolean function indicating if a CODEC register is writable.
*/
int snd_soc_codec_writable_register(struct snd_soc_codec *codec,
unsigned int reg)
{
if (codec->writable_register)
return codec->writable_register(codec, reg);
else
return 1;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_writable_register);
int snd_soc_platform_read(struct snd_soc_platform *platform,
unsigned int reg)
{
unsigned int ret;
if (!platform->driver->read) {
dev_err(platform->dev, "ASoC: platform has no read back\n");
return -1;
}
ret = platform->driver->read(platform, reg);
dev_dbg(platform->dev, "read %x => %x\n", reg, ret);
trace_snd_soc_preg_read(platform, reg, ret);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_platform_read);
int snd_soc_platform_write(struct snd_soc_platform *platform,
unsigned int reg, unsigned int val)
{
if (!platform->driver->write) {
dev_err(platform->dev, "ASoC: platform has no write back\n");
return -1;
}
dev_dbg(platform->dev, "write %x = %x\n", reg, val);
trace_snd_soc_preg_write(platform, reg, val);
return platform->driver->write(platform, reg, val);
}
EXPORT_SYMBOL_GPL(snd_soc_platform_write);
/**
* snd_soc_new_ac97_codec - initailise AC97 device
* @codec: audio codec
* @ops: AC97 bus operations
* @num: AC97 codec number
*
* Initialises AC97 codec resources for use by ad-hoc devices only.
*/
int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
struct snd_ac97_bus_ops *ops, int num)
{
mutex_lock(&codec->mutex);
codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
if (codec->ac97 == NULL) {
mutex_unlock(&codec->mutex);
return -ENOMEM;
}
codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
if (codec->ac97->bus == NULL) {
kfree(codec->ac97);
codec->ac97 = NULL;
mutex_unlock(&codec->mutex);
return -ENOMEM;
}
codec->ac97->bus->ops = ops;
codec->ac97->num = num;
/*
* Mark the AC97 device to be created by us. This way we ensure that the
* device will be registered with the device subsystem later on.
*/
codec->ac97_created = 1;
mutex_unlock(&codec->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
static struct snd_ac97_reset_cfg snd_ac97_rst_cfg;
static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97)
{
struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset);
gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1);
udelay(10);
gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
msleep(2);
}
static void snd_soc_ac97_reset(struct snd_ac97 *ac97)
{
struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset);
gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0);
gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0);
udelay(10);
gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1);
pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
msleep(2);
}
static int snd_soc_ac97_parse_pinctl(struct device *dev,
struct snd_ac97_reset_cfg *cfg)
{
struct pinctrl *p;
struct pinctrl_state *state;
int gpio;
int ret;
p = devm_pinctrl_get(dev);
if (IS_ERR(p)) {
dev_err(dev, "Failed to get pinctrl\n");
return PTR_RET(p);
}
cfg->pctl = p;
state = pinctrl_lookup_state(p, "ac97-reset");
if (IS_ERR(state)) {
dev_err(dev, "Can't find pinctrl state ac97-reset\n");
return PTR_RET(state);
}
cfg->pstate_reset = state;
state = pinctrl_lookup_state(p, "ac97-warm-reset");
if (IS_ERR(state)) {
dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n");
return PTR_RET(state);
}
cfg->pstate_warm_reset = state;
state = pinctrl_lookup_state(p, "ac97-running");
if (IS_ERR(state)) {
dev_err(dev, "Can't find pinctrl state ac97-running\n");
return PTR_RET(state);
}
cfg->pstate_run = state;
gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0);
if (gpio < 0) {
dev_err(dev, "Can't find ac97-sync gpio\n");
return gpio;
}
ret = devm_gpio_request(dev, gpio, "AC97 link sync");
if (ret) {
dev_err(dev, "Failed requesting ac97-sync gpio\n");
return ret;
}
cfg->gpio_sync = gpio;
gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1);
if (gpio < 0) {
dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio);
return gpio;
}
ret = devm_gpio_request(dev, gpio, "AC97 link sdata");
if (ret) {
dev_err(dev, "Failed requesting ac97-sdata gpio\n");
return ret;
}
cfg->gpio_sdata = gpio;
gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2);
if (gpio < 0) {
dev_err(dev, "Can't find ac97-reset gpio\n");
return gpio;
}
ret = devm_gpio_request(dev, gpio, "AC97 link reset");
if (ret) {
dev_err(dev, "Failed requesting ac97-reset gpio\n");
return ret;
}
cfg->gpio_reset = gpio;
return 0;
}
struct snd_ac97_bus_ops *soc_ac97_ops;
EXPORT_SYMBOL_GPL(soc_ac97_ops);
int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops)
{
if (ops == soc_ac97_ops)
return 0;
if (soc_ac97_ops && ops)
return -EBUSY;
soc_ac97_ops = ops;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops);
/**
* snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions
*
* This function sets the reset and warm_reset properties of ops and parses
* the device node of pdev to get pinctrl states and gpio numbers to use.
*/
int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops,
struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct snd_ac97_reset_cfg cfg;
int ret;
ret = snd_soc_ac97_parse_pinctl(dev, &cfg);
if (ret)
return ret;
ret = snd_soc_set_ac97_ops(ops);
if (ret)
return ret;
ops->warm_reset = snd_soc_ac97_warm_reset;
ops->reset = snd_soc_ac97_reset;
snd_ac97_rst_cfg = cfg;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset);
/**
* snd_soc_free_ac97_codec - free AC97 codec device
* @codec: audio codec
*
* Frees AC97 codec device resources.
*/
void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
{
mutex_lock(&codec->mutex);
#ifdef CONFIG_SND_SOC_AC97_BUS
soc_unregister_ac97_dai_link(codec);
#endif
kfree(codec->ac97->bus);
kfree(codec->ac97);
codec->ac97 = NULL;
codec->ac97_created = 0;
mutex_unlock(&codec->mutex);
}
EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
{
unsigned int ret;
ret = codec->read(codec, reg);
dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
trace_snd_soc_reg_read(codec, reg, ret);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_read);
unsigned int snd_soc_write(struct snd_soc_codec *codec,
unsigned int reg, unsigned int val)
{
dev_dbg(codec->dev, "write %x = %x\n", reg, val);
trace_snd_soc_reg_write(codec, reg, val);
return codec->write(codec, reg, val);
}
EXPORT_SYMBOL_GPL(snd_soc_write);
/**
* snd_soc_update_bits - update codec register bits
* @codec: audio codec
* @reg: codec register
* @mask: register mask
* @value: new value
*
* Writes new register value.
*
* Returns 1 for change, 0 for no change, or negative error code.
*/
int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
unsigned int mask, unsigned int value)
{
bool change;
unsigned int old, new;
int ret;
if (codec->using_regmap) {
ret = regmap_update_bits_check(codec->control_data, reg,
mask, value, &change);
} else {
ret = snd_soc_read(codec, reg);
if (ret < 0)
return ret;
old = ret;
new = (old & ~mask) | (value & mask);
change = old != new;
if (change)
ret = snd_soc_write(codec, reg, new);
}
if (ret < 0)
return ret;
return change;
}
EXPORT_SYMBOL_GPL(snd_soc_update_bits);
/**
* snd_soc_update_bits_locked - update codec register bits
* @codec: audio codec
* @reg: codec register
* @mask: register mask
* @value: new value
*
* Writes new register value, and takes the codec mutex.
