/*
* Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
*
* Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
* Interactivity improvements by Mike Galbraith
* (C) 2007 Mike Galbraith <efault@gmx.de>
*
* Various enhancements by Dmitry Adamushko.
* (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
*
* Group scheduling enhancements by Srivatsa Vaddagiri
* Copyright IBM Corporation, 2007
* Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
*
* Scaled math optimizations by Thomas Gleixner
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
*
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
*/
#include <linux/sched/mm.h>
#include <linux/sched/topology.h>
#include <linux/latencytop.h>
#include <linux/cpumask.h>
#include <linux/cpuidle.h>
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
#include <linux/mempolicy.h>
#include <linux/migrate.h>
#include <linux/task_work.h>
#include <trace/events/sched.h>
#include "sched.h"
/*
* Targeted preemption latency for CPU-bound tasks:
*
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length
* and have no persistent notion like in traditional, time-slice
* based scheduling concepts.
*
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches (cs) field)
*
* (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
/*
* The initial- and re-scaling of tunables is configurable
*
* Options are:
*
* SCHED_TUNABLESCALING_NONE - unscaled, always *1
* SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
* SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
*
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*/
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
/*
* Minimal preemption granularity for CPU-bound tasks:
*
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
/*
* This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
*/
static unsigned int sched_nr_latency = 8;
/*
* After fork, child runs first. If set to 0 (default) then
* parent will (try to) run first.
*/
unsigned int sysctl_sched_child_runs_first __read_mostly;
/*
* SCHED_OTHER wake-up granularity.
*
* This option delays the preemption effects of decoupled workloads
* and reduces their over-scheduling. Synchronous workloads will still
* have immediate wakeup/sleep latencies.
*
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
#ifdef CONFIG_SMP
/*
* For asym packing, by default the lower numbered cpu has higher priority.
*/
int __weak arch_asym_cpu_priority(int cpu)
{
return -cpu;
}
#endif
#ifdef CONFIG_CFS_BANDWIDTH
/*
* Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
* each time a cfs_rq requests quota.
*
* Note: in the case that the slice exceeds the runtime remaining (either due
* to consumption or the quota being specified to be smaller than the slice)
* we will always only issue the remaining available time.
*
* (default: 5 msec, units: microseconds)
*/
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
/*
* The margin used when comparing utilization with CPU capacity:
* util * margin < capacity * 1024
*
* (default: ~20%)
*/
unsigned int capacity_margin = 1280;
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
lw->weight += inc;
lw->inv_weight = 0;
}
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
lw->weight -= dec;
lw->inv_weight = 0;
}
static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
lw->weight = w;
lw->inv_weight = 0;
}
/*
* Increase the granularity value when there are more CPUs,
* because with more CPUs the 'effective latency' as visible
* to users decreases. But the relationship is not linear,
* so pick a second-best guess by going with the log2 of the
* number of CPUs.
*
* This idea comes from the SD scheduler of Con Kolivas:
*/
static unsigned int get_update_sysctl_factor(void)
{
unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
unsigned int factor;
switch (sysctl_sched_tunable_scaling) {
case SCHED_TUNABLESCALING_NONE:
factor = 1;
break;
case SCHED_TUNABLESCALING_LINEAR:
factor = cpus;
break;
case SCHED_TUNABLESCALING_LOG:
default:
factor = 1 + ilog2(cpus);
break;
}
return factor;
}
static void update_sysctl(void)
{
unsigned int factor = get_update_sysctl_factor();
#define SET_SYSCTL(name) \
(sysctl_##name = (factor) * normalized_sysctl_##name)
SET_SYSCTL(sched_min_granularity);
SET_SYSCTL(sched_latency);
SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}
void sched_init_granularity(void)
{
update_sysctl();
}
#define WMULT_CONST (~0U)
#define WMULT_SHIFT 32
static void __update_inv_weight(struct load_weight *lw)
{
unsigned long w;
if (likely(lw->inv_weight))
return;
w = scale_load_down(lw->weight);
if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
lw->inv_weight = 1;
else if (unlikely(!w))
lw->inv_weight = WMULT_CONST;
else
lw->inv_weight = WMULT_CONST / w;
}
/*
* delta_exec * weight / lw.weight
* OR
* (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
*
* Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
* we're guaranteed shift stays positive because inv_weight is guaranteed to
* fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
*
* Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
* weight/lw.weight <= 1, and therefore our shift will also be positive.
*/
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
{
u64 fact = scale_load_down(weight);
int shift = WMULT_SHIFT;
__update_inv_weight(lw);
if (unlikely(fact >> 32)) {
while (fact >> 32) {
fact >>= 1;
shift--;
}
}
/* hint to use a 32x32->64 mul */
fact = (u64)(u32)fact * lw->inv_weight;
while (fact >> 32) {
fact >>= 1;
shift--;
}
return mul_u64_u32_shr(delta_exec, fact, shift);
}
const struct sched_class fair_sched_class;
/**************************************************************
* CFS operations on generic schedulable entities:
*/
#ifdef CONFIG_FAIR_GROUP_SCHED
/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return cfs_rq->rq;
}
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se) (!se->my_q)
static inline struct task_struct *task_of(struct sched_entity *se)
{
SCHED_WARN_ON(!entity_is_task(se));
return container_of(se, struct task_struct, se);
}
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
for (; se; se = se->parent)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
return p->se.cfs_rq;
}
/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
return se->cfs_rq;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
return grp->my_q;
}
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (!cfs_rq->on_list) {
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
/*
* Ensure we either appear before our parent (if already
* enqueued) or force our parent to appear after us when it is
* enqueued. The fact that we always enqueue bottom-up
* reduces this to two cases and a special case for the root
* cfs_rq. Furthermore, it also means that we will always reset
* tmp_alone_branch either when the branch is connected
* to a tree or when we reach the beg of the tree
*/
if (cfs_rq->tg->parent &&
cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
/*
* If parent is already on the list, we add the child
* just before. Thanks to circular linked property of
* the list, this means to put the child at the tail
* of the list that starts by parent.
*/
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
/*
* The branch is now connected to its tree so we can
* reset tmp_alone_branch to the beginning of the
* list.
*/
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
} else if (!cfs_rq->tg->parent) {
/*
* cfs rq without parent should be put
* at the tail of the list.
*/
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq->leaf_cfs_rq_list);
/*
* We have reach the beg of a tree so we can reset
* tmp_alone_branch to the beginning of the list.
*/
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
} else {
/*
* The parent has not already been added so we want to
* make sure that it will be put after us.
* tmp_alone_branch points to the beg of the branch
* where we will add parent.
*/
list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
rq->tmp_alone_branch);
/*
* update tmp_alone_branch to points to the new beg
* of the branch
*/
rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
}
cfs_rq->on_list = 1;
}
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (cfs_rq->on_list) {
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
cfs_rq->on_list = 0;
}
}
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
leaf_cfs_rq_list)
/* Do the two (enqueued) entities belong to the same group ? */
static inline struct cfs_rq *
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
if (se->cfs_rq == pse->cfs_rq)
return se->cfs_rq;
return NULL;
}
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
return se->parent;
}
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
int se_depth, pse_depth;
/*
* preemption test can be made between sibling entities who are in the
* same cfs_rq i.e who have a common parent. Walk up the hierarchy of
* both tasks until we find their ancestors who are siblings of common
* parent.
*/
/* First walk up until both entities are at same depth */
se_depth = (*se)->depth;
pse_depth = (*pse)->depth;
while (se_depth > pse_depth) {
se_depth--;
*se = parent_entity(*se);
}
while (pse_depth > se_depth) {
pse_depth--;
*pse = parent_entity(*pse);
}
while (!is_same_group(*se, *pse)) {
*se = parent_entity(*se);
*pse = parent_entity(*pse);
}
}
#else /* !CONFIG_FAIR_GROUP_SCHED */
static inline struct task_struct *task_of(struct sched_entity *se)
{
return container_of(se, struct task_struct, se);
}
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
return container_of(cfs_rq, struct rq, cfs);
}
#define entity_is_task(se) 1
#define for_each_sched_entity(se) \
for (; se; se = NULL)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
return &task_rq(p)->cfs;
}
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
struct task_struct *p = task_of(se);
struct rq *rq = task_rq(p);
return &rq->cfs;
}
/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
return NULL;
}
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
return NULL;
}
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
/**************************************************************
* Scheduling class tree data structure manipulation methods:
*/
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - max_vruntime);
if (delta > 0)
max_vruntime = vruntime;
return max_vruntime;
}
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
s64 delta = (s64)(vruntime - min_vruntime);
if (delta < 0)
min_vruntime = vruntime;
return min_vruntime;
}
static inline int entity_before(struct sched_entity *a,
struct sched_entity *b)
{
return (s64)(a->vruntime - b->vruntime) < 0;
}
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
u64 vruntime = cfs_rq->min_vruntime;
if (curr) {
if (curr->on_rq)
vruntime = curr->vruntime;
else
curr = NULL;
}
if (leftmost) { /* non-empty tree */
struct sched_entity *se;
se = rb_entry(leftmost, struct sched_entity, run_node);
if (!curr)
vruntime = se->vruntime;
else
vruntime = min_vruntime(vruntime, se->vruntime);
}
/* ensure we never gain time by being placed backwards. */
cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
#ifndef CONFIG_64BIT
smp_wmb();
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}
/*
* Enqueue an entity into the rb-tree:
*/
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
struct rb_node *parent = NULL;
struct sched_entity *entry;
bool leftmost = true;
/*
* Find the right place in the rbtree:
*/
while (*link) {
parent = *link;
entry = rb_entry(parent, struct sched_entity, run_node);
/*
* We dont care about collisions. Nodes with
* the same key stay together.
*/
if (entity_before(se, entry)) {
link = &parent->rb_left;
} else {
link = &parent->rb_right;
leftmost = false;
}
}
rb_link_node(&se->run_node, parent, link);
rb_insert_color_cached(&se->run_node,
&cfs_rq->tasks_timeline, leftmost);
}
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
}
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
if (!left)
return NULL;
return rb_entry(left, struct sched_entity, run_node);
}
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
struct rb_node *next = rb_next(&se->run_node);
if (!next)
return NULL;
return rb_entry(next, struct sched_entity, run_node);
}
#ifdef CONFIG_SCHED_DEBUG
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
if (!last)
return NULL;
return rb_entry(last, struct sched_entity, run_node);
}
/**************************************************************
* Scheduling class statistics methods:
*/
int sched_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
unsigned int factor = get_update_sysctl_factor();
if (ret || !write)
return ret;
sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
sysctl_sched_min_granularity);
#define WRT_SYSCTL(name) \
(normalized_sysctl_##name = sysctl_##name / (factor))
WRT_SYSCTL(sched_min_granularity);
WRT_SYSCTL(sched_latency);
WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL
return 0;
}
#endif
/*
* delta /= w
*/
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
{
if (unlikely(se->load.weight != NICE_0_LOAD))
delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
return delta;
}
/*
* The idea is to set a period in which each task runs once.
*
* When there are too many tasks (sched_nr_latency) we have to stretch
* this period because otherwise the slices get too small.
*
* p = (nr <= nl) ? l : l*nr/nl
*/
static u64 __sched_period(unsigned long nr_running)
{
if (unlikely(nr_running > sched_nr_latency))
return nr_running * sysctl_sched_min_granularity;
else
return sysctl_sched_latency;
}
/*
* We calculate the wall-time slice from the period by taking a part
* proportional to the weight.
*
* s = p*P[w/rw]
*/
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
for_each_sched_entity(se) {
struct load_weight *load;
struct load_weight lw;
cfs_rq = cfs_rq_of(se);
load = &cfs_rq->load;
if (unlikely(!se->on_rq)) {
lw = cfs_rq->load;
update_load_add(&lw, se->load.weight);
load = &lw;
}
slice = __calc_delta(slice, se->load.weight, load);
}
return slice;
}
/*
* We calculate the vruntime slice of a to-be-inserted task.
*
* vs = s/w
*/
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
return calc_delta_fair(sched_slice(cfs_rq, se), se);
}
#ifdef CONFIG_SMP
#include "sched-pelt.h"
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
static unsigned long task_h_load(struct task_struct *p);
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
{
struct sched_avg *sa = &se->avg;
sa->last_update_time = 0;
/*
* sched_avg's period_contrib should be strictly less then 1024, so
* we give it 1023 to make sure it is almost a period (1024us), and
* will definitely be update (after enqueue).
*/
sa->period_contrib = 1023;
/*
* Tasks are intialized with full load to be seen as heavy tasks until
* they get a chance to stabilize to their real load level.
* Group entities are intialized with zero load to reflect the fact that
* nothing has been attached to the task group yet.
*/
if (entity_is_task(se))
sa->load_avg = scale_load_down(se->load.weight);
sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
/*
* At this point, util_avg won't be used in select_task_rq_fair anyway
*/
sa->util_avg = 0;
sa->util_sum = 0;
/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static void attach_entity_cfs_rq(struct sched_entity *se);
/*
* With new tasks being created, their initial util_avgs are extrapolated
* based on the cfs_rq's current util_avg:
*
* util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
*
* However, in many cases, the above util_avg does not give a desired
* value. Moreover, the sum of the util_avgs may be divergent, such
* as when the series is a harmonic series.
*
* To solve this problem, we also cap the util_avg of successive tasks to
* only 1/2 of the left utilization budget:
*
* util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
*
* where n denotes the nth task.
*
* For example, a simplest series from the beginning would be like:
*
* task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
* cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
*
* Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
* if util_avg > util_avg_cap.
*/
void post_init_entity_util_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct sched_avg *sa = &se->avg;
long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
if (cap > 0) {
if (cfs_rq->avg.util_avg != 0) {
sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
sa->util_avg /= (cfs_rq->avg.load_avg + 1);
if (sa->util_avg > cap)
sa->util_avg = cap;
} else {
sa->util_avg = cap;
}
sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
}
if (entity_is_task(se)) {
struct task_struct *p = task_of(se);
if (p->sched_class != &fair_sched_class) {
/*
* For !fair tasks do:
*
update_cfs_rq_load_avg(now, cfs_rq);
attach_entity_load_avg(cfs_rq, se);
switched_from_fair(rq, p);
*
* such that the next switched_to_fair() has the
* expected state.
*/
se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
return;
}
}
attach_entity_cfs_rq(se);
}
#else /* !CONFIG_SMP */
void init_entity_runnable_average(struct sched_entity *se)
{
}
void post_init_entity_util_avg(struct sched_entity *se)
{
}
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
#endif /* CONFIG_SMP */
/*
* Update the current task's runtime statistics.
*/
static void update_curr(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
u64 now = rq_clock_task(rq_of(cfs_rq));
u64 delta_exec;
if (unlikely(!curr))
return;
delta_exec = now - curr->exec_start;
if (unlikely((s64)delta_exec <= 0))
return;
curr->exec_start = now;
schedstat_set(curr->statistics.exec_max,
max(delta_exec, curr->statistics.exec_max));
curr->sum_exec_runtime += delta_exec;
schedstat_add(cfs_rq->exec_clock, delta_exec);
curr->vruntime += calc_delta_fair(delta_exec, curr);
update_min_vruntime(cfs_rq);
if (entity_is_task(curr)) {
struct task_struct *curtask = task_of(curr);
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
cpuacct_charge(curtask, delta_exec);
account_group_exec_runtime(curtask, delta_exec);
}
account_cfs_rq_runtime(cfs_rq, delta_exec);
}
static void update_curr_fair(struct rq *rq)
{
update_curr(cfs_rq_of(&rq->curr->se));
}
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
u64 wait_start, prev_wait_start;
if (!schedstat_enabled())
return;
wait_start = rq_clock(rq_of(cfs_rq));
prev_wait_start = schedstat_val(se->statistics.wait_start);
if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
likely(wait_start > prev_wait_start))
wait_start -= prev_wait_start;
schedstat_set(se->statistics.wait_start, wait_start);
}
static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct task_struct *p;
u64 delta;
if (!schedstat_enabled())
return;
delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
if (entity_is_task(se)) {
p = task_of(se);
if (task_on_rq_migrating(p)) {
/*
* Preserve migrating task's wait time so wait_start
* time stamp can be adjusted to accumulate wait time
* prior to migration.
*/
schedstat_set(se->statistics.wait_start, delta);
return;
}
trace_sched_stat_wait(p, delta);
}
schedstat_set(se->statistics.wait_max,
max(schedstat_val(se->statistics.wait_max), delta));
schedstat_inc(se->statistics.wait_count);
schedstat_add(se->statistics.wait_sum, delta);
schedstat_set(se->statistics.wait_start, 0);
}
static inline void
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct task_struct *tsk = NULL;
u64 sleep_start, block_start;
if (!schedstat_enabled())
return;
sleep_start = schedstat_val(se->statistics.sleep_start);
block_start = schedstat_val(se->statistics.block_start);
if (entity_is_task(se))
tsk = task_of(se);
if (sleep_start) {
u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
if ((s64)delta < 0)
delta = 0;
if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
schedstat_set(se->statistics.sleep_max, delta);
schedstat_set(se->statistics.sleep_start, 0);
schedstat_add(se->statistics.sum_sleep_runtime, delta);
if (tsk) {
account_scheduler_latency(tsk, delta >> 10, 1);
trace_sched_stat_sleep(tsk, delta);
}
}
if (block_start) {
u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
if ((s64)delta < 0)
delta = 0;
if (unlikely(delta > schedstat_val(se->statistics.block_max)))
schedstat_set(se->statistics.block_max, delta);
schedstat_set(se->statistics.block_start, 0);
schedstat_add(se->statistics.sum_sleep_runtime, delta);
if (tsk) {
if (tsk->in_iowait) {
schedstat_add(se->statistics.iowait_sum, delta);
schedstat_inc(se->statistics.iowait_count);
trace_sched_stat_iowait(tsk, delta);
}
trace_sched_stat_blocked(tsk, delta);
/*
* Blocking time is in units of nanosecs, so shift by
* 20 to get a milliseconds-range estimation of the
* amount of time that the task spent sleeping:
*/
if (unlikely(prof_on == SLEEP_PROFILING)) {
profile_hits(SLEEP_PROFILING,
(void *)get_wchan(tsk),
delta >> 20);
}
account_scheduler_latency(tsk, delta >> 10, 0);
}
}
}
/*
* Task is being enqueued - update stats:
*/
static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
if (!schedstat_enabled())
return;
/*
* Are we enqueueing a waiting task? (for current tasks
* a dequeue/enqueue event is a NOP)
*/
if (se != cfs_rq->curr)
update_stats_wait_start(cfs_rq, se);
if (flags & ENQUEUE_WAKEUP)
update_stats_enqueue_sleeper(cfs_rq, se);
}
static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
if (!schedstat_enabled())
return;
/*
* Mark the end of the wait period if dequeueing a
* waiting task:
*/
if (se != cfs_rq->curr)
update_stats_wait_end(cfs_rq, se);
if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
struct task_struct *tsk = task_of(se);
if (tsk->state & TASK_INTERRUPTIBLE)
schedstat_set(se->statistics.sleep_start,
rq_clock(rq_of(cfs_rq)));
if (tsk->state & TASK_UNINTERRUPTIBLE)
schedstat_set(se->statistics.block_start,
rq_clock(rq_of(cfs_rq)));
}
}
/*
* We are picking a new current task - update its stats:
*/
static inline void
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/*
* We are starting a new run period:
*/
se->exec_start = rq_clock_task(rq_of(cfs_rq));
}
/**************************************************
* Scheduling class queueing methods:
*/
#ifdef CONFIG_NUMA_BALANCING
/*
* Approximate time to scan a full NUMA task in ms. The task scan period is
* calculated based on the tasks virtual memory size and
* numa_balancing_scan_size.