*
* Returns 1 for change else 0.
*/
int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
unsigned short reg, unsigned int mask,
unsigned int value)
{
int change;
mutex_lock(&codec->mutex);
change = snd_soc_update_bits(codec, reg, mask, value);
mutex_unlock(&codec->mutex);
return change;
}
EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
/**
* snd_soc_test_bits - test register for change
* @codec: audio codec
* @reg: codec register
* @mask: register mask
* @value: new value
*
* Tests a register with a new value and checks if the new value is
* different from the old value.
*
* Returns 1 for change else 0.
*/
int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
unsigned int mask, unsigned int value)
{
int change;
unsigned int old, new;
old = snd_soc_read(codec, reg);
new = (old & ~mask) | value;
change = old != new;
return change;
}
EXPORT_SYMBOL_GPL(snd_soc_test_bits);
/**
* snd_soc_cnew - create new control
* @_template: control template
* @data: control private data
* @long_name: control long name
* @prefix: control name prefix
*
* Create a new mixer control from a template control.
*
* Returns 0 for success, else error.
*/
struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
void *data, const char *long_name,
const char *prefix)
{
struct snd_kcontrol_new template;
struct snd_kcontrol *kcontrol;
char *name = NULL;
memcpy(&template, _template, sizeof(template));
template.index = 0;
if (!long_name)
long_name = template.name;
if (prefix) {
name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name);
if (!name)
return NULL;
template.name = name;
} else {
template.name = long_name;
}
kcontrol = snd_ctl_new1(&template, data);
kfree(name);
return kcontrol;
}
EXPORT_SYMBOL_GPL(snd_soc_cnew);
static int snd_soc_add_controls(struct snd_card *card, struct device *dev,
const struct snd_kcontrol_new *controls, int num_controls,
const char *prefix, void *data)
{
int err, i;
for (i = 0; i < num_controls; i++) {
const struct snd_kcontrol_new *control = &controls[i];
err = snd_ctl_add(card, snd_soc_cnew(control, data,
control->name, prefix));
if (err < 0) {
dev_err(dev, "ASoC: Failed to add %s: %d\n",
control->name, err);
return err;
}
}
return 0;
}
struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card,
const char *name)
{
struct snd_card *card = soc_card->snd_card;
struct snd_kcontrol *kctl;
if (unlikely(!name))
return NULL;
list_for_each_entry(kctl, &card->controls, list)
if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name)))
return kctl;
return NULL;
}
EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol);
/**
* snd_soc_add_codec_controls - add an array of controls to a codec.
* Convenience function to add a list of controls. Many codecs were
* duplicating this code.
*
* @codec: codec to add controls to
* @controls: array of controls to add
* @num_controls: number of elements in the array
*
* Return 0 for success, else error.
*/
int snd_soc_add_codec_controls(struct snd_soc_codec *codec,
const struct snd_kcontrol_new *controls, int num_controls)
{
struct snd_card *card = codec->card->snd_card;
return snd_soc_add_controls(card, codec->dev, controls, num_controls,
codec->name_prefix, codec);
}
EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls);
/**
* snd_soc_add_platform_controls - add an array of controls to a platform.
* Convenience function to add a list of controls.
*
* @platform: platform to add controls to
* @controls: array of controls to add
* @num_controls: number of elements in the array
*
* Return 0 for success, else error.
*/
int snd_soc_add_platform_controls(struct snd_soc_platform *platform,
const struct snd_kcontrol_new *controls, int num_controls)
{
struct snd_card *card = platform->card->snd_card;
return snd_soc_add_controls(card, platform->dev, controls, num_controls,
NULL, platform);
}
EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls);
/**
* snd_soc_add_card_controls - add an array of controls to a SoC card.
* Convenience function to add a list of controls.
*
* @soc_card: SoC card to add controls to
* @controls: array of controls to add
* @num_controls: number of elements in the array
*
* Return 0 for success, else error.
*/
int snd_soc_add_card_controls(struct snd_soc_card *soc_card,
const struct snd_kcontrol_new *controls, int num_controls)
{
struct snd_card *card = soc_card->snd_card;
return snd_soc_add_controls(card, soc_card->dev, controls, num_controls,
NULL, soc_card);
}
EXPORT_SYMBOL_GPL(snd_soc_add_card_controls);
/**
* snd_soc_add_dai_controls - add an array of controls to a DAI.
* Convienience function to add a list of controls.
*
* @dai: DAI to add controls to
* @controls: array of controls to add
* @num_controls: number of elements in the array
*
* Return 0 for success, else error.
*/
int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
const struct snd_kcontrol_new *controls, int num_controls)
{
struct snd_card *card = dai->card->snd_card;
return snd_soc_add_controls(card, dai->dev, controls, num_controls,
NULL, dai);
}
EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
/**
* snd_soc_info_enum_double - enumerated double mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a double enumerated
* mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
uinfo->value.enumerated.items = e->items;
if (uinfo->value.enumerated.item >= e->items)
uinfo->value.enumerated.item = e->items - 1;
strlcpy(uinfo->value.enumerated.name,
e->texts[uinfo->value.enumerated.item],
sizeof(uinfo->value.enumerated.name));
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
/**
* snd_soc_get_enum_double - enumerated double mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int val, item;
unsigned int reg_val;
reg_val = snd_soc_read(codec, e->reg);
val = (reg_val >> e->shift_l) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[0] = item;
if (e->shift_l != e->shift_r) {
val = (reg_val >> e->shift_l) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[1] = item;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
/**
* snd_soc_put_enum_double - enumerated double mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
unsigned int val;
unsigned int mask;
if (item[0] >= e->items)
return -EINVAL;
val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
mask = e->mask << e->shift_l;
if (e->shift_l != e->shift_r) {
if (item[1] >= e->items)
return -EINVAL;
val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
mask |= e->mask << e->shift_r;
}
return snd_soc_update_bits_locked(codec, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
/**
* snd_soc_read_signed - Read a codec register and interprete as signed value
* @codec: codec
* @reg: Register to read
* @mask: Mask to use after shifting the register value
* @shift: Right shift of register value
* @sign_bit: Bit that describes if a number is negative or not.
*
* This functions reads a codec register. The register value is shifted right
* by 'shift' bits and masked with the given 'mask'. Afterwards it translates
* the given registervalue into a signed integer if sign_bit is non-zero.
*
* Returns the register value as signed int.
*/
static int snd_soc_read_signed(struct snd_soc_codec *codec, unsigned int reg,
unsigned int mask, unsigned int shift, unsigned int sign_bit)
{
int ret;
unsigned int val;
val = (snd_soc_read(codec, reg) >> shift) & mask;
if (!sign_bit)
return val;
/* non-negative number */
if (!(val & BIT(sign_bit)))
return val;
ret = val;
/*
* The register most probably does not contain a full-sized int.
* Instead we have an arbitrary number of bits in a signed
* representation which has to be translated into a full-sized int.
* This is done by filling up all bits above the sign-bit.
*/
ret |= ~((int)(BIT(sign_bit) - 1));
return ret;
}
/**
* snd_soc_info_volsw - single mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single mixer control, or a double
* mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int platform_max;
if (!mc->platform_max)
mc->platform_max = mc->max;
platform_max = mc->platform_max;
if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
else
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = platform_max - mc->min;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
/**
* snd_soc_get_volsw - single mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
int sign_bit = mc->sign_bit;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
if (sign_bit)
mask = BIT(sign_bit + 1) - 1;
ucontrol->value.integer.value[0] = snd_soc_read_signed(codec, reg, mask,
shift, sign_bit) - min;
if (invert)
ucontrol->value.integer.value[0] =
max - ucontrol->value.integer.value[0];
if (snd_soc_volsw_is_stereo(mc)) {
if (reg == reg2)
ucontrol->value.integer.value[1] =
snd_soc_read_signed(codec, reg, mask, rshift,
sign_bit) - min;
else
ucontrol->value.integer.value[1] =
snd_soc_read_signed(codec, reg2, mask, shift,
sign_bit) - min;
if (invert)
ucontrol->value.integer.value[1] =
max - ucontrol->value.integer.value[1];
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
/**
* snd_soc_put_volsw - single mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
unsigned int sign_bit = mc->sign_bit;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
int err;
bool type_2r = false;
unsigned int val2 = 0;
unsigned int val, val_mask;
if (sign_bit)
mask = BIT(sign_bit + 1) - 1;
val = ((ucontrol->value.integer.value[0] + min) & mask);
if (invert)
val = max - val;
val_mask = mask << shift;
val = val << shift;
if (snd_soc_volsw_is_stereo(mc)) {
val2 = ((ucontrol->value.integer.value[1] + min) & mask);
if (invert)
val2 = max - val2;
if (reg == reg2) {
val_mask |= mask << rshift;
val |= val2 << rshift;
} else {
val2 = val2 << shift;
type_2r = true;
}
}
err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
if (err < 0)
return err;
if (type_2r)
err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
/**
* snd_soc_get_volsw_sx - single mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
int mask = (1 << (fls(min + max) - 1)) - 1;
ucontrol->value.integer.value[0] =
((snd_soc_read(codec, reg) >> shift) - min) & mask;
if (snd_soc_volsw_is_stereo(mc))
ucontrol->value.integer.value[1] =
((snd_soc_read(codec, reg2) >> rshift) - min) & mask;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
/**
* snd_soc_put_volsw_sx - double mixer set callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to set the value of a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int reg = mc->reg;
unsigned int reg2 = mc->rreg;
unsigned int shift = mc->shift;
unsigned int rshift = mc->rshift;
int max = mc->max;
int min = mc->min;
int mask = (1 << (fls(min + max) - 1)) - 1;
int err = 0;
unsigned short val, val_mask, val2 = 0;
val_mask = mask << shift;
val = (ucontrol->value.integer.value[0] + min) & mask;
val = val << shift;
err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
if (err < 0)
return err;
if (snd_soc_volsw_is_stereo(mc)) {
val_mask = mask << rshift;
val2 = (ucontrol->value.integer.value[1] + min) & mask;
val2 = val2 << rshift;
if (snd_soc_update_bits_locked(codec, reg2, val_mask, val2))
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
/**
* snd_soc_info_volsw_s8 - signed mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a signed mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int platform_max;
int min = mc->min;
if (!mc->platform_max)
mc->platform_max = mc->max;
platform_max = mc->platform_max;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = platform_max - min;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
/**
* snd_soc_get_volsw_s8 - signed mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a signed mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
int min = mc->min;
int val = snd_soc_read(codec, reg);
ucontrol->value.integer.value[0] =
((signed char)(val & 0xff))-min;
ucontrol->value.integer.value[1] =
((signed char)((val >> 8) & 0xff))-min;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
/**
* snd_soc_put_volsw_sgn - signed mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a signed mixer control.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
int min = mc->min;
unsigned int val;
val = (ucontrol->value.integer.value[0]+min) & 0xff;
val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
/**
* snd_soc_info_volsw_range - single mixer info callback with range.
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information, within a range, about a single
* mixer control.
*
* returns 0 for success.
*/
int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int platform_max;
int min = mc->min;
if (!mc->platform_max)
mc->platform_max = mc->max;
platform_max = mc->platform_max;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = platform_max - min;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
/**
* snd_soc_put_volsw_range - single mixer put value callback with range.
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value, within a range, for a single mixer control.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
unsigned int rreg = mc->rreg;
unsigned int shift = mc->shift;
int min = mc->min;
int max = mc->max;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
unsigned int val, val_mask;
int ret;
val = ((ucontrol->value.integer.value[0] + min) & mask);
if (invert)
val = max - val;
val_mask = mask << shift;
val = val << shift;
ret = snd_soc_update_bits_locked(codec, reg, val_mask, val);
if (ret < 0)
return ret;
if (snd_soc_volsw_is_stereo(mc)) {
val = ((ucontrol->value.integer.value[1] + min) & mask);
if (invert)
val = max - val;
val_mask = mask << shift;
val = val << shift;
ret = snd_soc_update_bits_locked(codec, rreg, val_mask, val);
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
/**
* snd_soc_get_volsw_range - single mixer get callback with range
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value, within a range, of a single mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
unsigned int rreg = mc->rreg;
unsigned int shift = mc->shift;
int min = mc->min;
int max = mc->max;
unsigned int mask = (1 << fls(max)) - 1;
unsigned int invert = mc->invert;
ucontrol->value.integer.value[0] =
(snd_soc_read(codec, reg) >> shift) & mask;
if (invert)
ucontrol->value.integer.value[0] =
max - ucontrol->value.integer.value[0];
ucontrol->value.integer.value[0] =
ucontrol->value.integer.value[0] - min;
if (snd_soc_volsw_is_stereo(mc)) {
ucontrol->value.integer.value[1] =
(snd_soc_read(codec, rreg) >> shift) & mask;
if (invert)
ucontrol->value.integer.value[1] =
max - ucontrol->value.integer.value[1];
ucontrol->value.integer.value[1] =
ucontrol->value.integer.value[1] - min;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
/**
* snd_soc_limit_volume - Set new limit to an existing volume control.
*
* @codec: where to look for the control
* @name: Name of the control
* @max: new maximum limit
*
* Return 0 for success, else error.
*/
int snd_soc_limit_volume(struct snd_soc_codec *codec,
const char *name, int max)
{
struct snd_card *card = codec->card->snd_card;
struct snd_kcontrol *kctl;
struct soc_mixer_control *mc;
int found = 0;
int ret = -EINVAL;
/* Sanity check for name and max */
if (unlikely(!name || max <= 0))
return -EINVAL;
list_for_each_entry(kctl, &card->controls, list) {
if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
found = 1;
break;
}
}
if (found) {
mc = (struct soc_mixer_control *)kctl->private_value;
if (max <= mc->max) {
mc->platform_max = max;
ret = 0;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = params->num_regs * codec->val_bytes;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes *params = (void *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int ret;
if (codec->using_regmap)
ret = regmap_raw_read(codec->control_data, params->base,
ucontrol->value.bytes.data,
params->num_regs * codec->val_bytes);
else
ret = -EINVAL;
/* Hide any masked bytes to ensure consistent data reporting */
if (ret == 0 && params->mask) {
switch (codec->val_bytes) {
case 1:
ucontrol->value.bytes.data[0] &= ~params->mask;
break;
case 2:
((u16 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be16(~params->mask);
break;
case 4:
((u32 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be32(~params->mask);
break;
default:
return -EINVAL;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_bytes *params = (void *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int ret, len;
unsigned int val, mask;
void *data;
if (!codec->using_regmap)
return -EINVAL;
len = params->num_regs * codec->val_bytes;
data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
if (!data)
return -ENOMEM;
/*
* If we've got a mask then we need to preserve the register
* bits. We shouldn't modify the incoming data so take a
* copy.