*/
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;
struct numa_group {
atomic_t refcount;
spinlock_t lock; /* nr_tasks, tasks */
int nr_tasks;
pid_t gid;
int active_nodes;
struct rcu_head rcu;
unsigned long total_faults;
unsigned long max_faults_cpu;
/*
* Faults_cpu is used to decide whether memory should move
* towards the CPU. As a consequence, these stats are weighted
* more by CPU use than by memory faults.
*/
unsigned long *faults_cpu;
unsigned long faults[0];
};
static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
unsigned long rss = 0;
unsigned long nr_scan_pages;
/*
* Calculations based on RSS as non-present and empty pages are skipped
* by the PTE scanner and NUMA hinting faults should be trapped based
* on resident pages
*/
nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
rss = get_mm_rss(p->mm);
if (!rss)
rss = nr_scan_pages;
rss = round_up(rss, nr_scan_pages);
return rss / nr_scan_pages;
}
/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560
static unsigned int task_scan_min(struct task_struct *p)
{
unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
unsigned int scan, floor;
unsigned int windows = 1;
if (scan_size < MAX_SCAN_WINDOW)
windows = MAX_SCAN_WINDOW / scan_size;
floor = 1000 / windows;
scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
return max_t(unsigned int, floor, scan);
}
static unsigned int task_scan_start(struct task_struct *p)
{
unsigned long smin = task_scan_min(p);
unsigned long period = smin;
/* Scale the maximum scan period with the amount of shared memory. */
if (p->numa_group) {
struct numa_group *ng = p->numa_group;
unsigned long shared = group_faults_shared(ng);
unsigned long private = group_faults_priv(ng);
period *= atomic_read(&ng->refcount);
period *= shared + 1;
period /= private + shared + 1;
}
return max(smin, period);
}
static unsigned int task_scan_max(struct task_struct *p)
{
unsigned long smin = task_scan_min(p);
unsigned long smax;
/* Watch for min being lower than max due to floor calculations */
smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
/* Scale the maximum scan period with the amount of shared memory. */
if (p->numa_group) {
struct numa_group *ng = p->numa_group;
unsigned long shared = group_faults_shared(ng);
unsigned long private = group_faults_priv(ng);
unsigned long period = smax;
period *= atomic_read(&ng->refcount);
period *= shared + 1;
period /= private + shared + 1;
smax = max(smax, period);
}
return max(smin, smax);
}
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
rq->nr_numa_running += (p->numa_preferred_nid != -1);
rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}
static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
rq->nr_numa_running -= (p->numa_preferred_nid != -1);
rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2
/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
pid_t task_numa_group_id(struct task_struct *p)
{
return p->numa_group ? p->numa_group->gid : 0;
}
/*
* The averaged statistics, shared & private, memory & cpu,
* occupy the first half of the array. The second half of the
* array is for current counters, which are averaged into the
* first set by task_numa_placement.
*/
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
{
return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
}
static inline unsigned long task_faults(struct task_struct *p, int nid)
{
if (!p->numa_faults)
return 0;
return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
}
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
if (!p->numa_group)
return 0;
return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
}
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
}
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
unsigned long faults = 0;
int node;
for_each_online_node(node) {
faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
}
return faults;
}
static inline unsigned long group_faults_shared(struct numa_group *ng)
{
unsigned long faults = 0;
int node;
for_each_online_node(node) {
faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
}
return faults;
}
/*
* A node triggering more than 1/3 as many NUMA faults as the maximum is
* considered part of a numa group's pseudo-interleaving set. Migrations
* between these nodes are slowed down, to allow things to settle down.
*/
#define ACTIVE_NODE_FRACTION 3
static bool numa_is_active_node(int nid, struct numa_group *ng)
{
return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
int maxdist, bool task)
{
unsigned long score = 0;
int node;
/*
* All nodes are directly connected, and the same distance
* from each other. No need for fancy placement algorithms.
*/
if (sched_numa_topology_type == NUMA_DIRECT)
return 0;
/*
* This code is called for each node, introducing N^2 complexity,
* which should be ok given the number of nodes rarely exceeds 8.
*/
for_each_online_node(node) {
unsigned long faults;
int dist = node_distance(nid, node);
/*
* The furthest away nodes in the system are not interesting
* for placement; nid was already counted.
*/
if (dist == sched_max_numa_distance || node == nid)
continue;
/*
* On systems with a backplane NUMA topology, compare groups
* of nodes, and move tasks towards the group with the most
* memory accesses. When comparing two nodes at distance
* "hoplimit", only nodes closer by than "hoplimit" are part
* of each group. Skip other nodes.
*/
if (sched_numa_topology_type == NUMA_BACKPLANE &&
dist > maxdist)
continue;
/* Add up the faults from nearby nodes. */
if (task)
faults = task_faults(p, node);
else
faults = group_faults(p, node);
/*
* On systems with a glueless mesh NUMA topology, there are
* no fixed "groups of nodes". Instead, nodes that are not
* directly connected bounce traffic through intermediate
* nodes; a numa_group can occupy any set of nodes.
* The further away a node is, the less the faults count.
* This seems to result in good task placement.
*/
if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
faults *= (sched_max_numa_distance - dist);
faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
}
score += faults;
}
return score;
}
/*
* These return the fraction of accesses done by a particular task, or
* task group, on a particular numa node. The group weight is given a
* larger multiplier, in order to group tasks together that are almost
* evenly spread out between numa nodes.
*/
static inline unsigned long task_weight(struct task_struct *p, int nid,
int dist)
{
unsigned long faults, total_faults;
if (!p->numa_faults)
return 0;
total_faults = p->total_numa_faults;
if (!total_faults)
return 0;
faults = task_faults(p, nid);
faults += score_nearby_nodes(p, nid, dist, true);
return 1000 * faults / total_faults;
}
static inline unsigned long group_weight(struct task_struct *p, int nid,
int dist)
{
unsigned long faults, total_faults;
if (!p->numa_group)
return 0;
total_faults = p->numa_group->total_faults;
if (!total_faults)
return 0;
faults = group_faults(p, nid);
faults += score_nearby_nodes(p, nid, dist, false);
return 1000 * faults / total_faults;
}
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
int src_nid, int dst_cpu)
{
struct numa_group *ng = p->numa_group;
int dst_nid = cpu_to_node(dst_cpu);
int last_cpupid, this_cpupid;
this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
/*
* Multi-stage node selection is used in conjunction with a periodic
* migration fault to build a temporal task<->page relation. By using
* a two-stage filter we remove short/unlikely relations.
*
* Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
* a task's usage of a particular page (n_p) per total usage of this
* page (n_t) (in a given time-span) to a probability.
*
* Our periodic faults will sample this probability and getting the
* same result twice in a row, given these samples are fully
* independent, is then given by P(n)^2, provided our sample period
* is sufficiently short compared to the usage pattern.
*
* This quadric squishes small probabilities, making it less likely we
* act on an unlikely task<->page relation.
*/
last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
if (!cpupid_pid_unset(last_cpupid) &&
cpupid_to_nid(last_cpupid) != dst_nid)
return false;
/* Always allow migrate on private faults */
if (cpupid_match_pid(p, last_cpupid))
return true;
/* A shared fault, but p->numa_group has not been set up yet. */
if (!ng)
return true;
/*
* Destination node is much more heavily used than the source
* node? Allow migration.
*/
if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
ACTIVE_NODE_FRACTION)
return true;
/*
* Distribute memory according to CPU & memory use on each node,
* with 3/4 hysteresis to avoid unnecessary memory migrations:
*
* faults_cpu(dst) 3 faults_cpu(src)
* --------------- * - > ---------------
* faults_mem(dst) 4 faults_mem(src)
*/
return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
}
static unsigned long weighted_cpuload(struct rq *rq);
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long capacity_of(int cpu);
/* Cached statistics for all CPUs within a node */
struct numa_stats {
unsigned long nr_running;
unsigned long load;
/* Total compute capacity of CPUs on a node */
unsigned long compute_capacity;
/* Approximate capacity in terms of runnable tasks on a node */
unsigned long task_capacity;
int has_free_capacity;
};
/*
* XXX borrowed from update_sg_lb_stats
*/
static void update_numa_stats(struct numa_stats *ns, int nid)
{
int smt, cpu, cpus = 0;
unsigned long capacity;
memset(ns, 0, sizeof(*ns));
for_each_cpu(cpu, cpumask_of_node(nid)) {
struct rq *rq = cpu_rq(cpu);
ns->nr_running += rq->nr_running;
ns->load += weighted_cpuload(rq);
ns->compute_capacity += capacity_of(cpu);
cpus++;
}
/*
* If we raced with hotplug and there are no CPUs left in our mask
* the @ns structure is NULL'ed and task_numa_compare() will
* not find this node attractive.
*
* We'll either bail at !has_free_capacity, or we'll detect a huge
* imbalance and bail there.
*/
if (!cpus)
return;
/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
capacity = cpus / smt; /* cores */
ns->task_capacity = min_t(unsigned, capacity,
DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
}
struct task_numa_env {
struct task_struct *p;
int src_cpu, src_nid;
int dst_cpu, dst_nid;
struct numa_stats src_stats, dst_stats;
int imbalance_pct;
int dist;
struct task_struct *best_task;
long best_imp;
int best_cpu;
};
static void task_numa_assign(struct task_numa_env *env,
struct task_struct *p, long imp)
{
if (env->best_task)
put_task_struct(env->best_task);
if (p)
get_task_struct(p);
env->best_task = p;
env->best_imp = imp;
env->best_cpu = env->dst_cpu;
}
static bool load_too_imbalanced(long src_load, long dst_load,
struct task_numa_env *env)
{
long imb, old_imb;
long orig_src_load, orig_dst_load;
long src_capacity, dst_capacity;
/*
* The load is corrected for the CPU capacity available on each node.
*
* src_load dst_load
* ------------ vs ---------
* src_capacity dst_capacity
*/
src_capacity = env->src_stats.compute_capacity;
dst_capacity = env->dst_stats.compute_capacity;
/* We care about the slope of the imbalance, not the direction. */
if (dst_load < src_load)
swap(dst_load, src_load);
/* Is the difference below the threshold? */
imb = dst_load * src_capacity * 100 -
src_load * dst_capacity * env->imbalance_pct;
if (imb <= 0)
return false;
/*
* The imbalance is above the allowed threshold.
* Compare it with the old imbalance.
*/
orig_src_load = env->src_stats.load;
orig_dst_load = env->dst_stats.load;
if (orig_dst_load < orig_src_load)
swap(orig_dst_load, orig_src_load);
old_imb = orig_dst_load * src_capacity * 100 -
orig_src_load * dst_capacity * env->imbalance_pct;
/* Would this change make things worse? */
return (imb > old_imb);
}
/*
* This checks if the overall compute and NUMA accesses of the system would
* be improved if the source tasks was migrated to the target dst_cpu taking
* into account that it might be best if task running on the dst_cpu should
* be exchanged with the source task
*/
static void task_numa_compare(struct task_numa_env *env,
long taskimp, long groupimp)
{
struct rq *src_rq = cpu_rq(env->src_cpu);
struct rq *dst_rq = cpu_rq(env->dst_cpu);
struct task_struct *cur;
long src_load, dst_load;
long load;
long imp = env->p->numa_group ? groupimp : taskimp;
long moveimp = imp;
int dist = env->dist;
rcu_read_lock();
cur = task_rcu_dereference(&dst_rq->curr);
if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
cur = NULL;
/*
* Because we have preemption enabled we can get migrated around and
* end try selecting ourselves (current == env->p) as a swap candidate.
*/
if (cur == env->p)
goto unlock;
/*
* "imp" is the fault differential for the source task between the
* source and destination node. Calculate the total differential for
* the source task and potential destination task. The more negative
* the value is, the more rmeote accesses that would be expected to
* be incurred if the tasks were swapped.
*/
if (cur) {
/* Skip this swap candidate if cannot move to the source cpu */
if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
goto unlock;
/*
* If dst and source tasks are in the same NUMA group, or not
* in any group then look only at task weights.
*/
if (cur->numa_group == env->p->numa_group) {
imp = taskimp + task_weight(cur, env->src_nid, dist) -
task_weight(cur, env->dst_nid, dist);
/*
* Add some hysteresis to prevent swapping the
* tasks within a group over tiny differences.
*/
if (cur->numa_group)
imp -= imp/16;
} else {
/*
* Compare the group weights. If a task is all by
* itself (not part of a group), use the task weight
* instead.
*/
if (cur->numa_group)
imp += group_weight(cur, env->src_nid, dist) -
group_weight(cur, env->dst_nid, dist);
else
imp += task_weight(cur, env->src_nid, dist) -
task_weight(cur, env->dst_nid, dist);
}
}
if (imp <= env->best_imp && moveimp <= env->best_imp)
goto unlock;
if (!cur) {
/* Is there capacity at our destination? */
if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
!env->dst_stats.has_free_capacity)
goto unlock;
goto balance;
}
/* Balance doesn't matter much if we're running a task per cpu */
if (imp > env->best_imp && src_rq->nr_running == 1 &&
dst_rq->nr_running == 1)
goto assign;
/*
* In the overloaded case, try and keep the load balanced.
*/
balance:
load = task_h_load(env->p);
dst_load = env->dst_stats.load + load;
src_load = env->src_stats.load - load;
if (moveimp > imp && moveimp > env->best_imp) {
/*
* If the improvement from just moving env->p direction is
* better than swapping tasks around, check if a move is
* possible. Store a slightly smaller score than moveimp,
* so an actually idle CPU will win.
*/
if (!load_too_imbalanced(src_load, dst_load, env)) {
imp = moveimp - 1;
cur = NULL;
goto assign;
}
}
if (imp <= env->best_imp)
goto unlock;
if (cur) {
load = task_h_load(cur);
dst_load -= load;
src_load += load;
}
if (load_too_imbalanced(src_load, dst_load, env))
goto unlock;
/*
* One idle CPU per node is evaluated for a task numa move.
* Call select_idle_sibling to maybe find a better one.
*/
if (!cur) {
/*
* select_idle_siblings() uses an per-cpu cpumask that
* can be used from IRQ context.
*/
local_irq_disable();
env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
env->dst_cpu);
local_irq_enable();
}
assign:
task_numa_assign(env, cur, imp);
unlock:
rcu_read_unlock();
}
static void task_numa_find_cpu(struct task_numa_env *env,
long taskimp, long groupimp)
{
int cpu;
for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
/* Skip this CPU if the source task cannot migrate */
if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
continue;
env->dst_cpu = cpu;
task_numa_compare(env, taskimp, groupimp);
}
}
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
struct numa_stats *src = &env->src_stats;
struct numa_stats *dst = &env->dst_stats;
if (src->has_free_capacity && !dst->has_free_capacity)
return false;
/*
* Only consider a task move if the source has a higher load
* than the destination, corrected for CPU capacity on each node.
*
* src->load dst->load
* --------------------- vs ---------------------
* src->compute_capacity dst->compute_capacity
*/
if (src->load * dst->compute_capacity * env->imbalance_pct >
dst->load * src->compute_capacity * 100)
return true;
return false;
}
static int task_numa_migrate(struct task_struct *p)
{
struct task_numa_env env = {
.p = p,
.src_cpu = task_cpu(p),
.src_nid = task_node(p),
.imbalance_pct = 112,
.best_task = NULL,
.best_imp = 0,
.best_cpu = -1,
};
struct sched_domain *sd;
unsigned long taskweight, groupweight;
int nid, ret, dist;
long taskimp, groupimp;
/*
* Pick the lowest SD_NUMA domain, as that would have the smallest
* imbalance and would be the first to start moving tasks about.
*
* And we want to avoid any moving of tasks about, as that would create
* random movement of tasks -- counter the numa conditions we're trying
* to satisfy here.
*/
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
if (sd)
env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
rcu_read_unlock();
/*
* Cpusets can break the scheduler domain tree into smaller
* balance domains, some of which do not cross NUMA boundaries.
* Tasks that are "trapped" in such domains cannot be migrated
* elsewhere, so there is no point in (re)trying.