*/
if (params->mask) {
ret = regmap_read(codec->control_data, params->base, &val);
if (ret != 0)
goto out;
val &= params->mask;
switch (codec->val_bytes) {
case 1:
((u8 *)data)[0] &= ~params->mask;
((u8 *)data)[0] |= val;
break;
case 2:
mask = ~params->mask;
ret = regmap_parse_val(codec->control_data,
&mask, &mask);
if (ret != 0)
goto out;
((u16 *)data)[0] &= mask;
ret = regmap_parse_val(codec->control_data,
&val, &val);
if (ret != 0)
goto out;
((u16 *)data)[0] |= val;
break;
case 4:
mask = ~params->mask;
ret = regmap_parse_val(codec->control_data,
&mask, &mask);
if (ret != 0)
goto out;
((u32 *)data)[0] &= mask;
ret = regmap_parse_val(codec->control_data,
&val, &val);
if (ret != 0)
goto out;
((u32 *)data)[0] |= val;
break;
default:
ret = -EINVAL;
goto out;
}
}
ret = regmap_raw_write(codec->control_data, params->base,
data, len);
out:
kfree(data);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
/**
* snd_soc_info_xr_sx - signed multi register info callback
* @kcontrol: mreg control
* @uinfo: control element information
*
* Callback to provide information of a control that can
* span multiple codec registers which together
* forms a single signed value in a MSB/LSB manner.
*
* Returns 0 for success.
*/
int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = mc->min;
uinfo->value.integer.max = mc->max;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
/**
* snd_soc_get_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to get the value of a control that can span
* multiple codec registers which together forms a single
* signed value in a MSB/LSB manner. The control supports
* specifying total no of bits used to allow for bitfields
* across the multiple codec registers.
*
* Returns 0 for success.
*/
int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE;
unsigned int regwmask = (1<<regwshift)-1;
unsigned int invert = mc->invert;
unsigned long mask = (1UL<<mc->nbits)-1;
long min = mc->min;
long max = mc->max;
long val = 0;
unsigned long regval;
unsigned int i;
for (i = 0; i < regcount; i++) {
regval = snd_soc_read(codec, regbase+i) & regwmask;
val |= regval << (regwshift*(regcount-i-1));
}
val &= mask;
if (min < 0 && val > max)
val |= ~mask;
if (invert)
val = max - val;
ucontrol->value.integer.value[0] = val;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
/**
* snd_soc_put_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to set the value of a control that can span
* multiple codec registers which together forms a single
* signed value in a MSB/LSB manner. The control supports
* specifying total no of bits used to allow for bitfields
* across the multiple codec registers.
*
* Returns 0 for success.
*/
int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE;
unsigned int regwmask = (1<<regwshift)-1;
unsigned int invert = mc->invert;
unsigned long mask = (1UL<<mc->nbits)-1;
long max = mc->max;
long val = ucontrol->value.integer.value[0];
unsigned int i, regval, regmask;
int err;
if (invert)
val = max - val;
val &= mask;
for (i = 0; i < regcount; i++) {
regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
err = snd_soc_update_bits_locked(codec, regbase+i,
regmask, regval);
if (err < 0)
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
/**
* snd_soc_get_strobe - strobe get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback get the value of a strobe mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
unsigned int shift = mc->shift;
unsigned int mask = 1 << shift;
unsigned int invert = mc->invert != 0;
unsigned int val = snd_soc_read(codec, reg) & mask;
if (shift != 0 && val != 0)
val = val >> shift;
ucontrol->value.enumerated.item[0] = val ^ invert;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
/**
* snd_soc_put_strobe - strobe put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback strobe a register bit to high then low (or the inverse)
* in one pass of a single mixer enum control.
*
* Returns 1 for success.
*/
int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned int reg = mc->reg;
unsigned int shift = mc->shift;
unsigned int mask = 1 << shift;
unsigned int invert = mc->invert != 0;
unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
unsigned int val1 = (strobe ^ invert) ? mask : 0;
unsigned int val2 = (strobe ^ invert) ? 0 : mask;
int err;
err = snd_soc_update_bits_locked(codec, reg, mask, val1);
if (err < 0)
return err;
err = snd_soc_update_bits_locked(codec, reg, mask, val2);
return err;
}
EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
/**
* snd_soc_dai_set_sysclk - configure DAI system or master clock.
* @dai: DAI
* @clk_id: DAI specific clock ID
* @freq: new clock frequency in Hz
* @dir: new clock direction - input/output.
*
* Configures the DAI master (MCLK) or system (SYSCLK) clocking.
*/
int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
if (dai->driver && dai->driver->ops->set_sysclk)
return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
else if (dai->codec && dai->codec->driver->set_sysclk)
return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0,
freq, dir);
else
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
/**
* snd_soc_codec_set_sysclk - configure CODEC system or master clock.
* @codec: CODEC
* @clk_id: DAI specific clock ID
* @source: Source for the clock
* @freq: new clock frequency in Hz
* @dir: new clock direction - input/output.
*
* Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
*/
int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
int source, unsigned int freq, int dir)
{
if (codec->driver->set_sysclk)
return codec->driver->set_sysclk(codec, clk_id, source,
freq, dir);
else
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
/**
* snd_soc_dai_set_clkdiv - configure DAI clock dividers.
* @dai: DAI
* @div_id: DAI specific clock divider ID
* @div: new clock divisor.
*
* Configures the clock dividers. This is used to derive the best DAI bit and
* frame clocks from the system or master clock. It's best to set the DAI bit
* and frame clocks as low as possible to save system power.
*/
int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
int div_id, int div)
{
if (dai->driver && dai->driver->ops->set_clkdiv)
return dai->driver->ops->set_clkdiv(dai, div_id, div);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
/**
* snd_soc_dai_set_pll - configure DAI PLL.
* @dai: DAI
* @pll_id: DAI specific PLL ID
* @source: DAI specific source for the PLL
* @freq_in: PLL input clock frequency in Hz
* @freq_out: requested PLL output clock frequency in Hz
*
* Configures and enables PLL to generate output clock based on input clock.
*/
int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
if (dai->driver && dai->driver->ops->set_pll)
return dai->driver->ops->set_pll(dai, pll_id, source,
freq_in, freq_out);
else if (dai->codec && dai->codec->driver->set_pll)
return dai->codec->driver->set_pll(dai->codec, pll_id, source,
freq_in, freq_out);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
/*
* snd_soc_codec_set_pll - configure codec PLL.
* @codec: CODEC
* @pll_id: DAI specific PLL ID
* @source: DAI specific source for the PLL
* @freq_in: PLL input clock frequency in Hz
* @freq_out: requested PLL output clock frequency in Hz
*
* Configures and enables PLL to generate output clock based on input clock.
*/
int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
if (codec->driver->set_pll)
return codec->driver->set_pll(codec, pll_id, source,
freq_in, freq_out);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
/**
* snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio.
* @dai: DAI
* @ratio Ratio of BCLK to Sample rate.
*
* Configures the DAI for a preset BCLK to sample rate ratio.
*/
int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
{
if (dai->driver && dai->driver->ops->set_bclk_ratio)
return dai->driver->ops->set_bclk_ratio(dai, ratio);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio);
/**
* snd_soc_dai_set_fmt - configure DAI hardware audio format.
* @dai: DAI
* @fmt: SND_SOC_DAIFMT_ format value.
*
* Configures the DAI hardware format and clocking.
*/
int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
if (dai->driver == NULL)
return -EINVAL;
if (dai->driver->ops->set_fmt == NULL)
return -ENOTSUPP;
return dai->driver->ops->set_fmt(dai, fmt);
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
/**
* snd_soc_xlate_tdm_slot - generate tx/rx slot mask.
* @slots: Number of slots in use.
* @tx_mask: bitmask representing active TX slots.
* @rx_mask: bitmask representing active RX slots.
*
* Generates the TDM tx and rx slot default masks for DAI.
*/
static int snd_soc_xlate_tdm_slot_mask(unsigned int slots,
unsigned int *tx_mask,
unsigned int *rx_mask)
{
if (*tx_mask || *rx_mask)
return 0;
if (!slots)
return -EINVAL;
*tx_mask = (1 << slots) - 1;
*rx_mask = (1 << slots) - 1;
return 0;
}
/**
* snd_soc_dai_set_tdm_slot - configure DAI TDM.
* @dai: DAI
* @tx_mask: bitmask representing active TX slots.
* @rx_mask: bitmask representing active RX slots.
* @slots: Number of slots in use.
* @slot_width: Width in bits for each slot.
*
* Configures a DAI for TDM operation. Both mask and slots are codec and DAI
* specific.
*/
int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask)
dai->driver->ops->xlate_tdm_slot_mask(slots,
&tx_mask, &rx_mask);
else
snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask);
if (dai->driver && dai->driver->ops->set_tdm_slot)
return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
slots, slot_width);
else
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
/**
* snd_soc_dai_set_channel_map - configure DAI audio channel map
* @dai: DAI
* @tx_num: how many TX channels
* @tx_slot: pointer to an array which imply the TX slot number channel
* 0~num-1 uses
* @rx_num: how many RX channels
* @rx_slot: pointer to an array which imply the RX slot number channel
* 0~num-1 uses
*
* configure the relationship between channel number and TDM slot number.
*/
int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
unsigned int tx_num, unsigned int *tx_slot,
unsigned int rx_num, unsigned int *rx_slot)
{
if (dai->driver && dai->driver->ops->set_channel_map)
return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
rx_num, rx_slot);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
/**
* snd_soc_dai_set_tristate - configure DAI system or master clock.
* @dai: DAI
* @tristate: tristate enable
*
* Tristates the DAI so that others can use it.
*/
int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
{
if (dai->driver && dai->driver->ops->set_tristate)
return dai->driver->ops->set_tristate(dai, tristate);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
/**
* snd_soc_dai_digital_mute - configure DAI system or master clock.
* @dai: DAI
* @mute: mute enable
* @direction: stream to mute
*
* Mutes the DAI DAC.
*/
int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute,
int direction)
{
if (!dai->driver)
return -ENOTSUPP;
if (dai->driver->ops->mute_stream)
return dai->driver->ops->mute_stream(dai, mute, direction);
else if (direction == SNDRV_PCM_STREAM_PLAYBACK &&
dai->driver->ops->digital_mute)
return dai->driver->ops->digital_mute(dai, mute);
else
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
/**
* snd_soc_register_card - Register a card with the ASoC core
*
* @card: Card to register
*
*/
int snd_soc_register_card(struct snd_soc_card *card)
{
int i, ret;
if (!card->name || !card->dev)
return -EINVAL;
for (i = 0; i < card->num_links; i++) {
struct snd_soc_dai_link *link = &card->dai_link[i];
/*
* Codec must be specified by 1 of name or OF node,
* not both or neither.
*/
if (!!link->codec_name == !!link->codec_of_node) {
dev_err(card->dev,
"ASoC: Neither/both codec name/of_node are set for %s\n",
link->name);
return -EINVAL;
}
/* Codec DAI name must be specified */
if (!link->codec_dai_name) {
dev_err(card->dev,
"ASoC: codec_dai_name not set for %s\n",
link->name);
return -EINVAL;
}
/*
* Platform may be specified by either name or OF node, but
* can be left unspecified, and a dummy platform will be used.
*/
if (link->platform_name && link->platform_of_node) {
dev_err(card->dev,
"ASoC: Both platform name/of_node are set for %s\n",
link->name);
return -EINVAL;
}
/*
* CPU device may be specified by either name or OF node, but
* can be left unspecified, and will be matched based on DAI
* name alone..
*/
if (link->cpu_name && link->cpu_of_node) {
dev_err(card->dev,
"ASoC: Neither/both cpu name/of_node are set for %s\n",
link->name);
return -EINVAL;
}
/*
* At least one of CPU DAI name or CPU device name/node must be
* specified
*/
if (!link->cpu_dai_name &&
!(link->cpu_name || link->cpu_of_node)) {
dev_err(card->dev,
"ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n",
link->name);
return -EINVAL;
}
}
dev_set_drvdata(card->dev, card);
snd_soc_initialize_card_lists(card);
soc_init_card_debugfs(card);
card->rtd = devm_kzalloc(card->dev,
sizeof(struct snd_soc_pcm_runtime) *
(card->num_links + card->num_aux_devs),
GFP_KERNEL);
if (card->rtd == NULL)
return -ENOMEM;
card->num_rtd = 0;
card->rtd_aux = &card->rtd[card->num_links];
for (i = 0; i < card->num_links; i++)
card->rtd[i].dai_link = &card->dai_link[i];
INIT_LIST_HEAD(&card->list);
INIT_LIST_HEAD(&card->dapm_dirty);
card->instantiated = 0;
mutex_init(&card->mutex);
mutex_init(&card->dapm_mutex);
ret = snd_soc_instantiate_card(card);
if (ret != 0)
soc_cleanup_card_debugfs(card);
/* deactivate pins to sleep state */
for (i = 0; i < card->num_rtd; i++) {
struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
struct snd_soc_dai *codec_dai = card->rtd[i].codec_dai;
if (!codec_dai->active)
pinctrl_pm_select_sleep_state(codec_dai->dev);
if (!cpu_dai->active)
pinctrl_pm_select_sleep_state(cpu_dai->dev);
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_card);
/**
* snd_soc_unregister_card - Unregister a card with the ASoC core
*
* @card: Card to unregister
*
*/
int snd_soc_unregister_card(struct snd_soc_card *card)
{
if (card->instantiated)
soc_cleanup_card_resources(card);
dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
/*
* Simplify DAI link configuration by removing ".-1" from device names
* and sanitizing names.