*/
if (unlikely(!sd)) {
p->numa_preferred_nid = task_node(p);
return -EINVAL;
}
env.dst_nid = p->numa_preferred_nid;
dist = env.dist = node_distance(env.src_nid, env.dst_nid);
taskweight = task_weight(p, env.src_nid, dist);
groupweight = group_weight(p, env.src_nid, dist);
update_numa_stats(&env.src_stats, env.src_nid);
taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
update_numa_stats(&env.dst_stats, env.dst_nid);
/* Try to find a spot on the preferred nid. */
if (numa_has_capacity(&env))
task_numa_find_cpu(&env, taskimp, groupimp);
/*
* Look at other nodes in these cases:
* - there is no space available on the preferred_nid
* - the task is part of a numa_group that is interleaved across
* multiple NUMA nodes; in order to better consolidate the group,
* we need to check other locations.
*/
if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
for_each_online_node(nid) {
if (nid == env.src_nid || nid == p->numa_preferred_nid)
continue;
dist = node_distance(env.src_nid, env.dst_nid);
if (sched_numa_topology_type == NUMA_BACKPLANE &&
dist != env.dist) {
taskweight = task_weight(p, env.src_nid, dist);
groupweight = group_weight(p, env.src_nid, dist);
}
/* Only consider nodes where both task and groups benefit */
taskimp = task_weight(p, nid, dist) - taskweight;
groupimp = group_weight(p, nid, dist) - groupweight;
if (taskimp < 0 && groupimp < 0)
continue;
env.dist = dist;
env.dst_nid = nid;
update_numa_stats(&env.dst_stats, env.dst_nid);
if (numa_has_capacity(&env))
task_numa_find_cpu(&env, taskimp, groupimp);
}
}
/*
* If the task is part of a workload that spans multiple NUMA nodes,
* and is migrating into one of the workload's active nodes, remember
* this node as the task's preferred numa node, so the workload can
* settle down.
* A task that migrated to a second choice node will be better off
* trying for a better one later. Do not set the preferred node here.
*/
if (p->numa_group) {
struct numa_group *ng = p->numa_group;
if (env.best_cpu == -1)
nid = env.src_nid;
else
nid = env.dst_nid;
if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
sched_setnuma(p, env.dst_nid);
}
/* No better CPU than the current one was found. */
if (env.best_cpu == -1)
return -EAGAIN;
/*
* Reset the scan period if the task is being rescheduled on an
* alternative node to recheck if the tasks is now properly placed.
*/
p->numa_scan_period = task_scan_start(p);
if (env.best_task == NULL) {
ret = migrate_task_to(p, env.best_cpu);
if (ret != 0)
trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
return ret;
}
ret = migrate_swap(p, env.best_task);
if (ret != 0)
trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
put_task_struct(env.best_task);
return ret;
}
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
unsigned long interval = HZ;
/* This task has no NUMA fault statistics yet */
if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
return;
/* Periodically retry migrating the task to the preferred node */
interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
p->numa_migrate_retry = jiffies + interval;
/* Success if task is already running on preferred CPU */
if (task_node(p) == p->numa_preferred_nid)
return;
/* Otherwise, try migrate to a CPU on the preferred node */
task_numa_migrate(p);
}
/*
* Find out how many nodes on the workload is actively running on. Do this by
* tracking the nodes from which NUMA hinting faults are triggered. This can
* be different from the set of nodes where the workload's memory is currently
* located.
*/
static void numa_group_count_active_nodes(struct numa_group *numa_group)
{
unsigned long faults, max_faults = 0;
int nid, active_nodes = 0;
for_each_online_node(nid) {
faults = group_faults_cpu(numa_group, nid);
if (faults > max_faults)
max_faults = faults;
}
for_each_online_node(nid) {
faults = group_faults_cpu(numa_group, nid);
if (faults * ACTIVE_NODE_FRACTION > max_faults)
active_nodes++;
}
numa_group->max_faults_cpu = max_faults;
numa_group->active_nodes = active_nodes;
}
/*
* When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
* increments. The more local the fault statistics are, the higher the scan
* period will be for the next scan window. If local/(local+remote) ratio is
* below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
* the scan period will decrease. Aim for 70% local accesses.
*/
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 7
/*
* Increase the scan period (slow down scanning) if the majority of
* our memory is already on our local node, or if the majority of
* the page accesses are shared with other processes.
* Otherwise, decrease the scan period.
*/
static void update_task_scan_period(struct task_struct *p,
unsigned long shared, unsigned long private)
{
unsigned int period_slot;
int lr_ratio, ps_ratio;
int diff;
unsigned long remote = p->numa_faults_locality[0];
unsigned long local = p->numa_faults_locality[1];
/*
* If there were no record hinting faults then either the task is
* completely idle or all activity is areas that are not of interest
* to automatic numa balancing. Related to that, if there were failed
* migration then it implies we are migrating too quickly or the local
* node is overloaded. In either case, scan slower
*/
if (local + shared == 0 || p->numa_faults_locality[2]) {
p->numa_scan_period = min(p->numa_scan_period_max,
p->numa_scan_period << 1);
p->mm->numa_next_scan = jiffies +
msecs_to_jiffies(p->numa_scan_period);
return;
}
/*
* Prepare to scale scan period relative to the current period.
* == NUMA_PERIOD_THRESHOLD scan period stays the same
* < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
* >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
*/
period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
/*
* Most memory accesses are local. There is no need to
* do fast NUMA scanning, since memory is already local.
*/
int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
if (!slot)
slot = 1;
diff = slot * period_slot;
} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
/*
* Most memory accesses are shared with other tasks.
* There is no point in continuing fast NUMA scanning,
* since other tasks may just move the memory elsewhere.
*/
int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
if (!slot)
slot = 1;
diff = slot * period_slot;
} else {
/*
* Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
* yet they are not on the local NUMA node. Speed up
* NUMA scanning to get the memory moved over.
*/
int ratio = max(lr_ratio, ps_ratio);
diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
}
p->numa_scan_period = clamp(p->numa_scan_period + diff,
task_scan_min(p), task_scan_max(p));
memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}
/*
* Get the fraction of time the task has been running since the last
* NUMA placement cycle. The scheduler keeps similar statistics, but
* decays those on a 32ms period, which is orders of magnitude off
* from the dozens-of-seconds NUMA balancing period. Use the scheduler
* stats only if the task is so new there are no NUMA statistics yet.
*/
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
u64 runtime, delta, now;
/* Use the start of this time slice to avoid calculations. */
now = p->se.exec_start;
runtime = p->se.sum_exec_runtime;
if (p->last_task_numa_placement) {
delta = runtime - p->last_sum_exec_runtime;
*period = now - p->last_task_numa_placement;
} else {
delta = p->se.avg.load_sum / p->se.load.weight;
*period = LOAD_AVG_MAX;
}
p->last_sum_exec_runtime = runtime;
p->last_task_numa_placement = now;
return delta;
}
/*
* Determine the preferred nid for a task in a numa_group. This needs to
* be done in a way that produces consistent results with group_weight,
* otherwise workloads might not converge.
*/
static int preferred_group_nid(struct task_struct *p, int nid)
{
nodemask_t nodes;
int dist;
/* Direct connections between all NUMA nodes. */
if (sched_numa_topology_type == NUMA_DIRECT)
return nid;
/*
* On a system with glueless mesh NUMA topology, group_weight
* scores nodes according to the number of NUMA hinting faults on
* both the node itself, and on nearby nodes.
*/
if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
unsigned long score, max_score = 0;
int node, max_node = nid;
dist = sched_max_numa_distance;
for_each_online_node(node) {
score = group_weight(p, node, dist);
if (score > max_score) {
max_score = score;
max_node = node;
}
}
return max_node;
}
/*
* Finding the preferred nid in a system with NUMA backplane
* interconnect topology is more involved. The goal is to locate
* tasks from numa_groups near each other in the system, and
* untangle workloads from different sides of the system. This requires
* searching down the hierarchy of node groups, recursively searching
* inside the highest scoring group of nodes. The nodemask tricks
* keep the complexity of the search down.
*/
nodes = node_online_map;
for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
unsigned long max_faults = 0;
nodemask_t max_group = NODE_MASK_NONE;
int a, b;
/* Are there nodes at this distance from each other? */
if (!find_numa_distance(dist))
continue;
for_each_node_mask(a, nodes) {
unsigned long faults = 0;
nodemask_t this_group;
nodes_clear(this_group);
/* Sum group's NUMA faults; includes a==b case. */
for_each_node_mask(b, nodes) {
if (node_distance(a, b) < dist) {
faults += group_faults(p, b);
node_set(b, this_group);
node_clear(b, nodes);
}
}
/* Remember the top group. */
if (faults > max_faults) {
max_faults = faults;
max_group = this_group;
/*
* subtle: at the smallest distance there is
* just one node left in each "group", the
* winner is the preferred nid.
*/
nid = a;
}
}
/* Next round, evaluate the nodes within max_group. */
if (!max_faults)
break;
nodes = max_group;
}
return nid;
}
static void task_numa_placement(struct task_struct *p)
{
int seq, nid, max_nid = -1, max_group_nid = -1;
unsigned long max_faults = 0, max_group_faults = 0;
unsigned long fault_types[2] = { 0, 0 };
unsigned long total_faults;
u64 runtime, period;
spinlock_t *group_lock = NULL;
/*
* The p->mm->numa_scan_seq field gets updated without
* exclusive access. Use READ_ONCE() here to ensure
* that the field is read in a single access:
*/
seq = READ_ONCE(p->mm->numa_scan_seq);
if (p->numa_scan_seq == seq)
return;
p->numa_scan_seq = seq;
p->numa_scan_period_max = task_scan_max(p);
total_faults = p->numa_faults_locality[0] +
p->numa_faults_locality[1];
runtime = numa_get_avg_runtime(p, &period);
/* If the task is part of a group prevent parallel updates to group stats */
if (p->numa_group) {
group_lock = &p->numa_group->lock;
spin_lock_irq(group_lock);
}
/* Find the node with the highest number of faults */
for_each_online_node(nid) {
/* Keep track of the offsets in numa_faults array */
int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
unsigned long faults = 0, group_faults = 0;
int priv;
for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
long diff, f_diff, f_weight;
mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
/* Decay existing window, copy faults since last scan */
diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
fault_types[priv] += p->numa_faults[membuf_idx];
p->numa_faults[membuf_idx] = 0;
/*
* Normalize the faults_from, so all tasks in a group
* count according to CPU use, instead of by the raw
* number of faults. Tasks with little runtime have
* little over-all impact on throughput, and thus their
* faults are less important.
*/
f_weight = div64_u64(runtime << 16, period + 1);
f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
(total_faults + 1);
f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
p->numa_faults[cpubuf_idx] = 0;
p->numa_faults[mem_idx] += diff;
p->numa_faults[cpu_idx] += f_diff;
faults += p->numa_faults[mem_idx];
p->total_numa_faults += diff;
if (p->numa_group) {
/*
* safe because we can only change our own group
*
* mem_idx represents the offset for a given
* nid and priv in a specific region because it
* is at the beginning of the numa_faults array.
*/
p->numa_group->faults[mem_idx] += diff;
p->numa_group->faults_cpu[mem_idx] += f_diff;
p->numa_group->total_faults += diff;
group_faults += p->numa_group->faults[mem_idx];
}
}
if (faults > max_faults) {
max_faults = faults;
max_nid = nid;
}
if (group_faults > max_group_faults) {
max_group_faults = group_faults;
max_group_nid = nid;
}
}
update_task_scan_period(p, fault_types[0], fault_types[1]);
if (p->numa_group) {
numa_group_count_active_nodes(p->numa_group);
spin_unlock_irq(group_lock);
max_nid = preferred_group_nid(p, max_group_nid);
}
if (max_faults) {
/* Set the new preferred node */
if (max_nid != p->numa_preferred_nid)
sched_setnuma(p, max_nid);
if (task_node(p) != p->numa_preferred_nid)
numa_migrate_preferred(p);
}
}
static inline int get_numa_group(struct numa_group *grp)
{
return atomic_inc_not_zero(&grp->refcount);
}
static inline void put_numa_group(struct numa_group *grp)
{
if (atomic_dec_and_test(&grp->refcount))
kfree_rcu(grp, rcu);
}
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
int *priv)
{
struct numa_group *grp, *my_grp;
struct task_struct *tsk;
bool join = false;
int cpu = cpupid_to_cpu(cpupid);
int i;
if (unlikely(!p->numa_group)) {
unsigned int size = sizeof(struct numa_group) +
4*nr_node_ids*sizeof(unsigned long);
grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
if (!grp)
return;
atomic_set(&grp->refcount, 1);
grp->active_nodes = 1;
grp->max_faults_cpu = 0;
spin_lock_init(&grp->lock);
grp->gid = p->pid;
/* Second half of the array tracks nids where faults happen */
grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
nr_node_ids;
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
grp->faults[i] = p->numa_faults[i];
grp->total_faults = p->total_numa_faults;
grp->nr_tasks++;
rcu_assign_pointer(p->numa_group, grp);
}
rcu_read_lock();
tsk = READ_ONCE(cpu_rq(cpu)->curr);
if (!cpupid_match_pid(tsk, cpupid))
goto no_join;
grp = rcu_dereference(tsk->numa_group);
if (!grp)
goto no_join;
my_grp = p->numa_group;
if (grp == my_grp)
goto no_join;
/*
* Only join the other group if its bigger; if we're the bigger group,
* the other task will join us.
*/
if (my_grp->nr_tasks > grp->nr_tasks)
goto no_join;
/*
* Tie-break on the grp address.
*/
if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
goto no_join;
/* Always join threads in the same process. */
if (tsk->mm == current->mm)
join = true;
/* Simple filter to avoid false positives due to PID collisions */
if (flags & TNF_SHARED)
join = true;
/* Update priv based on whether false sharing was detected */
*priv = !join;
if (join && !get_numa_group(grp))
goto no_join;
rcu_read_unlock();
if (!join)
return;
BUG_ON(irqs_disabled());
double_lock_irq(&my_grp->lock, &grp->lock);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
my_grp->faults[i] -= p->numa_faults[i];
grp->faults[i] += p->numa_faults[i];
}
my_grp->total_faults -= p->total_numa_faults;
grp->total_faults += p->total_numa_faults;
my_grp->nr_tasks--;
grp->nr_tasks++;
spin_unlock(&my_grp->lock);
spin_unlock_irq(&grp->lock);
rcu_assign_pointer(p->numa_group, grp);
put_numa_group(my_grp);
return;
no_join:
rcu_read_unlock();
return;
}
void task_numa_free(struct task_struct *p)
{
struct numa_group *grp = p->numa_group;
void *numa_faults = p->numa_faults;
unsigned long flags;
int i;
if (grp) {
spin_lock_irqsave(&grp->lock, flags);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
grp->faults[i] -= p->numa_faults[i];
grp->total_faults -= p->total_numa_faults;
grp->nr_tasks--;
spin_unlock_irqrestore(&grp->lock, flags);
RCU_INIT_POINTER(p->numa_group, NULL);
put_numa_group(grp);
}
p->numa_faults = NULL;
kfree(numa_faults);
}
/*
* Got a PROT_NONE fault for a page on @node.
*/
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
{
struct task_struct *p = current;
bool migrated = flags & TNF_MIGRATED;
int cpu_node = task_node(current);
int local = !!(flags & TNF_FAULT_LOCAL);
struct numa_group *ng;
int priv;
if (!static_branch_likely(&sched_numa_balancing))
return;
/* for example, ksmd faulting in a user's mm */
if (!p->mm)
return;
/* Allocate buffer to track faults on a per-node basis */
if (unlikely(!p->numa_faults)) {
int size = sizeof(*p->numa_faults) *
NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
if (!p->numa_faults)
return;
p->total_numa_faults = 0;
memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}
/*
* First accesses are treated as private, otherwise consider accesses
* to be private if the accessing pid has not changed
*/
if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
priv = 1;
} else {
priv = cpupid_match_pid(p, last_cpupid);
if (!priv && !(flags & TNF_NO_GROUP))
task_numa_group(p, last_cpupid, flags, &priv);
}
/*
* If a workload spans multiple NUMA nodes, a shared fault that
* occurs wholly within the set of nodes that the workload is
* actively using should be counted as local. This allows the
* scan rate to slow down when a workload has settled down.
*/
ng = p->numa_group;
if (!priv && !local && ng && ng->active_nodes > 1 &&
numa_is_active_node(cpu_node, ng) &&
numa_is_active_node(mem_node, ng))
local = 1;
task_numa_placement(p);
/*
* Retry task to preferred node migration periodically, in case it
* case it previously failed, or the scheduler moved us.
*/
if (time_after(jiffies, p->numa_migrate_retry))
numa_migrate_preferred(p);
if (migrated)
p->numa_pages_migrated += pages;
if (flags & TNF_MIGRATE_FAIL)
p->numa_faults_locality[2] += pages;
p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
p->numa_faults_locality[local] += pages;
}
static void reset_ptenuma_scan(struct task_struct *p)
{
/*
* We only did a read acquisition of the mmap sem, so
* p->mm->numa_scan_seq is written to without exclusive access
* and the update is not guaranteed to be atomic. That's not
* much of an issue though, since this is just used for
* statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
* expensive, to avoid any form of compiler optimizations:
*/
WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
p->mm->numa_scan_offset = 0;
}
/*
* The expensive part of numa migration is done from task_work context.
* Triggered from task_tick_numa().
*/
void task_numa_work(struct callback_head *work)
{
unsigned long migrate, next_scan, now = jiffies;
struct task_struct *p = current;
struct mm_struct *mm = p->mm;
u64 runtime = p->se.sum_exec_runtime;
struct vm_area_struct *vma;
unsigned long start, end;
unsigned long nr_pte_updates = 0;
long pages, virtpages;
SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
work->next = work; /* protect against double add */
/*
* Who cares about NUMA placement when they're dying.
*
* NOTE: make sure not to dereference p->mm before this check,
* exit_task_work() happens _after_ exit_mm() so we could be called
* without p->mm even though we still had it when we enqueued this
* work.
*/
if (p->flags & PF_EXITING)
return;
if (!mm->numa_next_scan) {
mm->numa_next_scan = now +
msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
}
/*
* Enforce maximal scan/migration frequency..