*/
static char *fmt_single_name(struct device *dev, int *id)
{
char *found, name[NAME_SIZE];
int id1, id2;
if (dev_name(dev) == NULL)
return NULL;
strlcpy(name, dev_name(dev), NAME_SIZE);
/* are we a "%s.%d" name (platform and SPI components) */
found = strstr(name, dev->driver->name);
if (found) {
/* get ID */
if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
/* discard ID from name if ID == -1 */
if (*id == -1)
found[strlen(dev->driver->name)] = '\0';
}
} else {
/* I2C component devices are named "bus-addr" */
if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
char tmp[NAME_SIZE];
/* create unique ID number from I2C addr and bus */
*id = ((id1 & 0xffff) << 16) + id2;
/* sanitize component name for DAI link creation */
snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
strlcpy(name, tmp, NAME_SIZE);
} else
*id = 0;
}
return kstrdup(name, GFP_KERNEL);
}
/*
* Simplify DAI link naming for single devices with multiple DAIs by removing
* any ".-1" and using the DAI name (instead of device name).
*/
static inline char *fmt_multiple_name(struct device *dev,
struct snd_soc_dai_driver *dai_drv)
{
if (dai_drv->name == NULL) {
dev_err(dev,
"ASoC: error - multiple DAI %s registered with no name\n",
dev_name(dev));
return NULL;
}
return kstrdup(dai_drv->name, GFP_KERNEL);
}
/**
* snd_soc_unregister_dai - Unregister DAIs from the ASoC core
*
* @component: The component for which the DAIs should be unregistered
*/
static void snd_soc_unregister_dais(struct snd_soc_component *component)
{
struct snd_soc_dai *dai, *_dai;
list_for_each_entry_safe(dai, _dai, &component->dai_list, list) {
dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n",
dai->name);
list_del(&dai->list);
kfree(dai->name);
kfree(dai);
}
}
/**
* snd_soc_register_dais - Register a DAI with the ASoC core
*
* @component: The component the DAIs are registered for
* @codec: The CODEC that the DAIs are registered for, NULL if the component is
* not a CODEC.
* @dai_drv: DAI driver to use for the DAIs
* @count: Number of DAIs
* @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the
* parent's name.
*/
static int snd_soc_register_dais(struct snd_soc_component *component,
struct snd_soc_codec *codec, struct snd_soc_dai_driver *dai_drv,
size_t count, bool legacy_dai_naming)
{
struct device *dev = component->dev;
struct snd_soc_dai *dai;
unsigned int i;
int ret;
dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count);
for (i = 0; i < count; i++) {
dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
if (dai == NULL) {
ret = -ENOMEM;
goto err;
}
/*
* Back in the old days when we still had component-less DAIs,
* instead of having a static name, component-less DAIs would
* inherit the name of the parent device so it is possible to
* register multiple instances of the DAI. We still need to keep
* the same naming style even though those DAIs are not
* component-less anymore.
*/
if (count == 1 && legacy_dai_naming) {
dai->name = fmt_single_name(dev, &dai->id);
} else {
dai->name = fmt_multiple_name(dev, &dai_drv[i]);
if (dai_drv[i].id)
dai->id = dai_drv[i].id;
else
dai->id = i;
}
if (dai->name == NULL) {
kfree(dai);
ret = -ENOMEM;
goto err;
}
dai->component = component;
dai->codec = codec;
dai->dev = dev;
dai->driver = &dai_drv[i];
dai->dapm.dev = dev;
if (!dai->driver->ops)
dai->driver->ops = &null_dai_ops;
if (!dai->codec)
dai->dapm.idle_bias_off = 1;
list_add(&dai->list, &component->dai_list);
dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name);
}
return 0;
err:
snd_soc_unregister_dais(component);
return ret;
}
/**
* snd_soc_register_component - Register a component with the ASoC core
*
*/
static int
__snd_soc_register_component(struct device *dev,
struct snd_soc_component *cmpnt,
const struct snd_soc_component_driver *cmpnt_drv,
struct snd_soc_codec *codec,
struct snd_soc_dai_driver *dai_drv,
int num_dai, bool allow_single_dai)
{
int ret;
dev_dbg(dev, "component register %s\n", dev_name(dev));
if (!cmpnt) {
dev_err(dev, "ASoC: Failed to connecting component\n");
return -ENOMEM;
}
cmpnt->name = fmt_single_name(dev, &cmpnt->id);
if (!cmpnt->name) {
dev_err(dev, "ASoC: Failed to simplifying name\n");
return -ENOMEM;
}
cmpnt->dev = dev;
cmpnt->driver = cmpnt_drv;
cmpnt->dai_drv = dai_drv;
cmpnt->num_dai = num_dai;
INIT_LIST_HEAD(&cmpnt->dai_list);
ret = snd_soc_register_dais(cmpnt, codec, dai_drv, num_dai,
allow_single_dai);
if (ret < 0) {
dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
goto error_component_name;
}
mutex_lock(&client_mutex);
list_add(&cmpnt->list, &component_list);
mutex_unlock(&client_mutex);
dev_dbg(cmpnt->dev, "ASoC: Registered component '%s'\n", cmpnt->name);
return ret;
error_component_name:
kfree(cmpnt->name);
return ret;
}
int snd_soc_register_component(struct device *dev,
const struct snd_soc_component_driver *cmpnt_drv,
struct snd_soc_dai_driver *dai_drv,
int num_dai)
{
struct snd_soc_component *cmpnt;
cmpnt = devm_kzalloc(dev, sizeof(*cmpnt), GFP_KERNEL);
if (!cmpnt) {
dev_err(dev, "ASoC: Failed to allocate memory\n");
return -ENOMEM;
}
cmpnt->ignore_pmdown_time = true;
return __snd_soc_register_component(dev, cmpnt, cmpnt_drv, NULL,
dai_drv, num_dai, true);
}
EXPORT_SYMBOL_GPL(snd_soc_register_component);
/**
* snd_soc_unregister_component - Unregister a component from the ASoC core
*
*/
void snd_soc_unregister_component(struct device *dev)
{
struct snd_soc_component *cmpnt;
list_for_each_entry(cmpnt, &component_list, list) {
if (dev == cmpnt->dev)
goto found;
}
return;
found:
snd_soc_unregister_dais(cmpnt);
mutex_lock(&client_mutex);
list_del(&cmpnt->list);
mutex_unlock(&client_mutex);
dev_dbg(dev, "ASoC: Unregistered component '%s'\n", cmpnt->name);
kfree(cmpnt->name);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_component);
/**
* snd_soc_add_platform - Add a platform to the ASoC core
* @dev: The parent device for the platform
* @platform: The platform to add
* @platform_driver: The driver for the platform
*/
int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform,
const struct snd_soc_platform_driver *platform_drv)
{
/* create platform component name */
platform->name = fmt_single_name(dev, &platform->id);
if (platform->name == NULL)
return -ENOMEM;
platform->dev = dev;
platform->driver = platform_drv;
platform->dapm.dev = dev;
platform->dapm.platform = platform;
platform->dapm.stream_event = platform_drv->stream_event;
mutex_init(&platform->mutex);
mutex_lock(&client_mutex);
list_add(&platform->list, &platform_list);
mutex_unlock(&client_mutex);
dev_dbg(dev, "ASoC: Registered platform '%s'\n", platform->name);
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_add_platform);
/**
* snd_soc_register_platform - Register a platform with the ASoC core
*
* @platform: platform to register
*/
int snd_soc_register_platform(struct device *dev,
const struct snd_soc_platform_driver *platform_drv)
{
struct snd_soc_platform *platform;
int ret;
dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev));
platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
if (platform == NULL)
return -ENOMEM;
ret = snd_soc_add_platform(dev, platform, platform_drv);
if (ret)
kfree(platform);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_platform);
/**
* snd_soc_remove_platform - Remove a platform from the ASoC core
* @platform: the platform to remove
*/
void snd_soc_remove_platform(struct snd_soc_platform *platform)
{
mutex_lock(&client_mutex);
list_del(&platform->list);
mutex_unlock(&client_mutex);
dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n",
platform->name);
kfree(platform->name);
}
EXPORT_SYMBOL_GPL(snd_soc_remove_platform);
struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev)
{
struct snd_soc_platform *platform;
list_for_each_entry(platform, &platform_list, list) {
if (dev == platform->dev)
return platform;
}
return NULL;
}
EXPORT_SYMBOL_GPL(snd_soc_lookup_platform);
/**
* snd_soc_unregister_platform - Unregister a platform from the ASoC core
*
* @platform: platform to unregister
*/
void snd_soc_unregister_platform(struct device *dev)
{
struct snd_soc_platform *platform;
platform = snd_soc_lookup_platform(dev);
if (!platform)
return;
snd_soc_remove_platform(platform);
kfree(platform);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
static u64 codec_format_map[] = {
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
| SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
};
/* Fix up the DAI formats for endianness: codecs don't actually see
* the endianness of the data but we're using the CPU format
* definitions which do need to include endianness so we ensure that
* codec DAIs always have both big and little endian variants set.