*/
migrate = mm->numa_next_scan;
if (time_before(now, migrate))
return;
if (p->numa_scan_period == 0) {
p->numa_scan_period_max = task_scan_max(p);
p->numa_scan_period = task_scan_start(p);
}
next_scan = now + msecs_to_jiffies(p->numa_scan_period);
if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
return;
/*
* Delay this task enough that another task of this mm will likely win
* the next time around.
*/
p->node_stamp += 2 * TICK_NSEC;
start = mm->numa_scan_offset;
pages = sysctl_numa_balancing_scan_size;
pages <<= 20 - PAGE_SHIFT; /* MB in pages */
virtpages = pages * 8; /* Scan up to this much virtual space */
if (!pages)
return;
if (!down_read_trylock(&mm->mmap_sem))
return;
vma = find_vma(mm, start);
if (!vma) {
reset_ptenuma_scan(p);
start = 0;
vma = mm->mmap;
}
for (; vma; vma = vma->vm_next) {
if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
continue;
}
/*
* Shared library pages mapped by multiple processes are not
* migrated as it is expected they are cache replicated. Avoid
* hinting faults in read-only file-backed mappings or the vdso
* as migrating the pages will be of marginal benefit.
*/
if (!vma->vm_mm ||
(vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
continue;
/*
* Skip inaccessible VMAs to avoid any confusion between
* PROT_NONE and NUMA hinting ptes
*/
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
continue;
do {
start = max(start, vma->vm_start);
end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
end = min(end, vma->vm_end);
nr_pte_updates = change_prot_numa(vma, start, end);
/*
* Try to scan sysctl_numa_balancing_size worth of
* hpages that have at least one present PTE that
* is not already pte-numa. If the VMA contains
* areas that are unused or already full of prot_numa
* PTEs, scan up to virtpages, to skip through those
* areas faster.
*/
if (nr_pte_updates)
pages -= (end - start) >> PAGE_SHIFT;
virtpages -= (end - start) >> PAGE_SHIFT;
start = end;
if (pages <= 0 || virtpages <= 0)
goto out;
cond_resched();
} while (end != vma->vm_end);
}
out:
/*
* It is possible to reach the end of the VMA list but the last few
* VMAs are not guaranteed to the vma_migratable. If they are not, we
* would find the !migratable VMA on the next scan but not reset the
* scanner to the start so check it now.
*/
if (vma)
mm->numa_scan_offset = start;
else
reset_ptenuma_scan(p);
up_read(&mm->mmap_sem);
/*
* Make sure tasks use at least 32x as much time to run other code
* than they used here, to limit NUMA PTE scanning overhead to 3% max.
* Usually update_task_scan_period slows down scanning enough; on an
* overloaded system we need to limit overhead on a per task basis.
*/
if (unlikely(p->se.sum_exec_runtime != runtime)) {
u64 diff = p->se.sum_exec_runtime - runtime;
p->node_stamp += 32 * diff;
}
}
/*
* Drive the periodic memory faults..
*/
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
struct callback_head *work = &curr->numa_work;
u64 period, now;
/*
* We don't care about NUMA placement if we don't have memory.
*/
if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
return;
/*
* Using runtime rather than walltime has the dual advantage that
* we (mostly) drive the selection from busy threads and that the
* task needs to have done some actual work before we bother with
* NUMA placement.
*/
now = curr->se.sum_exec_runtime;
period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
if (now > curr->node_stamp + period) {
if (!curr->node_stamp)
curr->numa_scan_period = task_scan_start(curr);
curr->node_stamp += period;
if (!time_before(jiffies, curr->mm->numa_next_scan)) {
init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
task_work_add(curr, work, true);
}
}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}
static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
#endif /* CONFIG_NUMA_BALANCING */
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_add(&cfs_rq->load, se->load.weight);
if (!parent_entity(se))
update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
#ifdef CONFIG_SMP
if (entity_is_task(se)) {
struct rq *rq = rq_of(cfs_rq);
account_numa_enqueue(rq, task_of(se));
list_add(&se->group_node, &rq->cfs_tasks);
}
#endif
cfs_rq->nr_running++;
}
static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_sub(&cfs_rq->load, se->load.weight);
if (!parent_entity(se))
update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
#ifdef CONFIG_SMP
if (entity_is_task(se)) {
account_numa_dequeue(rq_of(cfs_rq), task_of(se));
list_del_init(&se->group_node);
}
#endif
cfs_rq->nr_running--;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
long tg_weight, load, shares;
/*
* This really should be: cfs_rq->avg.load_avg, but instead we use
* cfs_rq->load.weight, which is its upper bound. This helps ramp up
* the shares for small weight interactive tasks.
*/
load = scale_load_down(cfs_rq->load.weight);
tg_weight = atomic_long_read(&tg->load_avg);
/* Ensure tg_weight >= load */
tg_weight -= cfs_rq->tg_load_avg_contrib;
tg_weight += load;
shares = (tg->shares * load);
if (tg_weight)
shares /= tg_weight;
/*
* MIN_SHARES has to be unscaled here to support per-CPU partitioning
* of a group with small tg->shares value. It is a floor value which is
* assigned as a minimum load.weight to the sched_entity representing
* the group on a CPU.
*
* E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
* on an 8-core system with 8 tasks each runnable on one CPU shares has
* to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
* case no task is runnable on a CPU MIN_SHARES=2 should be returned
* instead of 0.
*/
if (shares < MIN_SHARES)
shares = MIN_SHARES;
if (shares > tg->shares)
shares = tg->shares;
return shares;
}
# else /* CONFIG_SMP */
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
return tg->shares;
}
# endif /* CONFIG_SMP */
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
unsigned long weight)
{
if (se->on_rq) {
/* commit outstanding execution time */
if (cfs_rq->curr == se)
update_curr(cfs_rq);
account_entity_dequeue(cfs_rq, se);
}
update_load_set(&se->load, weight);
if (se->on_rq)
account_entity_enqueue(cfs_rq, se);
}
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
static void update_cfs_shares(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = group_cfs_rq(se);
struct task_group *tg;
long shares;
if (!cfs_rq)
return;
if (throttled_hierarchy(cfs_rq))
return;
tg = cfs_rq->tg;
#ifndef CONFIG_SMP
if (likely(se->load.weight == tg->shares))
return;
#endif
shares = calc_cfs_shares(cfs_rq, tg);
reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_cfs_shares(struct sched_entity *se)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
if (&rq->cfs == cfs_rq) {
/*
* There are a few boundary cases this might miss but it should
* get called often enough that that should (hopefully) not be
* a real problem -- added to that it only calls on the local
* CPU, so if we enqueue remotely we'll miss an update, but
* the next tick/schedule should update.
*
* It will not get called when we go idle, because the idle
* thread is a different class (!fair), nor will the utilization
* number include things like RT tasks.
*
* As is, the util number is not freq-invariant (we'd have to
* implement arch_scale_freq_capacity() for that).
*
* See cpu_util().
*/
cpufreq_update_util(rq, 0);
}
}
#ifdef CONFIG_SMP
/*
* Approximate:
* val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
*/
static u64 decay_load(u64 val, u64 n)
{
unsigned int local_n;
if (unlikely(n > LOAD_AVG_PERIOD * 63))
return 0;
/* after bounds checking we can collapse to 32-bit */
local_n = n;
/*
* As y^PERIOD = 1/2, we can combine
* y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
* With a look-up table which covers y^n (n<PERIOD)
*
* To achieve constant time decay_load.
*/
if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
val >>= local_n / LOAD_AVG_PERIOD;
local_n %= LOAD_AVG_PERIOD;
}
val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
return val;
}
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
{
u32 c1, c2, c3 = d3; /* y^0 == 1 */
/*
* c1 = d1 y^p
*/
c1 = decay_load((u64)d1, periods);
/*
* p-1
* c2 = 1024 \Sum y^n
* n=1
*
* inf inf
* = 1024 ( \Sum y^n - \Sum y^n - y^0 )
* n=0 n=p
*/
c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
return c1 + c2 + c3;
}
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
/*
* Accumulate the three separate parts of the sum; d1 the remainder
* of the last (incomplete) period, d2 the span of full periods and d3
* the remainder of the (incomplete) current period.
*
* d1 d2 d3
* ^ ^ ^
* | | |
* |<->|<----------------->|<--->|
* ... |---x---|------| ... |------|-----x (now)
*
* p-1
* u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
* n=1
*
* = u y^p + (Step 1)
*
* p-1
* d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
* n=1
*/
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
unsigned long scale_freq, scale_cpu;
u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
u64 periods;
scale_freq = arch_scale_freq_capacity(NULL, cpu);
scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
delta += sa->period_contrib;
periods = delta / 1024; /* A period is 1024us (~1ms) */
/*
* Step 1: decay old *_sum if we crossed period boundaries.
*/
if (periods) {
sa->load_sum = decay_load(sa->load_sum, periods);
if (cfs_rq) {
cfs_rq->runnable_load_sum =
decay_load(cfs_rq->runnable_load_sum, periods);
}
sa->util_sum = decay_load((u64)(sa->util_sum), periods);
/*
* Step 2
*/
delta %= 1024;
contrib = __accumulate_pelt_segments(periods,
1024 - sa->period_contrib, delta);
}
sa->period_contrib = delta;
contrib = cap_scale(contrib, scale_freq);
if (weight) {
sa->load_sum += weight * contrib;
if (cfs_rq)
cfs_rq->runnable_load_sum += weight * contrib;
}
if (running)
sa->util_sum += contrib * scale_cpu;
return periods;
}
/*
* We can represent the historical contribution to runnable average as the
* coefficients of a geometric series. To do this we sub-divide our runnable
* history into segments of approximately 1ms (1024us); label the segment that
* occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
*
* [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
* p0 p1 p2
* (now) (~1ms ago) (~2ms ago)
*
* Let u_i denote the fraction of p_i that the entity was runnable.
*
* We then designate the fractions u_i as our co-efficients, yielding the
* following representation of historical load:
* u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
*
* We choose y based on the with of a reasonably scheduling period, fixing:
* y^32 = 0.5
*
* This means that the contribution to load ~32ms ago (u_32) will be weighted
* approximately half as much as the contribution to load within the last ms
* (u_0).
*
* When a period "rolls over" and we have new u_0`, multiplying the previous
* sum again by y is sufficient to update:
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
*/
static __always_inline int
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
u64 delta;
delta = now - sa->last_update_time;
/*
* This should only happen when time goes backwards, which it
* unfortunately does during sched clock init when we swap over to TSC.
*/
if ((s64)delta < 0) {
sa->last_update_time = now;
return 0;
}
/*
* Use 1024ns as the unit of measurement since it's a reasonable
* approximation of 1us and fast to compute.
*/
delta >>= 10;
if (!delta)
return 0;
sa->last_update_time += delta << 10;
/*
* running is a subset of runnable (weight) so running can't be set if
* runnable is clear. But there are some corner cases where the current
* se has been already dequeued but cfs_rq->curr still points to it.
* This means that weight will be 0 but not running for a sched_entity
* but also for a cfs_rq if the latter becomes idle. As an example,
* this happens during idle_balance() which calls
* update_blocked_averages()
*/
if (!weight)
running = 0;
/*
* Now we know we crossed measurement unit boundaries. The *_avg
* accrues by two steps:
*
* Step 1: accumulate *_sum since last_update_time. If we haven't
* crossed period boundaries, finish.
*/
if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
return 0;
/*
* Step 2: update *_avg.
*/
sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
if (cfs_rq) {
cfs_rq->runnable_load_avg =
div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
}
sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
return 1;
}
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
}
static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
return ___update_load_avg(now, cpu, &se->avg,
se->on_rq * scale_load_down(se->load.weight),
cfs_rq->curr == se, NULL);
}
static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
return ___update_load_avg(now, cpu, &cfs_rq->avg,
scale_load_down(cfs_rq->load.weight),
cfs_rq->curr != NULL, cfs_rq);
}
/*
* Signed add and clamp on underflow.
*
* Explicitly do a load-store to ensure the intermediate value never hits
* memory. This allows lockless observations without ever seeing the negative
* values.
*/
#define add_positive(_ptr, _val) do { \
typeof(_ptr) ptr = (_ptr); \
typeof(_val) val = (_val); \
typeof(*ptr) res, var = READ_ONCE(*ptr); \
\
res = var + val; \
\
if (val < 0 && res > var) \
res = 0; \
\
WRITE_ONCE(*ptr, res); \
} while (0)
#ifdef CONFIG_FAIR_GROUP_SCHED
/**
* update_tg_load_avg - update the tg's load avg
* @cfs_rq: the cfs_rq whose avg changed
* @force: update regardless of how small the difference
*
* This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
* However, because tg->load_avg is a global value there are performance
* considerations.
*
* In order to avoid having to look at the other cfs_rq's, we use a
* differential update where we store the last value we propagated. This in
* turn allows skipping updates if the differential is 'small'.
*
* Updating tg's load_avg is necessary before update_cfs_share().
*/
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
/*
* No need to update load_avg for root_task_group as it is not used.
*/
if (cfs_rq->tg == &root_task_group)
return;
if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
atomic_long_add(delta, &cfs_rq->tg->load_avg);
cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
}
}
/*
* Called within set_task_rq() right before setting a task's cpu. The
* caller only guarantees p->pi_lock is held; no other assumptions,
* including the state of rq->lock, should be made.
*/
void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next)
{
u64 p_last_update_time;
u64 n_last_update_time;
if (!sched_feat(ATTACH_AGE_LOAD))
return;
/*
* We are supposed to update the task to "current" time, then its up to
* date and ready to go to new CPU/cfs_rq. But we have difficulty in
* getting what current time is, so simply throw away the out-of-date
* time. This will result in the wakee task is less decayed, but giving
* the wakee more load sounds not bad.
*/
if (!(se->avg.last_update_time && prev))
return;
#ifndef CONFIG_64BIT
{
u64 p_last_update_time_copy;
u64 n_last_update_time_copy;
do {
p_last_update_time_copy = prev->load_last_update_time_copy;
n_last_update_time_copy = next->load_last_update_time_copy;
smp_rmb();
p_last_update_time = prev->avg.last_update_time;
n_last_update_time = next->avg.last_update_time;
} while (p_last_update_time != p_last_update_time_copy ||
n_last_update_time != n_last_update_time_copy);
}
#else
p_last_update_time = prev->avg.last_update_time;
n_last_update_time = next->avg.last_update_time;
#endif
__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
se->avg.last_update_time = n_last_update_time;
}
/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
/* Nothing to update */
if (!delta)
return;
/* Set new sched_entity's utilization */
se->avg.util_avg = gcfs_rq->avg.util_avg;
se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
/* Update parent cfs_rq utilization */
add_positive(&cfs_rq->avg.util_avg, delta);
cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}
/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
long delta, load = gcfs_rq->avg.load_avg;
/*
* If the load of group cfs_rq is null, the load of the
* sched_entity will also be null so we can skip the formula
*/
if (load) {
long tg_load;
/* Get tg's load and ensure tg_load > 0 */
tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
/* Ensure tg_load >= load and updated with current load*/
tg_load -= gcfs_rq->tg_load_avg_contrib;
tg_load += load;
/*
* We need to compute a correction term in the case that the
* task group is consuming more CPU than a task of equal
* weight. A task with a weight equals to tg->shares will have
* a load less or equal to scale_load_down(tg->shares).
* Similarly, the sched_entities that represent the task group
* at parent level, can't have a load higher than
* scale_load_down(tg->shares). And the Sum of sched_entities'
* load must be <= scale_load_down(tg->shares).
*/
if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
/* scale gcfs_rq's load into tg's shares*/
load *= scale_load_down(gcfs_rq->tg->shares);
load /= tg_load;
}
}
delta = load - se->avg.load_avg;
/* Nothing to update */
if (!delta)
return;
/* Set new sched_entity's load */
se->avg.load_avg = load;
se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
/* Update parent cfs_rq load */
add_positive(&cfs_rq->avg.load_avg, delta);
cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
/*
* If the sched_entity is already enqueued, we also have to update the
* runnable load avg.
*/
if (se->on_rq) {
/* Update parent cfs_rq runnable_load_avg */
add_positive(&cfs_rq->runnable_load_avg, delta);
cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
}
}
static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
cfs_rq->propagate_avg = 1;
}
static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = group_cfs_rq(se);
if (!cfs_rq->propagate_avg)
return 0;
cfs_rq->propagate_avg = 0;
return 1;
}
/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq;
if (entity_is_task(se))
return 0;
if (!test_and_clear_tg_cfs_propagate(se))
return 0;
cfs_rq = cfs_rq_of(se);
set_tg_cfs_propagate(cfs_rq);
update_tg_cfs_util(cfs_rq, se);
update_tg_cfs_load(cfs_rq, se);
return 1;
}
/*
* Check if we need to update the load and the utilization of a blocked
* group_entity:
*/
static inline bool skip_blocked_update(struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
/*
* If sched_entity still have not zero load or utilization, we have to
* decay it:
*/
if (se->avg.load_avg || se->avg.util_avg)
return false;
/*
* If there is a pending propagation, we have to update the load and
* the utilization of the sched_entity:
*/
if (gcfs_rq->propagate_avg)
return false;
/*
* Otherwise, the load and the utilization of the sched_entity is
* already zero and there is no pending propagation, so it will be a
* waste of time to try to decay it:
*/
return true;
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
return 0;
}
static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
* Unsigned subtract and clamp on underflow.
*
* Explicitly do a load-store to ensure the intermediate value never hits
* memory. This allows lockless observations without ever seeing the negative
* values.
*/
#define sub_positive(_ptr, _val) do { \
typeof(_ptr) ptr = (_ptr); \
typeof(*ptr) val = (_val); \
typeof(*ptr) res, var = READ_ONCE(*ptr); \
res = var - val; \
if (res > var) \
res = 0; \
WRITE_ONCE(*ptr, res); \
} while (0)
/**
* update_cfs_rq_load_avg - update the cfs_rq's load/util averages
* @now: current time, as per cfs_rq_clock_task()
* @cfs_rq: cfs_rq to update
*
* The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
* avg. The immediate corollary is that all (fair) tasks must be attached, see
* post_init_entity_util_avg().