*/
static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
{
int i;
for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
if (stream->formats & codec_format_map[i])
stream->formats |= codec_format_map[i];
}
/**
* snd_soc_register_codec - Register a codec with the ASoC core
*
* @codec: codec to register
*/
int snd_soc_register_codec(struct device *dev,
const struct snd_soc_codec_driver *codec_drv,
struct snd_soc_dai_driver *dai_drv,
int num_dai)
{
struct snd_soc_codec *codec;
int ret, i;
dev_dbg(dev, "codec register %s\n", dev_name(dev));
codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
if (codec == NULL)
return -ENOMEM;
/* create CODEC component name */
codec->name = fmt_single_name(dev, &codec->id);
if (codec->name == NULL) {
ret = -ENOMEM;
goto fail_codec;
}
codec->write = codec_drv->write;
codec->read = codec_drv->read;
codec->volatile_register = codec_drv->volatile_register;
codec->readable_register = codec_drv->readable_register;
codec->writable_register = codec_drv->writable_register;
codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time;
codec->dapm.bias_level = SND_SOC_BIAS_OFF;
codec->dapm.dev = dev;
codec->dapm.codec = codec;
codec->dapm.seq_notifier = codec_drv->seq_notifier;
codec->dapm.stream_event = codec_drv->stream_event;
codec->dev = dev;
codec->driver = codec_drv;
codec->num_dai = num_dai;
mutex_init(&codec->mutex);
for (i = 0; i < num_dai; i++) {
fixup_codec_formats(&dai_drv[i].playback);
fixup_codec_formats(&dai_drv[i].capture);
}
mutex_lock(&client_mutex);
list_add(&codec->list, &codec_list);
mutex_unlock(&client_mutex);
/* register component */
ret = __snd_soc_register_component(dev, &codec->component,
&codec_drv->component_driver,
codec, dai_drv, num_dai, false);
if (ret < 0) {
dev_err(codec->dev, "ASoC: Failed to regster component: %d\n", ret);
goto fail_codec_name;
}
dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n", codec->name);
return 0;
fail_codec_name:
mutex_lock(&client_mutex);
list_del(&codec->list);
mutex_unlock(&client_mutex);
kfree(codec->name);
fail_codec:
kfree(codec);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_register_codec);
/**
* snd_soc_unregister_codec - Unregister a codec from the ASoC core
*
* @codec: codec to unregister
*/
void snd_soc_unregister_codec(struct device *dev)
{
struct snd_soc_codec *codec;
list_for_each_entry(codec, &codec_list, list) {
if (dev == codec->dev)
goto found;
}
return;
found:
snd_soc_unregister_component(dev);
mutex_lock(&client_mutex);
list_del(&codec->list);
mutex_unlock(&client_mutex);
dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n", codec->name);
snd_soc_cache_exit(codec);
kfree(codec->name);
kfree(codec);
}
EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
/* Retrieve a card's name from device tree */
int snd_soc_of_parse_card_name(struct snd_soc_card *card,
const char *propname)
{
struct device_node *np = card->dev->of_node;
int ret;
ret = of_property_read_string_index(np, propname, 0, &card->name);
/*
* EINVAL means the property does not exist. This is fine providing
* card->name was previously set, which is checked later in
* snd_soc_register_card.
*/
if (ret < 0 && ret != -EINVAL) {
dev_err(card->dev,
"ASoC: Property '%s' could not be read: %d\n",
propname, ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
static const struct snd_soc_dapm_widget simple_widgets[] = {
SND_SOC_DAPM_MIC("Microphone", NULL),
SND_SOC_DAPM_LINE("Line", NULL),
SND_SOC_DAPM_HP("Headphone", NULL),
SND_SOC_DAPM_SPK("Speaker", NULL),
};
int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
const char *propname)
{
struct device_node *np = card->dev->of_node;
struct snd_soc_dapm_widget *widgets;
const char *template, *wname;
int i, j, num_widgets, ret;
num_widgets = of_property_count_strings(np, propname);
if (num_widgets < 0) {
dev_err(card->dev,
"ASoC: Property '%s' does not exist\n", propname);
return -EINVAL;
}
if (num_widgets & 1) {
dev_err(card->dev,
"ASoC: Property '%s' length is not even\n", propname);
return -EINVAL;
}
num_widgets /= 2;
if (!num_widgets) {
dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
propname);
return -EINVAL;
}
widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets),
GFP_KERNEL);
if (!widgets) {
dev_err(card->dev,
"ASoC: Could not allocate memory for widgets\n");
return -ENOMEM;
}
for (i = 0; i < num_widgets; i++) {
ret = of_property_read_string_index(np, propname,
2 * i, &template);
if (ret) {
dev_err(card->dev,
"ASoC: Property '%s' index %d read error:%d\n",
propname, 2 * i, ret);
return -EINVAL;
}
for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) {
if (!strncmp(template, simple_widgets[j].name,
strlen(simple_widgets[j].name))) {
widgets[i] = simple_widgets[j];
break;
}
}
if (j >= ARRAY_SIZE(simple_widgets)) {
dev_err(card->dev,
"ASoC: DAPM widget '%s' is not supported\n",
template);
return -EINVAL;
}
ret = of_property_read_string_index(np, propname,
(2 * i) + 1,
&wname);
if (ret) {
dev_err(card->dev,
"ASoC: Property '%s' index %d read error:%d\n",
propname, (2 * i) + 1, ret);
return -EINVAL;
}
widgets[i].name = wname;
}
card->dapm_widgets = widgets;
card->num_dapm_widgets = num_widgets;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets);
int snd_soc_of_parse_tdm_slot(struct device_node *np,
unsigned int *slots,
unsigned int *slot_width)
{
u32 val;
int ret;
if (of_property_read_bool(np, "dai-tdm-slot-num")) {
ret = of_property_read_u32(np, "dai-tdm-slot-num", &val);
if (ret)
return ret;
if (slots)
*slots = val;
}
if (of_property_read_bool(np, "dai-tdm-slot-width")) {
ret = of_property_read_u32(np, "dai-tdm-slot-width", &val);
if (ret)
return ret;