*
* cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
*
* Returns true if the load decayed or we removed load.
*
* Since both these conditions indicate a changed cfs_rq->avg.load we should
* call update_tg_load_avg() when this function returns true.
*/
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
struct sched_avg *sa = &cfs_rq->avg;
int decayed, removed_load = 0, removed_util = 0;
if (atomic_long_read(&cfs_rq->removed_load_avg)) {
s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
sub_positive(&sa->load_avg, r);
sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
removed_load = 1;
set_tg_cfs_propagate(cfs_rq);
}
if (atomic_long_read(&cfs_rq->removed_util_avg)) {
long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
sub_positive(&sa->util_avg, r);
sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
removed_util = 1;
set_tg_cfs_propagate(cfs_rq);
}
decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
#ifndef CONFIG_64BIT
smp_wmb();
cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
if (decayed || removed_util)
cfs_rq_util_change(cfs_rq);
return decayed || removed_load;
}
/*
* Optional action to be done while updating the load average
*/
#define UPDATE_TG 0x1
#define SKIP_AGE_LOAD 0x2
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int flags)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 now = cfs_rq_clock_task(cfs_rq);
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
int decayed;
/*
* Track task load average for carrying it to new CPU after migrated, and
* track group sched_entity load average for task_h_load calc in migration
*/
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
__update_load_avg_se(now, cpu, cfs_rq, se);
decayed = update_cfs_rq_load_avg(now, cfs_rq);
decayed |= propagate_entity_load_avg(se);
if (decayed && (flags & UPDATE_TG))
update_tg_load_avg(cfs_rq, 0);
}
/**
* attach_entity_load_avg - attach this entity to its cfs_rq load avg
* @cfs_rq: cfs_rq to attach to
* @se: sched_entity to attach
*
* Must call update_cfs_rq_load_avg() before this, since we rely on
* cfs_rq->avg.last_update_time being current.
*/
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
se->avg.last_update_time = cfs_rq->avg.last_update_time;
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se->avg.load_sum;
cfs_rq->avg.util_avg += se->avg.util_avg;
cfs_rq->avg.util_sum += se->avg.util_sum;
set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
/**
* detach_entity_load_avg - detach this entity from its cfs_rq load avg
* @cfs_rq: cfs_rq to detach from
* @se: sched_entity to detach
*
* Must call update_cfs_rq_load_avg() before this, since we rely on
* cfs_rq->avg.last_update_time being current.
*/
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_avg *sa = &se->avg;
cfs_rq->runnable_load_avg += sa->load_avg;
cfs_rq->runnable_load_sum += sa->load_sum;
if (!sa->last_update_time) {
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, 0);
}
}
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
cfs_rq->runnable_load_avg =
max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
cfs_rq->runnable_load_sum =
max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
}
#ifndef CONFIG_64BIT
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
u64 last_update_time_copy;
u64 last_update_time;
do {
last_update_time_copy = cfs_rq->load_last_update_time_copy;
smp_rmb();
last_update_time = cfs_rq->avg.last_update_time;
} while (last_update_time != last_update_time_copy);
return last_update_time;
}
#else
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
return cfs_rq->avg.last_update_time;
}
#endif
/*
* Synchronize entity load avg of dequeued entity without locking
* the previous rq.
*/
void sync_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 last_update_time;
last_update_time = cfs_rq_last_update_time(cfs_rq);
__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
}
/*
* Task first catches up with cfs_rq, and then subtract
* itself from the cfs_rq (task must be off the queue now).
*/
void remove_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/*
* tasks cannot exit without having gone through wake_up_new_task() ->
* post_init_entity_util_avg() which will have added things to the
* cfs_rq, so we can remove unconditionally.
*
* Similarly for groups, they will have passed through
* post_init_entity_util_avg() before unregister_sched_fair_group()
* calls this.
*/
sync_entity_load_avg(se);
atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
}
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
return cfs_rq->runnable_load_avg;
}
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
return cfs_rq->avg.load_avg;
}
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
#else /* CONFIG_SMP */
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
return 0;
}
#define UPDATE_TG 0x0
#define SKIP_AGE_LOAD 0x0
static inline void update_load_avg(struct sched_entity *se, int not_used1)
{
cfs_rq_util_change(cfs_rq_of(se));
}
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void remove_entity_load_avg(struct sched_entity *se) {}
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
{
return 0;
}
#endif /* CONFIG_SMP */
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
s64 d = se->vruntime - cfs_rq->min_vruntime;
if (d < 0)
d = -d;
if (d > 3*sysctl_sched_latency)
schedstat_inc(cfs_rq->nr_spread_over);
#endif
}
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
u64 vruntime = cfs_rq->min_vruntime;
/*
* The 'current' period is already promised to the current tasks,
* however the extra weight of the new task will slow them down a
* little, place the new task so that it fits in the slot that
* stays open at the end.
*/
if (initial && sched_feat(START_DEBIT))
vruntime += sched_vslice(cfs_rq, se);
/* sleeps up to a single latency don't count. */
if (!initial) {
unsigned long thresh = sysctl_sched_latency;
/*
* Halve their sleep time's effect, to allow
* for a gentler effect of sleepers:
*/
if (sched_feat(GENTLE_FAIR_SLEEPERS))
thresh >>= 1;
vruntime -= thresh;
}
/* ensure we never gain time by being placed backwards. */
se->vruntime = max_vruntime(se->vruntime, vruntime);
}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
if (schedstat_enabled())
return;
/* Force schedstat enabled if a dependent tracepoint is active */
if (trace_sched_stat_wait_enabled() ||
trace_sched_stat_sleep_enabled() ||
trace_sched_stat_iowait_enabled() ||
trace_sched_stat_blocked_enabled() ||
trace_sched_stat_runtime_enabled()) {
printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
"stat_blocked and stat_runtime require the "
"kernel parameter schedstats=enable or "
"kernel.sched_schedstats=1\n");
}
#endif
}
/*
* MIGRATION
*
* dequeue
* update_curr()
* update_min_vruntime()
* vruntime -= min_vruntime
*
* enqueue
* update_curr()
* update_min_vruntime()
* vruntime += min_vruntime
*
* this way the vruntime transition between RQs is done when both
* min_vruntime are up-to-date.
*
* WAKEUP (remote)
*
* ->migrate_task_rq_fair() (p->state == TASK_WAKING)
* vruntime -= min_vruntime
*
* enqueue
* update_curr()
* update_min_vruntime()
* vruntime += min_vruntime
*
* this way we don't have the most up-to-date min_vruntime on the originating
* CPU and an up-to-date min_vruntime on the destination CPU.
*/
static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
bool curr = cfs_rq->curr == se;
/*
* If we're the current task, we must renormalise before calling
* update_curr().
*/
if (renorm && curr)
se->vruntime += cfs_rq->min_vruntime;
update_curr(cfs_rq);
/*
* Otherwise, renormalise after, such that we're placed at the current
* moment in time, instead of some random moment in the past. Being
* placed in the past could significantly boost this task to the
* fairness detriment of existing tasks.
*/
if (renorm && !curr)
se->vruntime += cfs_rq->min_vruntime;
/*
* When enqueuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - Add its load to cfs_rq->runnable_avg
* - For group_entity, update its weight to reflect the new share of
* its group cfs_rq
* - Add its new weight to cfs_rq->load.weight
*/
update_load_avg(se, UPDATE_TG);
enqueue_entity_load_avg(cfs_rq, se);
update_cfs_shares(se);
account_entity_enqueue(cfs_rq, se);
if (flags & ENQUEUE_WAKEUP)
place_entity(cfs_rq, se, 0);
check_schedstat_required();
update_stats_enqueue(cfs_rq, se, flags);
check_spread(cfs_rq, se);
if (!curr)
__enqueue_entity(cfs_rq, se);
se->on_rq = 1;
if (cfs_rq->nr_running == 1) {
list_add_leaf_cfs_rq(cfs_rq);
check_enqueue_throttle(cfs_rq);
}
}
static void __clear_buddies_last(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->last != se)
break;
cfs_rq->last = NULL;
}
}
static void __clear_buddies_next(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->next != se)
break;
cfs_rq->next = NULL;
}
}
static void __clear_buddies_skip(struct sched_entity *se)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (cfs_rq->skip != se)
break;
cfs_rq->skip = NULL;
}
}
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if (cfs_rq->last == se)
__clear_buddies_last(se);
if (cfs_rq->next == se)
__clear_buddies_next(se);
if (cfs_rq->skip == se)
__clear_buddies_skip(se);
}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* When dequeuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - Substract its load from the cfs_rq->runnable_avg.
* - Substract its previous weight from cfs_rq->load.weight.
* - For group entity, update its weight to reflect the new share
* of its group cfs_rq.
*/
update_load_avg(se, UPDATE_TG);
dequeue_entity_load_avg(cfs_rq, se);
update_stats_dequeue(cfs_rq, se, flags);
clear_buddies(cfs_rq, se);
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->on_rq = 0;
account_entity_dequeue(cfs_rq, se);
/*
* Normalize after update_curr(); which will also have moved
* min_vruntime if @se is the one holding it back. But before doing
* update_min_vruntime() again, which will discount @se's position and
* can move min_vruntime forward still more.
*/
if (!(flags & DEQUEUE_SLEEP))
se->vruntime -= cfs_rq->min_vruntime;
/* return excess runtime on last dequeue */
return_cfs_rq_runtime(cfs_rq);
update_cfs_shares(se);
/*
* Now advance min_vruntime if @se was the entity holding it back,
* except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
* put back on, and if we advance min_vruntime, we'll be placed back
* further than we started -- ie. we'll be penalized.
*/
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
unsigned long ideal_runtime, delta_exec;
struct sched_entity *se;
s64 delta;
ideal_runtime = sched_slice(cfs_rq, curr);
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
if (delta_exec > ideal_runtime) {
resched_curr(rq_of(cfs_rq));
/*
* The current task ran long enough, ensure it doesn't get
* re-elected due to buddy favours.
*/
clear_buddies(cfs_rq, curr);
return;
}
/*
* Ensure that a task that missed wakeup preemption by a
* narrow margin doesn't have to wait for a full slice.
* This also mitigates buddy induced latencies under load.
*/
if (delta_exec < sysctl_sched_min_granularity)
return;
se = __pick_first_entity(cfs_rq);
delta = curr->vruntime - se->vruntime;
if (delta < 0)
return;
if (delta > ideal_runtime)
resched_curr(rq_of(cfs_rq));
}
static void
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
/* 'current' is not kept within the tree. */
if (se->on_rq) {
/*
* Any task has to be enqueued before it get to execute on
* a CPU. So account for the time it spent waiting on the
* runqueue.
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
update_load_avg(se, UPDATE_TG);
}
update_stats_curr_start(cfs_rq, se);
cfs_rq->curr = se;
/*
* Track our maximum slice length, if the CPU's load is at
* least twice that of our own weight (i.e. dont track it
* when there are only lesser-weight tasks around):
*/
if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
schedstat_set(se->statistics.slice_max,
max((u64)schedstat_val(se->statistics.slice_max),
se->sum_exec_runtime - se->prev_sum_exec_runtime));
}
se->prev_sum_exec_runtime = se->sum_exec_runtime;
}
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
/*
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
* 2) pick the "next" process, since someone really wants that to run
* 3) pick the "last" process, for cache locality
* 4) do not run the "skip" process, if something else is available
*/
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
struct sched_entity *left = __pick_first_entity(cfs_rq);
struct sched_entity *se;
/*
* If curr is set we have to see if its left of the leftmost entity
* still in the tree, provided there was anything in the tree at all.
*/
if (!left || (curr && entity_before(curr, left)))
left = curr;
se = left; /* ideally we run the leftmost entity */
/*
* Avoid running the skip buddy, if running something else can
* be done without getting too unfair.
*/
if (cfs_rq->skip == se) {
struct sched_entity *second;
if (se == curr) {
second = __pick_first_entity(cfs_rq);
} else {
second = __pick_next_entity(se);
if (!second || (curr && entity_before(curr, second)))
second = curr;
}
if (second && wakeup_preempt_entity(second, left) < 1)
se = second;
}
/*
* Prefer last buddy, try to return the CPU to a preempted task.
*/
if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
se = cfs_rq->last;
/*
* Someone really wants this to run. If it's not unfair, run it.
*/
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
se = cfs_rq->next;
clear_buddies(cfs_rq, se);
return se;
}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
{
/*
* If still on the runqueue then deactivate_task()
* was not called and update_curr() has to be done:
*/
if (prev->on_rq)
update_curr(cfs_rq);
/* throttle cfs_rqs exceeding runtime */
check_cfs_rq_runtime(cfs_rq);
check_spread(cfs_rq, prev);
if (prev->on_rq) {
update_stats_wait_start(cfs_rq, prev);
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
/* in !on_rq case, update occurred at dequeue */
update_load_avg(prev, 0);
}
cfs_rq->curr = NULL;
}
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
{
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* Ensure that runnable average is periodically updated.
*/
update_load_avg(curr, UPDATE_TG);
update_cfs_shares(curr);
#ifdef CONFIG_SCHED_HRTICK
/*
* queued ticks are scheduled to match the slice, so don't bother
* validating it and just reschedule.
*/
if (queued) {
resched_curr(rq_of(cfs_rq));
return;
}
/*
* don't let the period tick interfere with the hrtick preemption
*/
if (!sched_feat(DOUBLE_TICK) &&
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
return;
#endif
if (cfs_rq->nr_running > 1)
check_preempt_tick(cfs_rq, curr);
}
/**************************************************
* CFS bandwidth control machinery
*/
#ifdef CONFIG_CFS_BANDWIDTH
#ifdef HAVE_JUMP_LABEL
static struct static_key __cfs_bandwidth_used;
static inline bool cfs_bandwidth_used(void)
{
return static_key_false(&__cfs_bandwidth_used);
}
void cfs_bandwidth_usage_inc(void)
{
static_key_slow_inc(&__cfs_bandwidth_used);
}
void cfs_bandwidth_usage_dec(void)
{
static_key_slow_dec(&__cfs_bandwidth_used);
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
return true;
}
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
#endif /* HAVE_JUMP_LABEL */
/*
* default period for cfs group bandwidth.
* default: 0.1s, units: nanoseconds
*/
static inline u64 default_cfs_period(void)
{
return 100000000ULL;
}
static inline u64 sched_cfs_bandwidth_slice(void)
{
return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}
/*
* Replenish runtime according to assigned quota and update expiration time.
* We use sched_clock_cpu directly instead of rq->clock to avoid adding
* additional synchronization around rq->lock.
*
* requires cfs_b->lock
*/
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
{
u64 now;
if (cfs_b->quota == RUNTIME_INF)
return;
now = sched_clock_cpu(smp_processor_id());
cfs_b->runtime = cfs_b->quota;
cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
return &tg->cfs_bandwidth;
}
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
if (unlikely(cfs_rq->throttle_count))
return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
}
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct task_group *tg = cfs_rq->tg;
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
u64 amount = 0, min_amount, expires;
/* note: this is a positive sum as runtime_remaining <= 0 */
min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
raw_spin_lock(&cfs_b->lock);
if (cfs_b->quota == RUNTIME_INF)
amount = min_amount;
else {
start_cfs_bandwidth(cfs_b);
if (cfs_b->runtime > 0) {
amount = min(cfs_b->runtime, min_amount);
cfs_b->runtime -= amount;
cfs_b->idle = 0;
}
}
expires = cfs_b->runtime_expires;
raw_spin_unlock(&cfs_b->lock);
cfs_rq->runtime_remaining += amount;
/*
* we may have advanced our local expiration to account for allowed
* spread between our sched_clock and the one on which runtime was
* issued.
*/
if ((s64)(expires - cfs_rq->runtime_expires) > 0)
cfs_rq->runtime_expires = expires;
return cfs_rq->runtime_remaining > 0;
}
/*
* Note: This depends on the synchronization provided by sched_clock and the
* fact that rq->clock snapshots this value.
*/
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
/* if the deadline is ahead of our clock, nothing to do */
if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
return;
if (cfs_rq->runtime_remaining < 0)
return;
/*
* If the local deadline has passed we have to consider the
* possibility that our sched_clock is 'fast' and the global deadline
* has not truly expired.
*
* Fortunately we can check determine whether this the case by checking
* whether the global deadline has advanced. It is valid to compare
* cfs_b->runtime_expires without any locks since we only care about
* exact equality, so a partial write will still work.
*/
if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
/* extend local deadline, drift is bounded above by 2 ticks */
cfs_rq->runtime_expires += TICK_NSEC;
} else {
/* global deadline is ahead, expiration has passed */
cfs_rq->runtime_remaining = 0;
}
}
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
/* dock delta_exec before expiring quota (as it could span periods) */
cfs_rq->runtime_remaining -= delta_exec;
expire_cfs_rq_runtime(cfs_rq);
if (likely(cfs_rq->runtime_remaining > 0))
return;
/*
* if we're unable to extend our runtime we resched so that the active
* hierarchy can be throttled
*/
if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
resched_curr(rq_of(cfs_rq));
}
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
return;
__account_cfs_rq_runtime(cfs_rq, delta_exec);
}
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
return cfs_bandwidth_used() && cfs_rq->throttled;
}
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return cfs_bandwidth_used() && cfs_rq->throttle_count;
}
/*
* Ensure that neither of the group entities corresponding to src_cpu or
* dest_cpu are members of a throttled hierarchy when performing group
* load-balance operations.