if (slot_width)
*slot_width = val;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot);
int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
const char *propname)
{
struct device_node *np = card->dev->of_node;
int num_routes;
struct snd_soc_dapm_route *routes;
int i, ret;
num_routes = of_property_count_strings(np, propname);
if (num_routes < 0 || num_routes & 1) {
dev_err(card->dev,
"ASoC: Property '%s' does not exist or its length is not even\n",
propname);
return -EINVAL;
}
num_routes /= 2;
if (!num_routes) {
dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
propname);
return -EINVAL;
}
routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes),
GFP_KERNEL);
if (!routes) {
dev_err(card->dev,
"ASoC: Could not allocate DAPM route table\n");
return -EINVAL;
}
for (i = 0; i < num_routes; i++) {
ret = of_property_read_string_index(np, propname,
2 * i, &routes[i].sink);
if (ret) {
dev_err(card->dev,
"ASoC: Property '%s' index %d could not be read: %d\n",
propname, 2 * i, ret);
return -EINVAL;
}
ret = of_property_read_string_index(np, propname,
(2 * i) + 1, &routes[i].source);
if (ret) {
dev_err(card->dev,
"ASoC: Property '%s' index %d could not be read: %d\n",
propname, (2 * i) + 1, ret);
return -EINVAL;
}
}
card->num_dapm_routes = num_routes;
card->dapm_routes = routes;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing);
unsigned int snd_soc_of_parse_daifmt(struct device_node *np,
const char *prefix)
{
int ret, i;
char prop[128];
unsigned int format = 0;
int bit, frame;
const char *str;
struct {
char *name;
unsigned int val;
} of_fmt_table[] = {
{ "i2s", SND_SOC_DAIFMT_I2S },
{ "right_j", SND_SOC_DAIFMT_RIGHT_J },
{ "left_j", SND_SOC_DAIFMT_LEFT_J },
{ "dsp_a", SND_SOC_DAIFMT_DSP_A },
{ "dsp_b", SND_SOC_DAIFMT_DSP_B },
{ "ac97", SND_SOC_DAIFMT_AC97 },
{ "pdm", SND_SOC_DAIFMT_PDM},
{ "msb", SND_SOC_DAIFMT_MSB },
{ "lsb", SND_SOC_DAIFMT_LSB },
};
if (!prefix)
prefix = "";
/*
* check "[prefix]format = xxx"
* SND_SOC_DAIFMT_FORMAT_MASK area
*/
snprintf(prop, sizeof(prop), "%sformat", prefix);
ret = of_property_read_string(np, prop, &str);
if (ret == 0) {
for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) {
if (strcmp(str, of_fmt_table[i].name) == 0) {
format |= of_fmt_table[i].val;
break;
}
}
}
/*
* check "[prefix]continuous-clock"
* SND_SOC_DAIFMT_CLOCK_MASK area
*/
snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix);
if (of_get_property(np, prop, NULL))
format |= SND_SOC_DAIFMT_CONT;
else
format |= SND_SOC_DAIFMT_GATED;
/*
* check "[prefix]bitclock-inversion"
* check "[prefix]frame-inversion"
* SND_SOC_DAIFMT_INV_MASK area
*/
snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix);
bit = !!of_get_property(np, prop, NULL);
snprintf(prop, sizeof(prop), "%sframe-inversion", prefix);
frame = !!of_get_property(np, prop, NULL);
switch ((bit << 4) + frame) {
case 0x11:
format |= SND_SOC_DAIFMT_IB_IF;
break;
case 0x10:
format |= SND_SOC_DAIFMT_IB_NF;
break;
case 0x01:
format |= SND_SOC_DAIFMT_NB_IF;
break;
default:
/* SND_SOC_DAIFMT_NB_NF is default */
break;
}
/*
* check "[prefix]bitclock-master"
* check "[prefix]frame-master"
* SND_SOC_DAIFMT_MASTER_MASK area
*/
snprintf(prop, sizeof(prop), "%sbitclock-master", prefix);
bit = !!of_get_property(np, prop, NULL);
snprintf(prop, sizeof(prop), "%sframe-master", prefix);
frame = !!of_get_property(np, prop, NULL);
switch ((bit << 4) + frame) {
case 0x11:
format |= SND_SOC_DAIFMT_CBM_CFM;
break;
case 0x10:
format |= SND_SOC_DAIFMT_CBM_CFS;
break;
case 0x01:
format |= SND_SOC_DAIFMT_CBS_CFM;
break;
default:
format |= SND_SOC_DAIFMT_CBS_CFS;
break;
}
return format;
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt);
int snd_soc_of_get_dai_name(struct device_node *of_node,
const char **dai_name)
{
struct snd_soc_component *pos;
struct of_phandle_args args;
int ret;
ret = of_parse_phandle_with_args(of_node, "sound-dai",
"#sound-dai-cells", 0, &args);
if (ret)
return ret;
ret = -EPROBE_DEFER;
mutex_lock(&client_mutex);
list_for_each_entry(pos, &component_list, list) {
if (pos->dev->of_node != args.np)
continue;
if (pos->driver->of_xlate_dai_name) {
ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name);
} else {
int id = -1;
switch (args.args_count) {
case 0:
id = 0; /* same as dai_drv[0] */
break;
case 1:
id = args.args[0];
break;
default:
/* not supported */
break;
}
if (id < 0 || id >= pos->num_dai) {
ret = -EINVAL;
break;
}
ret = 0;
*dai_name = pos->dai_drv[id].name;
if (!*dai_name)
*dai_name = pos->name;
}
break;
}
mutex_unlock(&client_mutex);
of_node_put(args.np);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name);
static int __init snd_soc_init(void)
{
#ifdef CONFIG_DEBUG_FS
snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
pr_warn("ASoC: Failed to create debugfs directory\n");
snd_soc_debugfs_root = NULL;
}
if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
&codec_list_fops))
pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
&dai_list_fops))
pr_warn("ASoC: Failed to create DAI list debugfs file\n");
if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
&platform_list_fops))
pr_warn("ASoC: Failed to create platform list debugfs file\n");
#endif
snd_soc_util_init();
return platform_driver_register(&soc_driver);
}
module_init(snd_soc_init);
static void __exit snd_soc_exit(void)
{
snd_soc_util_exit();
#ifdef CONFIG_DEBUG_FS
debugfs_remove_recursive(snd_soc_debugfs_root);
#endif
platform_driver_unregister(&soc_driver);
}
module_exit(snd_soc_exit);
/* Module information */
MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
MODULE_DESCRIPTION("ALSA SoC Core");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:soc-audio");