*/
static inline int throttled_lb_pair(struct task_group *tg,
int src_cpu, int dest_cpu)
{
struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
src_cfs_rq = tg->cfs_rq[src_cpu];
dest_cfs_rq = tg->cfs_rq[dest_cpu];
return throttled_hierarchy(src_cfs_rq) ||
throttled_hierarchy(dest_cfs_rq);
}
/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
cfs_rq->throttle_count--;
if (!cfs_rq->throttle_count) {
/* adjust cfs_rq_clock_task() */
cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
cfs_rq->throttled_clock_task;
}
return 0;
}
static int tg_throttle_down(struct task_group *tg, void *data)
{
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
/* group is entering throttled state, stop time */
if (!cfs_rq->throttle_count)
cfs_rq->throttled_clock_task = rq_clock_task(rq);
cfs_rq->throttle_count++;
return 0;
}
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, dequeue = 1;
bool empty;
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
/* freeze hierarchy runnable averages while throttled */
rcu_read_lock();
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
rcu_read_unlock();
task_delta = cfs_rq->h_nr_running;
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
break;
if (dequeue)
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
qcfs_rq->h_nr_running -= task_delta;
if (qcfs_rq->load.weight)
dequeue = 0;
}
if (!se)
sub_nr_running(rq, task_delta);
cfs_rq->throttled = 1;
cfs_rq->throttled_clock = rq_clock(rq);
raw_spin_lock(&cfs_b->lock);
empty = list_empty(&cfs_b->throttled_cfs_rq);
/*
* Add to the _head_ of the list, so that an already-started
* distribute_cfs_runtime will not see us
*/
list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
/*
* If we're the first throttled task, make sure the bandwidth
* timer is running.
*/
if (empty)
start_cfs_bandwidth(cfs_b);
raw_spin_unlock(&cfs_b->lock);
}
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
int enqueue = 1;
long task_delta;
se = cfs_rq->tg->se[cpu_of(rq)];
cfs_rq->throttled = 0;
update_rq_clock(rq);
raw_spin_lock(&cfs_b->lock);
cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
list_del_rcu(&cfs_rq->throttled_list);
raw_spin_unlock(&cfs_b->lock);
/* update hierarchical throttle state */
walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
if (!cfs_rq->load.weight)
return;
task_delta = cfs_rq->h_nr_running;
for_each_sched_entity(se) {
if (se->on_rq)
enqueue = 0;
cfs_rq = cfs_rq_of(se);
if (enqueue)
enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
cfs_rq->h_nr_running += task_delta;
if (cfs_rq_throttled(cfs_rq))
break;
}
if (!se)
add_nr_running(rq, task_delta);
/* determine whether we need to wake up potentially idle cpu */
if (rq->curr == rq->idle && rq->cfs.nr_running)
resched_curr(rq);
}
static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
u64 remaining, u64 expires)
{
struct cfs_rq *cfs_rq;
u64 runtime;
u64 starting_runtime = remaining;
rcu_read_lock();
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
throttled_list) {
struct rq *rq = rq_of(cfs_rq);
struct rq_flags rf;
rq_lock(rq, &rf);
if (!cfs_rq_throttled(cfs_rq))
goto next;
runtime = -cfs_rq->runtime_remaining + 1;
if (runtime > remaining)
runtime = remaining;
remaining -= runtime;
cfs_rq->runtime_remaining += runtime;
cfs_rq->runtime_expires = expires;
/* we check whether we're throttled above */
if (cfs_rq->runtime_remaining > 0)
unthrottle_cfs_rq(cfs_rq);
next:
rq_unlock(rq, &rf);
if (!remaining)
break;
}
rcu_read_unlock();
return starting_runtime - remaining;
}
/*
* Responsible for refilling a task_group's bandwidth and unthrottling its
* cfs_rqs as appropriate. If there has been no activity within the last
* period the timer is deactivated until scheduling resumes; cfs_b->idle is
* used to track this state.
*/
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
u64 runtime, runtime_expires;
int throttled;
/* no need to continue the timer with no bandwidth constraint */
if (cfs_b->quota == RUNTIME_INF)
goto out_deactivate;
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
cfs_b->nr_periods += overrun;
/*
* idle depends on !throttled (for the case of a large deficit), and if
* we're going inactive then everything else can be deferred
*/
if (cfs_b->idle && !throttled)
goto out_deactivate;
__refill_cfs_bandwidth_runtime(cfs_b);
if (!throttled) {
/* mark as potentially idle for the upcoming period */
cfs_b->idle = 1;
return 0;
}
/* account preceding periods in which throttling occurred */
cfs_b->nr_throttled += overrun;
runtime_expires = cfs_b->runtime_expires;
/*
* This check is repeated as we are holding onto the new bandwidth while
* we unthrottle. This can potentially race with an unthrottled group
* trying to acquire new bandwidth from the global pool. This can result
* in us over-using our runtime if it is all used during this loop, but
* only by limited amounts in that extreme case.
*/
while (throttled && cfs_b->runtime > 0) {
runtime = cfs_b->runtime;
raw_spin_unlock(&cfs_b->lock);
/* we can't nest cfs_b->lock while distributing bandwidth */
runtime = distribute_cfs_runtime(cfs_b, runtime,
runtime_expires);
raw_spin_lock(&cfs_b->lock);
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
cfs_b->runtime -= min(runtime, cfs_b->runtime);
}
/*
* While we are ensured activity in the period following an
* unthrottle, this also covers the case in which the new bandwidth is
* insufficient to cover the existing bandwidth deficit. (Forcing the
* timer to remain active while there are any throttled entities.)
*/
cfs_b->idle = 0;
return 0;
out_deactivate:
return 1;
}
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
/*
* Are we near the end of the current quota period?
*
* Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
* hrtimer base being cleared by hrtimer_start. In the case of
* migrate_hrtimers, base is never cleared, so we are fine.
*/
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
struct hrtimer *refresh_timer = &cfs_b->period_timer;
u64 remaining;
/* if the call-back is running a quota refresh is already occurring */
if (hrtimer_callback_running(refresh_timer))
return 1;
/* is a quota refresh about to occur? */
remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
if (remaining < min_expire)
return 1;
return 0;
}
static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
/* if there's a quota refresh soon don't bother with slack */
if (runtime_refresh_within(cfs_b, min_left))
return;
hrtimer_start(&cfs_b->slack_timer,
ns_to_ktime(cfs_bandwidth_slack_period),
HRTIMER_MODE_REL);
}
/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
if (slack_runtime <= 0)
return;
raw_spin_lock(&cfs_b->lock);
if (cfs_b->quota != RUNTIME_INF &&
cfs_rq->runtime_expires == cfs_b->runtime_expires) {
cfs_b->runtime += slack_runtime;
/* we are under rq->lock, defer unthrottling using a timer */
if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
!list_empty(&cfs_b->throttled_cfs_rq))
start_cfs_slack_bandwidth(cfs_b);
}
raw_spin_unlock(&cfs_b->lock);
/* even if it's not valid for return we don't want to try again */
cfs_rq->runtime_remaining -= slack_runtime;
}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return;
if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
return;
__return_cfs_rq_runtime(cfs_rq);
}
/*
* This is done with a timer (instead of inline with bandwidth return) since
* it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
*/
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
u64 expires;
/* confirm we're still not at a refresh boundary */
raw_spin_lock(&cfs_b->lock);
if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
raw_spin_unlock(&cfs_b->lock);
return;
}
if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
runtime = cfs_b->runtime;
expires = cfs_b->runtime_expires;
raw_spin_unlock(&cfs_b->lock);
if (!runtime)
return;
runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
raw_spin_lock(&cfs_b->lock);
if (expires == cfs_b->runtime_expires)
cfs_b->runtime -= min(runtime, cfs_b->runtime);
raw_spin_unlock(&cfs_b->lock);
}
/*
* When a group wakes up we want to make sure that its quota is not already
* expired/exceeded, otherwise it may be allowed to steal additional ticks of
* runtime as update_curr() throttling can not not trigger until it's on-rq.
*/
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return;
/* an active group must be handled by the update_curr()->put() path */
if (!cfs_rq->runtime_enabled || cfs_rq->curr)
return;
/* ensure the group is not already throttled */
if (cfs_rq_throttled(cfs_rq))
return;
/* update runtime allocation */
account_cfs_rq_runtime(cfs_rq, 0);
if (cfs_rq->runtime_remaining <= 0)
throttle_cfs_rq(cfs_rq);
}
static void sync_throttle(struct task_group *tg, int cpu)
{
struct cfs_rq *pcfs_rq, *cfs_rq;
if (!cfs_bandwidth_used())
return;
if (!tg->parent)
return;
cfs_rq = tg->cfs_rq[cpu];
pcfs_rq = tg->parent->cfs_rq[cpu];
cfs_rq->throttle_count = pcfs_rq->throttle_count;
cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
}
/* conditionally throttle active cfs_rq's from put_prev_entity() */
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
if (!cfs_bandwidth_used())
return false;
if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
return false;
/*
* it's possible for a throttled entity to be forced into a running
* state (e.g. set_curr_task), in this case we're finished.
*/
if (cfs_rq_throttled(cfs_rq))
return true;
throttle_cfs_rq(cfs_rq);
return true;
}
static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, slack_timer);
do_sched_cfs_slack_timer(cfs_b);
return HRTIMER_NORESTART;
}
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, period_timer);
int overrun;
int idle = 0;
raw_spin_lock(&cfs_b->lock);
for (;;) {
overrun = hrtimer_forward_now(timer, cfs_b->period);
if (!overrun)
break;
idle = do_sched_cfs_period_timer(cfs_b, overrun);
}
if (idle)
cfs_b->period_active = 0;
raw_spin_unlock(&cfs_b->lock);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
raw_spin_lock_init(&cfs_b->lock);
cfs_b->runtime = 0;
cfs_b->quota = RUNTIME_INF;
cfs_b->period = ns_to_ktime(default_cfs_period());
INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
cfs_b->period_timer.function = sched_cfs_period_timer;
hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cfs_b->slack_timer.function = sched_cfs_slack_timer;
}
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
cfs_rq->runtime_enabled = 0;
INIT_LIST_HEAD(&cfs_rq->throttled_list);
}
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
lockdep_assert_held(&cfs_b->lock);
if (!cfs_b->period_active) {
cfs_b->period_active = 1;
hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
}
}
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
/* init_cfs_bandwidth() was not called */
if (!cfs_b->throttled_cfs_rq.next)
return;
hrtimer_cancel(&cfs_b->period_timer);
hrtimer_cancel(&cfs_b->slack_timer);
}
/*
* Both these cpu hotplug callbacks race against unregister_fair_sched_group()
*
* The race is harmless, since modifying bandwidth settings of unhooked group
* bits doesn't do much.
*/
/* cpu online calback */
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
struct task_group *tg;
lockdep_assert_held(&rq->lock);
rcu_read_lock();
list_for_each_entry_rcu(tg, &task_groups, list) {
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
raw_spin_lock(&cfs_b->lock);
cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
raw_spin_unlock(&cfs_b->lock);
}
rcu_read_unlock();
}
/* cpu offline callback */
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
{
struct task_group *tg;
lockdep_assert_held(&rq->lock);
rcu_read_lock();
list_for_each_entry_rcu(tg, &task_groups, list) {
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
if (!cfs_rq->runtime_enabled)
continue;
/*
* clock_task is not advancing so we just need to make sure
* there's some valid quota amount
*/
cfs_rq->runtime_remaining = 1;
/*
* Offline rq is schedulable till cpu is completely disabled
* in take_cpu_down(), so we prevent new cfs throttling here.
*/
cfs_rq->runtime_enabled = 0;
if (cfs_rq_throttled(cfs_rq))
unthrottle_cfs_rq(cfs_rq);
}
rcu_read_unlock();
}
#else /* CONFIG_CFS_BANDWIDTH */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
return rq_clock_task(rq_of(cfs_rq));
}
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static inline void sync_throttle(struct task_group *tg, int cpu) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
return 0;
}
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
return 0;
}
static inline int throttled_lb_pair(struct task_group *tg,
int src_cpu, int dest_cpu)
{
return 0;
}
void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
#endif
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
static inline void update_runtime_enabled(struct rq *rq) {}
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
#endif /* CONFIG_CFS_BANDWIDTH */
/**************************************************
* CFS operations on tasks:
*/
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
SCHED_WARN_ON(task_rq(p) != rq);
if (rq->cfs.h_nr_running > 1) {
u64 slice = sched_slice(cfs_rq, se);
u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
s64 delta = slice - ran;
if (delta < 0) {
if (rq->curr == p)
resched_curr(rq);
return;
}
hrtick_start(rq, delta);
}
}
/*
* called from enqueue/dequeue and updates the hrtick when the
* current task is from our class and nr_running is low enough
* to matter.
*/
static void hrtick_update(struct rq *rq)
{
struct task_struct *curr = rq->curr;
if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
return;
if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
hrtick_start_fair(rq, curr);
}
#else /* !CONFIG_SCHED_HRTICK */
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
static inline void hrtick_update(struct rq *rq)
{
}
#endif
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
* then put the task into the rbtree:
*/
static void
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
/*
* If in_iowait is set, the code below may not trigger any cpufreq
* utilization updates, so do it here explicitly with the IOWAIT flag
* passed.
*/
if (p->in_iowait)
cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
for_each_sched_entity(se) {
if (se->on_rq)
break;
cfs_rq = cfs_rq_of(se);
enqueue_entity(cfs_rq, se, flags);
/*
* end evaluation on encountering a throttled cfs_rq
*
* note: in the case of encountering a throttled cfs_rq we will
* post the final h_nr_running increment below.
*/
if (cfs_rq_throttled(cfs_rq))
break;
cfs_rq->h_nr_running++;
flags = ENQUEUE_WAKEUP;
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_nr_running++;
if (cfs_rq_throttled(cfs_rq))
break;
update_load_avg(se, UPDATE_TG);
update_cfs_shares(se);
}
if (!se)
add_nr_running(rq, 1);
hrtick_update(rq);
}
static void set_next_buddy(struct sched_entity *se);
/*
* The dequeue_task method is called before nr_running is
* decreased. We remove the task from the rbtree and
* update the fair scheduling stats:
*/
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
int task_sleep = flags & DEQUEUE_SLEEP;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
dequeue_entity(cfs_rq, se, flags);
/*
* end evaluation on encountering a throttled cfs_rq
*
* note: in the case of encountering a throttled cfs_rq we will
* post the final h_nr_running decrement below.
*/
if (cfs_rq_throttled(cfs_rq))
break;
cfs_rq->h_nr_running--;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
/* Avoid re-evaluating load for this entity: */
se = parent_entity(se);
/*
* Bias pick_next to pick a task from this cfs_rq, as
* p is sleeping when it is within its sched_slice.
*/
if (task_sleep && se && !throttled_hierarchy(cfs_rq))
set_next_buddy(se);
break;
}
flags |= DEQUEUE_SLEEP;
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_nr_running--;
if (cfs_rq_throttled(cfs_rq))
break;
update_load_avg(se, UPDATE_TG);
update_cfs_shares(se);
}
if (!se)
sub_nr_running(rq, 1);
hrtick_update(rq);
}
#ifdef CONFIG_SMP
/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
#ifdef CONFIG_NO_HZ_COMMON
/*
* per rq 'load' arrray crap; XXX kill this.
*/
/*
* The exact cpuload calculated at every tick would be:
*
* load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
*
* If a cpu misses updates for n ticks (as it was idle) and update gets
* called on the n+1-th tick when cpu may be busy, then we have:
*
* load_n = (1 - 1/2^i)^n * load_0
* load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
*
* decay_load_missed() below does efficient calculation of
*
* load' = (1 - 1/2^i)^n * load
*
* Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
* This allows us to precompute the above in said factors, thereby allowing the
* reduction of an arbitrary n in O(log_2 n) steps. (See also
* fixed_power_int())
*
* The calculation is approximated on a 128 point scale.
*/
#define DEGRADE_SHIFT 7
static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
{ 0, 0, 0, 0, 0, 0, 0, 0 },
{ 64, 32, 8, 0, 0, 0, 0, 0 },
{ 96, 72, 40, 12, 1, 0, 0, 0 },
{ 112, 98, 75, 43, 15, 1, 0, 0 },
{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
/*
* Update cpu_load for any missed ticks, due to tickless idle. The backlog
* would be when CPU is idle and so we just decay the old load without
* adding any new load.
*/
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
int j = 0;
if (!missed_updates)
return load;
if (missed_updates >= degrade_zero_ticks[idx])
return 0;
if (idx == 1)
return load >> missed_updates;
while (missed_updates) {
if (missed_updates % 2)
load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
missed_updates >>= 1;
j++;
}
return load;
}
#endif /* CONFIG_NO_HZ_COMMON */
/**
* __cpu_load_update - update the rq->cpu_load[] statistics
* @this_rq: The rq to update statistics for
* @this_load: The current load
* @pending_updates: The number of missed updates
*
* Update rq->cpu_load[] statistics. This function is usually called every
* scheduler tick (TICK_NSEC).
*
* This function computes a decaying average:
*
* load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
*
* Because of NOHZ it might not get called on every tick which gives need for
* the @pending_updates argument.
*
* load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
* = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
* = A * (A * load[i]_n-2 + B) + B
* = A * (A * (A * load[i]_n-3 + B) + B) + B
* = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
* = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
* = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
* = (1 - 1/2^i)^n * (load[i]_0 - load) + load
*
* In the above we've assumed load_n := load, which is true for NOHZ_FULL as
* any change in load would have resulted in the tick being turned back on.
*
* For regular NOHZ, this reduces to:
*
* load[i]_n = (1 - 1/2^i)^n * load[i]_0
*
* see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
* term.
*/
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
unsigned long pending_updates)
{
unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
int i, scale;
this_rq->nr_load_updates++;
/* Update our load: */
this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
unsigned long old_load, new_load;
/* scale is effectively 1 << i now, and >> i divides by scale */
old_load = this_rq->cpu_load[i];
#ifdef CONFIG_NO_HZ_COMMON
old_load = decay_load_missed(old_load, pending_updates - 1, i);
if (tickless_load) {
old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
/*
* old_load can never be a negative value because a
* decayed tickless_load cannot be greater than the
* original tickless_load.
*/
old_load += tickless_load;
}
#endif
new_load = this_load;
/*
* Round up the averaging division if load is increasing. This
* prevents us from getting stuck on 9 if the load is 10, for
* example.
*/
if (new_load > old_load)
new_load += scale - 1;
this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
}
sched_avg_update(this_rq);
}
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(struct rq *rq)
{
return cfs_rq_runnable_load_avg(&rq->cfs);
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* There is no sane way to deal with nohz on smp when using jiffies because the
* cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
* causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
*
* Therefore we need to avoid the delta approach from the regular tick when
* possible since that would seriously skew the load calculation. This is why we
* use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
* jiffies deltas for updates happening while in nohz mode (idle ticks, idle
* loop exit, nohz_idle_balance, nohz full exit...)
*
* This means we might still be one tick off for nohz periods.
*/
static void cpu_load_update_nohz(struct rq *this_rq,
unsigned long curr_jiffies,
unsigned long load)
{
unsigned long pending_updates;
pending_updates = curr_jiffies - this_rq->last_load_update_tick;
if (pending_updates) {
this_rq->last_load_update_tick = curr_jiffies;
/*
* In the regular NOHZ case, we were idle, this means load 0.
* In the NOHZ_FULL case, we were non-idle, we should consider
* its weighted load.
*/
cpu_load_update(this_rq, load, pending_updates);
}
}
/*
* Called from nohz_idle_balance() to update the load ratings before doing the
* idle balance.
*/
static void cpu_load_update_idle(struct rq *this_rq)
{
/*
* bail if there's load or we're actually up-to-date.
*/
if (weighted_cpuload(this_rq))
return;
cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
}
/*
* Record CPU load on nohz entry so we know the tickless load to account
* on nohz exit. cpu_load[0] happens then to be updated more frequently
* than other cpu_load[idx] but it should be fine as cpu_load readers
* shouldn't rely into synchronized cpu_load[*] updates.
*/
void cpu_load_update_nohz_start(void)
{
struct rq *this_rq = this_rq();
/*
* This is all lockless but should be fine. If weighted_cpuload changes
* concurrently we'll exit nohz. And cpu_load write can race with
* cpu_load_update_idle() but both updater would be writing the same.
*/
this_rq->cpu_load[0] = weighted_cpuload(this_rq);
}
/*
* Account the tickless load in the end of a nohz frame.
*/
void cpu_load_update_nohz_stop(void)
{
unsigned long curr_jiffies = READ_ONCE(jiffies);
struct rq *this_rq = this_rq();
unsigned long load;
struct rq_flags rf;
if (curr_jiffies == this_rq->last_load_update_tick)
return;
load = weighted_cpuload(this_rq);
rq_lock(this_rq, &rf);
update_rq_clock(this_rq);
cpu_load_update_nohz(this_rq, curr_jiffies, load);
rq_unlock(this_rq, &rf);
}
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
unsigned long curr_jiffies,
unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */
static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
#ifdef CONFIG_NO_HZ_COMMON
/* See the mess around cpu_load_update_nohz(). */
this_rq->last_load_update_tick = READ_ONCE(jiffies);
#endif
cpu_load_update(this_rq, load, 1);
}
/*
* Called from scheduler_tick()
*/
void cpu_load_update_active(struct rq *this_rq)
{
unsigned long load = weighted_cpuload(this_rq);
if (tick_nohz_tick_stopped())
cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
else
cpu_load_update_periodic(this_rq, load);
}
/*
* Return a low guess at the load of a migration-source cpu weighted
* according to the scheduling class and "nice" value.
*
* We want to under-estimate the load of migration sources, to
* balance conservatively.
*/
static unsigned long source_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(rq);
if (type == 0 || !sched_feat(LB_BIAS))
return total;
return min(rq->cpu_load[type-1], total);
}
/*
* Return a high guess at the load of a migration-target cpu weighted
* according to the scheduling class and "nice" value.
*/
static unsigned long target_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(rq);
if (type == 0 || !sched_feat(LB_BIAS))
return total;
return max(rq->cpu_load[type-1], total);
}
static unsigned long capacity_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity;
}
static unsigned long capacity_orig_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity_orig;
}
static unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
unsigned long load_avg = weighted_cpuload(rq);
if (nr_running)
return load_avg / nr_running;
return 0;
}
static void record_wakee(struct task_struct *p)
{
/*
* Only decay a single time; tasks that have less then 1 wakeup per
* jiffy will not have built up many flips.
*/
if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
current->wakee_flips >>= 1;
current->wakee_flip_decay_ts = jiffies;
}
if (current->last_wakee != p) {
current->last_wakee = p;
current->wakee_flips++;
}
}
/*
* Detect M:N waker/wakee relationships via a switching-frequency heuristic.
*
* A waker of many should wake a different task than the one last awakened
* at a frequency roughly N times higher than one of its wakees.
*
* In order to determine whether we should let the load spread vs consolidating
* to shared cache, we look for a minimum 'flip' frequency of llc_size in one
* partner, and a factor of lls_size higher frequency in the other.
*
* With both conditions met, we can be relatively sure that the relationship is
* non-monogamous, with partner count exceeding socket size.
*
* Waker/wakee being client/server, worker/dispatcher, interrupt source or
* whatever is irrelevant, spread criteria is apparent partner count exceeds
* socket size.
*/
static int wake_wide(struct task_struct *p)
{
unsigned int master = current->wakee_flips;
unsigned int slave = p->wakee_flips;
int factor = this_cpu_read(sd_llc_size);
if (master < slave)
swap(master, slave);
if (slave < factor || master < slave * factor)
return 0;
return 1;
}
/*
* The purpose of wake_affine() is to quickly determine on which CPU we can run
* soonest. For the purpose of speed we only consider the waking and previous
* CPU.
*
* wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
* will be) idle.
*
* wake_affine_weight() - considers the weight to reflect the average
* scheduling latency of the CPUs. This seems to work
* for the overloaded case.
*/
static bool
wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int prev_cpu, int sync)
{
if (idle_cpu(this_cpu))
return true;
if (sync && cpu_rq(this_cpu)->nr_running == 1)
return true;
return false;
}
static bool
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int prev_cpu, int sync)
{
s64 this_eff_load, prev_eff_load;
unsigned long task_load;
this_eff_load = target_load(this_cpu, sd->wake_idx);
prev_eff_load = source_load(prev_cpu, sd->wake_idx);
if (sync) {
unsigned long current_load = task_h_load(current);
if (current_load > this_eff_load)
return true;
this_eff_load -= current_load;
}
task_load = task_h_load(p);
this_eff_load += task_load;
if (sched_feat(WA_BIAS))
this_eff_load *= 100;
this_eff_load *= capacity_of(prev_cpu);
prev_eff_load -= task_load;
if (sched_feat(WA_BIAS))
prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
prev_eff_load *= capacity_of(this_cpu);
return this_eff_load <= prev_eff_load;
}
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
int prev_cpu, int sync)
{
int this_cpu = smp_processor_id();
bool affine = false;
if (sched_feat(WA_IDLE) && !affine)
affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
if (sched_feat(WA_WEIGHT) && !affine)
affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
if (affine) {
schedstat_inc(sd->ttwu_move_affine);
schedstat_inc(p->se.statistics.nr_wakeups_affine);
}
return affine;
}
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);
static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
*/
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
struct sched_group *most_spare_sg = NULL;
unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
unsigned long most_spare = 0, this_spare = 0;
int load_idx = sd->forkexec_idx;
int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
(sd->imbalance_pct-100) / 100;
if (sd_flag & SD_BALANCE_WAKE)
load_idx = sd->wake_idx;
do {
unsigned long load, avg_load, runnable_load;
unsigned long spare_cap, max_spare_cap;
int local_group;
int i;
/* Skip over this group if it has no CPUs allowed */
if (!cpumask_intersects(sched_group_span(group),
&p->cpus_allowed))
continue;
local_group = cpumask_test_cpu(this_cpu,
sched_group_span(group));
/*
* Tally up the load of all CPUs in the group and find
* the group containing the CPU with most spare capacity.
*/
avg_load = 0;
runnable_load = 0;
max_spare_cap = 0;
for_each_cpu(i, sched_group_span(group)) {
/* Bias balancing toward cpus of our domain */
if (local_group)
load = source_load(i, load_idx);
else
load = target_load(i, load_idx);
runnable_load += load;
avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
spare_cap = capacity_spare_wake(i, p);
if (spare_cap > max_spare_cap)
max_spare_cap = spare_cap;
}
/* Adjust by relative CPU capacity of the group */
avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
group->sgc->capacity;
runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
group->sgc->capacity;
if (local_group) {
this_runnable_load = runnable_load;
this_avg_load = avg_load;
this_spare = max_spare_cap;
} else {
if (min_runnable_load > (runnable_load + imbalance)) {
/*
* The runnable load is significantly smaller
* so we can pick this new cpu
*/
min_runnable_load = runnable_load;
min_avg_load = avg_load;
idlest = group;
} else if ((runnable_load < (min_runnable_load + imbalance)) &&
(100*min_avg_load > imbalance_scale*avg_load)) {
/*
* The runnable loads are close so take the
* blocked load into account through avg_load.
*/
min_avg_load = avg_load;
idlest = group;
}
if (most_spare < max_spare_cap) {
most_spare = max_spare_cap;
most_spare_sg = group;
}
}
} while (group = group->next, group != sd->groups);
/*
* The cross-over point between using spare capacity or least load
* is too conservative for high utilization tasks on partially
* utilized systems if we require spare_capacity > task_util(p),
* so we allow for some task stuffing by using
* spare_capacity > task_util(p)/2.
*
* Spare capacity can't be used for fork because the utilization has
* not been set yet, we must first select a rq to compute the initial
* utilization.
*/
if (sd_flag & SD_BALANCE_FORK)
goto skip_spare;
if (this_spare > task_util(p) / 2 &&
imbalance_scale*this_spare > 100*most_spare)
return NULL;
if (most_spare > task_util(p) / 2)
return most_spare_sg;
skip_spare:
if (!idlest)
return NULL;
if (min_runnable_load > (this_runnable_load + imbalance))
return NULL;
if ((this_runnable_load < (min_runnable_load + imbalance)) &&
(100*this_avg_load < imbalance_scale*min_avg_load))
return NULL;
return idlest;
}
/*
* find_idlest_cpu - find the idlest cpu among the cpus in group.
*/
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
unsigned long load, min_load = ULONG_MAX;
unsigned int min_exit_latency = UINT_MAX;
u64 latest_idle_timestamp = 0;
int least_loaded_cpu = this_cpu;
int shallowest_idle_cpu = -1;
int i;
/* Check if we have any choice: */
if (group->group_weight == 1)
return cpumask_first(sched_group_span(group));
/* Traverse only the allowed CPUs */
for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
if (idle_cpu(i)) {
struct rq *rq = cpu_rq(i);
struct cpuidle_state *idle = idle_get_state(rq);
if (idle && idle->exit_latency < min_exit_latency) {
/*
* We give priority to a CPU whose idle state
* has the smallest exit latency irrespective
* of any idle timestamp.
*/
min_exit_latency = idle->exit_latency;
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
} else if ((!idle || idle->exit_latency == min_exit_latency) &&
rq->idle_stamp > latest_idle_timestamp) {
/*
* If equal or no active idle state, then
* the most recently idled CPU might have
* a warmer cache.
*/
latest_idle_timestamp = rq->idle_stamp;
shallowest_idle_cpu = i;
}
} else if (shallowest_idle_cpu == -1) {
load = weighted_cpuload(cpu_rq(i));
if (load < min_load || (load == min_load && i == this_cpu)) {
min_load = load;
least_loaded_cpu = i;
}
}
}
return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}
#ifdef CONFIG_SCHED_SMT
static inline void set_idle_cores(int cpu, int val)
{
struct sched_domain_shared *sds;
sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
if (sds)
WRITE_ONCE(sds->has_idle_cores, val);
}
static inline bool test_idle_cores(int cpu, bool def)
{
struct sched_domain_shared *sds;
sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
if (sds)
return READ_ONCE(sds->has_idle_cores);
return def;
}
/*
* Scans the local SMT mask to see if the entire core is idle, and records this
* information in sd_llc_shared->has_idle_cores.
*
* Since SMT siblings share all cache levels, inspecting this limited remote
* state should be fairly cheap.
*/
void __update_idle_core(struct rq *rq)
{
int core = cpu_of(rq);
int cpu;
rcu_read_lock();
if (test_idle_cores(core, true))
goto unlock;
for_each_cpu(cpu, cpu_smt_mask(core)) {
if (cpu == core)
continue;
if (!idle_cpu(cpu))
goto unlock;
}
set_idle_cores(core, 1);
unlock:
rcu_read_unlock();
}
/*
* Scan the entire LLC domain for idle cores; this dynamically switches off if
* there are no idle cores left in the system; tracked through
* sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
*/
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
int core, cpu;
if (!static_branch_likely(&sched_smt_present))
return -1;
if (!test_idle_cores(target, false))
return -1;
cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
for_each_cpu_wrap(core, cpus, target) {
bool idle = true;
for_each_cpu(cpu, cpu_smt_mask(core)) {
cpumask_clear_cpu(cpu, cpus);
if (!idle_cpu(cpu))
idle = false;
}
if (idle)
return core;
}
/*
* Failed to find an idle core; stop looking for one.
*/
set_idle_cores(target, 0);
return -1;
}
/*
* Scan the local SMT mask for idle CPUs.
*/
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
int cpu;
if (!static_branch_likely(&sched_smt_present))
return -1;
for_each_cpu(cpu, cpu_smt_mask(target)) {
if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
continue;
if (idle_cpu(cpu))
return cpu;
}
return -1;
}
#else /* CONFIG_SCHED_SMT */
static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
return -1;
}
static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
return -1;
}
#endif /* CONFIG_SCHED_SMT */
/*
* Scan the LLC domain for idle CPUs; this is dynamically regulated by
* comparing the average scan cost (tracked in sd->avg_scan_cost) against the
* average idle time for this rq (as found in rq->avg_idle).
*/
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
struct sched_domain *this_sd;
u64 avg_cost, avg_idle;
u64 time, cost;
s64 delta;
int cpu, nr = INT_MAX;
this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
if (!this_sd)
return -1;
/*
* Due to large variance we need a large fuzz factor; hackbench in
* particularly is sensitive here.
*/
avg_idle = this_rq()->avg_idle / 512;
avg_cost = this_sd->avg_scan_cost + 1;
if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
return -1;
if (sched_feat(SIS_PROP)) {
u64 span_avg = sd->span_weight * avg_idle;
if (span_avg > 4*avg_cost)
nr = div_u64(span_avg, avg_cost);
else
nr = 4;
}
time = local_clock();
for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
if (!--nr)
return -1;
if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
continue;
if (idle_cpu(cpu))
break;
}
time = local_clock() - time;
cost = this_sd->avg_scan_cost;
delta = (s64)(time - cost) / 8;
this_sd->avg_scan_cost += delta;
return cpu;
}
/*
* Try and locate an idle core/thread in the LLC cache domain.
*/
static int select_idle_sibling(struct task_struct *p, int prev, int target)
{
struct sched_domain *sd;
int i;
if (idle_cpu(target))
return target;
/*
* If the previous cpu is cache affine and idle, don't be stupid.
*/
if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
return prev;
sd = rcu_dereference(per_cpu(sd_llc, target));
if (!sd)
return target;
i = select_idle_core(p, sd, target);
if ((unsigned)i < nr_cpumask_bits)
return i;
i = select_idle_cpu(p, sd, target);
if ((unsigned)i < nr_cpumask_bits)
return i;
i = select_idle_smt(p, sd, target);
if ((unsigned)i < nr_cpumask_bits)
return i;
return target;
}
/*
* cpu_util returns the amount of capacity of a CPU that is used by CFS
* tasks. The unit of the return value must be the one of capacity so we can
* compare the utilization with the capacity of the CPU that is available for
* CFS task (ie cpu_capacity).
*
* cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
* recent utilization of currently non-runnable tasks on a CPU. It represents
* the amount of utilization of a CPU in the range [0..capacity_orig] where
* capacity_orig is the cpu_capacity available at the highest frequency
* (arch_scale_freq_capacity()).
* The utilization of a CPU converges towards a sum equal to or less than the
* current capacity (capacity_curr <= capacity_orig) of the CPU because it is
* the running time on this CPU scaled by capacity_curr.
*
* Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
* higher than capacity_orig because of unfortunate rounding in
* cfs.avg.util_avg or just after migrating tasks and new task wakeups until
* the average stabilizes with the new running time. We need to check that the
* utilization stays within the range of [0..capacity_orig] and cap it if
* necessary. Without utilization capping, a group could be seen as overloaded
* (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
* available capacity. We allow utilization to overshoot capacity_curr (but not
* capacity_orig) as it useful for predicting the capacity required after task
* migrations (scheduler-driven DVFS).
*/
static int cpu_util(int cpu)
{
unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
return (util >= capacity) ? capacity : util;
}
static inline int task_util(struct task_struct *p)
{
return p->se.avg.util_avg;
}
/*
* cpu_util_wake: Compute cpu utilization with any contributions from
* the waking task p removed.
*/
static int cpu_util_wake(int cpu, struct task_struct *p)
{
unsigned long util, capacity;
/* Task has no contribution or is new */
if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
return cpu_util(cpu);
capacity = capacity_orig_of(cpu);
util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
return (util >= capacity) ? capacity : util;
}
/*
* Disable WAKE_AFFINE in the case where task @p doesn't fit in the
* capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
*
* In that case WAKE_AFFINE doesn't make sense and we'll let
* BALANCE_WAKE sort things out.
*/
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
long min_cap, max_cap;
min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
/* Minimum capacity is close to max, no need to abort wake_affine */
if (max_cap - min_cap < max_cap >> 3)
return 0;
/* Bring task utilization in sync with prev_cpu */
sync_entity_load_avg(&p->se);
return min_cap * 1024 < task_util(p) * capacity_margin;
}
/*
* select_task_rq_fair: Select target runqueue for the waking task in domains
* that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
* SD_BALANCE_FORK, or SD_BALANCE_EXEC.
*
* Balances load by selecting the idlest cpu in the idlest group, or under
* certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
*
* Returns the target cpu number.
*
* preempt must be disabled.
*/
static int
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
{
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
int cpu = smp_processor_id();
int new_cpu = prev_cpu;
int want_affine = 0;
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE) {
record_wakee(p);
want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
&& cpumask_test_cpu(cpu, &p->cpus_allowed);
}
rcu_read_lock();
for_each_domain(cpu, tmp) {
if (!(tmp->flags & SD_LOAD_BALANCE))
break;
/*
* If both cpu and prev_cpu are part of this domain,
* cpu is a valid SD_WAKE_AFFINE target.
*/
if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
affine_sd = tmp;
break;
}
if (tmp->flags & sd_flag)
sd = tmp;
else if (!want_affine)
break;
}
if (affine_sd) {
sd = NULL; /* Prefer wake_affine over balance flags */
if (cpu == prev_cpu)
goto pick_cpu;
if (wake_affine(affine_sd, p, prev_cpu, sync))
new_cpu = cpu;
}
if (!sd) {
pick_cpu:
if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
} else while (sd) {
struct sched_group *group;
int weight;
if (!(sd->flags & sd_flag)) {
sd = sd->child;
continue;
}
group = find_idlest_group(sd, p, cpu, sd_flag);
if (!group) {
sd = sd->child;
continue;
}
new_cpu = find_idlest_cpu(group, p, cpu);
if (new_cpu == -1 || new_cpu == cpu) {
/* Now try balancing at a lower domain level of cpu */
sd = sd->child;
continue;
}
/* Now try balancing at a lower domain level of new_cpu */
cpu = new_cpu;
weight = sd->span_weight;
sd = NULL;
for_each_domain(cpu, tmp) {
if (weight <= tmp->span_weight)
break;
if (tmp->flags & sd_flag)
sd = tmp;
}
/* while loop will break here if sd == NULL */
}
rcu_read_unlock();
return new_cpu;
}
/*
* Called immediately before a task is migrated to a new cpu; task_cpu(p) and
* cfs_rq_of(p) references at time of call are still valid and identify the
* previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
*/
static void migrate_task_rq_fair(struct task_struct *p)
{
/*
* As blocked tasks retain absolute vruntime the migration needs to
* deal with this by subtracting the old and adding the new
* min_vruntime -- the latter is done by enqueue_entity() when placing
* the task on the new runqueue.
*/
if (p->state == TASK_WAKING) {
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 min_vruntime;
#ifndef CONFIG_64BIT
u64 min_vruntime_copy;
do {
min_vruntime_copy = cfs_rq->min_vruntime_copy;
smp_rmb();
min_vruntime = cfs_rq->min_vruntime;
} while (min_vruntime != min_vruntime_copy);
#else
min_vruntime = cfs_rq->min_vruntime;
#endif
se->vruntime -= min_vruntime;
}
/*
* We are supposed to update the task to "current" time, then its up to date
* and ready to go to new CPU/cfs_rq. But we have difficulty in getting
* what current time is, so simply throw away the out-of-date time. This
* will result in the wakee task is less decayed, but giving the wakee more
* load sounds not bad.
*/
remove_entity_load_avg(&p->se);
/* Tell new CPU we are migrated */
p->se.avg.last_update_time = 0;
/* We have migrated, no longer consider this task hot */
p->se.exec_start = 0;
}
static void task_dead_fair(struct task_struct *p)
{
remove_entity_load_avg(&p->se);
}
#endif /* CONFIG_SMP */
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
{
unsigned long gran = sysctl_sched_wakeup_granularity;
/*
* Since its curr running now, convert the gran from real-time
* to virtual-time in his units.
*
* By using 'se' instead of 'curr' we penalize light tasks, so
* they get preempted easier. That is, if 'se' < 'curr' then
* the resulting gran will be larger, therefore penalizing the
* lighter, if otoh 'se' > 'curr' then the resulting gran will
* be smaller, again penalizing the lighter task.
*
* This is especially important for buddies when the leftmost
* task is higher priority than the buddy.
*/
return calc_delta_fair(gran, se);
}
/*
* Should 'se' preempt 'curr'.
*
* |s1
* |s2
* |s3
* g
* |<--->|c
*
* w(c, s1) = -1
* w(c, s2) = 0
* w(c, s3) = 1
*
*/
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
s64 gran, vdiff = curr->vruntime - se->vruntime;
if (vdiff <= 0)
return -1;
gran = wakeup_gran(curr, se);
if (vdiff > gran)
return 1;
return 0;
}
static void set_last_buddy(struct sched_entity *se)
{
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
return;
for_each_sched_entity(se) {
if (SCHED_WARN_ON(!se->on_rq))
return;
cfs_rq_of(se)->last = se;
}
}
static void set_next_buddy(struct sched_entity *se)
{
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
return;
for_each_sched_entity(se) {
if (SCHED_WARN_ON(!se->on_rq))
return;
cfs_rq_of(se)->next = se;
}
}
static void set_skip_buddy(struct sched_entity *se)
{
for_each_sched_entity(se)
cfs_rq_of(se)->skip = se;
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
{
struct task_struct *curr = rq->curr;
struct sched_entity *se = &curr->se, *pse = &p->se;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
int scale = cfs_rq->nr_running >= sched_nr_latency;
int next_buddy_marked = 0;
if (unlikely(se == pse))
return;
/*
* This is possible from callers such as attach_tasks(), in which we
* unconditionally check_prempt_curr() after an enqueue (which may have
* lead to a throttle). This both saves work and prevents false
* next-buddy nomination below.
*/
if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
return;
if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
set_next_buddy(pse);
next_buddy_marked = 1;
}
/*
* We can come here with TIF_NEED_RESCHED already set from new task
* wake up path.
*
* Note: this also catches the edge-case of curr being in a throttled
* group (e.g. via set_curr_task), since update_curr() (in the
* enqueue of curr) will have resulted in resched being set. This
* prevents us from potentially nominating it as a false LAST_BUDDY
* below.
*/
if (test_tsk_need_resched(curr))
return;
/* Idle tasks are by definition preempted by non-idle tasks. */
if (unlikely(curr->policy == SCHED_IDLE) &&
likely(p->policy != SCHED_IDLE))
goto preempt;
/*
* Batch and idle tasks do not preempt non-idle tasks (their preemption
* is driven by the tick):
*/
if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
return;
find_matching_se(&se, &pse);
update_curr(cfs_rq_of(se));
BUG_ON(!pse);
if (wakeup_preempt_entity(se, pse) == 1) {
/*
* Bias pick_next to pick the sched entity that is
* triggering this preemption.
*/
if (!next_buddy_marked)
set_next_buddy(pse);
goto preempt;
}
return;
preempt:
resched_curr(rq);
/*
* Only set the backward buddy when the current task is still
* on the rq. This can happen when a wakeup gets interleaved
* with schedule on the ->pre_schedule() or idle_balance()
* point, either of which can * drop the rq lock.
*
* Also, during early boot the idle thread is in the fair class,
* for obvious reasons its a bad idea to schedule back to it.
*/
if (unlikely(!se->on_rq || curr == rq->idle))
return;
if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
set_last_buddy(se);
}
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct cfs_rq *cfs_rq = &rq->cfs;
struct sched_entity *se;
struct task_struct *p;
int new_tasks;
again:
if (!cfs_rq->nr_running)
goto idle;
#ifdef CONFIG_FAIR_GROUP_SCHED
if (prev->sched_class != &fair_sched_class)
goto simple;
/*
* Because of the set_next_buddy() in dequeue_task_fair() it is rather
* likely that a next task is from the same cgroup as the current.
*
* Therefore attempt to avoid putting and setting the entire cgroup
* hierarchy, only change the part that actually changes.
*/
do {
struct sched_entity *curr = cfs_rq->curr;
/*
* Since we got here without doing put_prev_entity() we also
* have to consider cfs_rq->curr. If it is still a runnable
* entity, update_curr() will update its vruntime, otherwise
* forget we've ever seen it.
*/
if (curr) {
if (curr->on_rq)
update_curr(cfs_rq);
else
curr = NULL;
/*
* This call to check_cfs_rq_runtime() will do the
* throttle and dequeue its entity in the parent(s).
* Therefore the nr_running test will indeed
* be correct.
*/
if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
cfs_rq = &rq->cfs;
if (!cfs_rq->nr_running)
goto idle;
goto simple;
}
}
se = pick_next_entity(cfs_rq, curr);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
/*
* Since we haven't yet done put_prev_entity and if the selected task
* is a different task than we started out with, try and touch the
* least amount of cfs_rqs.
*/
if (prev != p) {
struct sched_entity *pse = &prev->se;
while (!(cfs_rq = is_same_group(se, pse))) {
int se_depth = se->depth;
int pse_depth = pse->depth;
if (se_depth <= pse_depth) {
put_prev_entity(cfs_rq_of(pse), pse);
pse = parent_entity(pse);
}
if (se_depth >= pse_depth) {
set_next_entity(cfs_rq_of(se), se);
se = parent_entity(se);
}
}
put_prev_entity(cfs_rq, pse);
set_next_entity(cfs_rq, se);
}
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
return p;
simple:
#endif
put_prev_task(rq, prev);
do {
se = pick_next_entity(cfs_rq, NULL);
set_next_entity(cfs_rq, se);
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
p = task_of(se);
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
return p;
idle:
new_tasks = idle_balance(rq, rf);
/*
* Because idle_balance() releases (and re-acquires) rq->lock, it is
* possible for any higher priority task to appear. In that case we
* must re-start the pick_next_entity() loop.
*/
if (new_tasks < 0)
return RETRY_TASK;
if (new_tasks > 0)
goto again;
return NULL;
}
/*
* Account for a descheduled task:
*/
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
{
struct sched_entity *se = &prev->se;
struct cfs_rq *cfs_rq;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
put_prev_entity(cfs_rq, se);
}
}
/*
* sched_yield() is very simple
*
* The magic of dealing with the ->skip buddy is in pick_next_entity.
*/
static void yield_task_fair(struct rq *rq)
{
struct task_struct *curr = rq->curr;
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
struct sched_entity *se = &curr->se;
/*
* Are we the only task in the tree?
*/
if (unlikely(rq->nr_running == 1))
return;
clear_buddies(cfs_rq, se);
if (curr->policy != SCHED_BATCH) {
update_rq_clock(rq);
/*
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
/*
* Tell update_rq_clock() that we've just updated,
* so we don't do microscopic update in schedule()
* and double the fastpath cost.
*/
rq_clock_skip_update(rq, true);
}
set_skip_buddy(se);
}
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
struct sched_entity *se = &p->se;
/* throttled hierarchies are not runnable */
if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
return false;
/* Tell the scheduler that we'd really like pse to run next. */
set_next_buddy(se);
yield_task_fair(rq);
return true;
}
#ifdef CONFIG_SMP
/**************************************************
* Fair scheduling class load-balancing methods.
*
* BASICS
*
* The purpose of load-balancing is to achieve the same basic fairness the
* per-cpu scheduler provides, namely provide a proportional amount of compute
* time to each task. This is expressed in the following equation:
*
* W_i,n/P_i == W_j,n/P_j for all i,j (1)
*
* Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
* W_i,0 is defined as:
*
* W_i,0 = \Sum_j w_i,j (2)
*
* Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
* is derived from the nice value as per sched_prio_to_weight[].
*
* The weight average is an exponential decay average of the instantaneous
* weight:
*
* W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
*
* C_i is the compute capacity of cpu i, typically it is the
* fraction of 'recent' time available for SCHED_OTHER task execution. But it
* can also include other factors [XXX].
*
* To achieve this balance we define a measure of imbalance which follows
* directly from (1):
*
* imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
*
* We them move tasks around to minimize the imbalance. In the continuous
* function space it is obvious this converges, in the discrete case we get
* a few fun cases generally called infeasible weight scenarios.
*
* [XXX expand on:
* - infeasible weights;
* - local vs global optima in the discrete case. ]
*
*
* SCHED DOMAINS
*
* In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
* for all i,j solution, we create a tree of cpus that follows the hardware
* topology where each level pairs two lower groups (or better). This results
* in O(log n) layers. Furthermore we reduce the number of cpus going up the
* tree to only the first of the previous level and we decrease the frequency
* of load-balance at each level inv. proportional to the number of cpus in
* the groups.
*
* This yields:
*
* log_2 n 1 n
* \Sum { --- * --- * 2^i } = O(n) (5)
* i = 0 2^i 2^i
* `- size of each group
* | | `- number of cpus doing load-balance
* | `- freq
* `- sum over all levels
*
* Coupled with a limit on how many tasks we can migrate every balance pass,
* this makes (5) the runtime complexity of the balancer.
*
* An important property here is that each CPU is still (indirectly) connected
* to every other cpu in at most O(log n) steps:
*
* The adjacency matrix of the resulting graph is given by:
*
* log_2 n
* A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
* k = 0
*
* And you'll find that:
*
* A^(log_2 n)_i,j != 0 for all i,j (7)
*
* Showing there's indeed a path between every cpu in at most O(log n) steps.
* The task movement gives a factor of O(m), giving a convergence complexity
* of:
*
* O(nm log n), n := nr_cpus, m := nr_tasks (8)
*
*
* WORK CONSERVING
*
* In order to avoid CPUs going idle while there's still work to do, new idle
* balancing is more aggressive and has the newly idle cpu iterate up the domain
* tree itself instead of relying on other CPUs to bring it work.
*
* This adds some complexity to both (5) and (8) but it reduces the total idle
* time.
*
* [XXX more?]
*
*
* CGROUPS
*
* Cgroups make a horror show out of (2), instead of a simple sum we get:
*
* s_k,i
* W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
* S_k
*
* Where
*
* s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
*
* w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
*
* The big problem is S_k, its a global sum needed to compute a local (W_i)
* property.
*
* [XXX write more on how we solve this.. _after_ merging pjt's patches that
* rewrite all of this once again.]
*/
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
enum fbq_type { regular, remote, all };
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02
#define LBF_DST_PINNED 0x04
#define LBF_SOME_PINNED 0x08
struct lb_env {
struct sched_domain *sd;
struct rq *src_rq;
int src_cpu;
int dst_cpu;
struct rq *dst_rq;
struct cpumask *dst_grpmask;
int new_dst_cpu;
enum cpu_idle_type idle;
long imbalance;
/* The set of CPUs under consideration for load-balancing */
struct cpumask *cpus;
unsigned int flags;
unsigned int loop;
unsigned int loop_break;
unsigned int loop_max;
enum fbq_type fbq_type;
struct list_head tasks;
};
/*
* Is this task likely cache-hot:
*/
static int task_hot(struct task_struct *p, struct lb_env *env)
{
s64 delta;
lockdep_assert_held(&env->src_rq->lock);
if (p->sched_class != &fair_sched_class)
return 0;
if (unlikely(p->policy == SCHED_IDLE))
return 0;
/*
* Buddy candidates are cache hot:
*/
if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
(&p->se == cfs_rq_of(&p->se)->next ||
&p->se == cfs_rq_of(&p->se)->last))
return 1;
if (sysctl_sched_migration_cost == -1)
return 1;
if (sysctl_sched_migration_cost == 0)
return 0;
delta = rq_clock_task(env->src_rq) - p->se.exec_start;
return delta < (s64)sysctl_sched_migration_cost;
}
#ifdef CONFIG_NUMA_BALANCING
/*
* Returns 1, if task migration degrades locality
* Returns 0, if task migration improves locality i.e migration preferred.
* Returns -1, if task migration is not affected by locality.
*/
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
struct numa_group *numa_group = rcu_dereference(p->numa_group);
unsigned long src_faults, dst_faults;
int src_nid, dst_nid;
if (!static_branch_likely(&sched_numa_balancing))
return -1;
if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
return -1;
src_nid = cpu_to_node(env->src_cpu);
dst_nid = cpu_to_node(env->dst_cpu);
if (src_nid == dst_nid)
return -1;
/* Migrating away from the preferred node is always bad. */
if (src_nid == p->numa_preferred_nid) {
if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
return 1;
else
return -1;
}
/* Encourage migration to the preferred node. */
if (dst_nid == p->numa_preferred_nid)
return 0;
/* Leaving a core idle is often worse than degrading locality. */
if (env->idle != CPU_NOT_IDLE)
return -1;
if (numa_group) {
src_faults = group_faults(p, src_nid);
dst_faults = group_faults(p, dst_nid);
} else {
src_faults = task_faults(p, src_nid);
dst_faults = task_faults(p, dst_nid);
}
return dst_faults < src_faults;
}
#else
static inline int migrate_degrades_locality(struct task_struct *p,
struct lb_env *env)
{
return -1;
}
#endif
/*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
*/
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
int tsk_cache_hot;
lockdep_assert_held(&env->src_rq->lock);
/*
* We do not migrate tasks that are:
* 1) throttled_lb_pair, or
* 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) running (obviously), or
* 4) are cache-hot on their current CPU.
*/
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
return 0;
if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
int cpu;
schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
env->flags |= LBF_SOME_PINNED;
/*
* Remember if this task can be migrated to any other cpu in
* our sched_group. We may want to revisit it if we couldn't
* meet load balance goals by pulling other tasks on src_cpu.
*
* Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
* already computed one in current iteration.
*/
if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
return 0;
/* Prevent to re-select dst_cpu via env's cpus */
for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
env->flags |= LBF_DST_PINNED;
env->new_dst_cpu = cpu;
break;
}
}
return 0;
}
/* Record that we found atleast one task that could run on dst_cpu */
env->flags &= ~LBF_ALL_PINNED;
if (task_running(env->src_rq, p)) {
schedstat_inc(p->se.statistics.nr_failed_migrations_running);
return 0;
}
/*
* Aggressive migration if:
* 1) destination numa is preferred
* 2) task is cache cold, or
* 3) too many balance attempts have failed.
*/
tsk_cache_hot = migrate_degrades_locality(p, env);
if (tsk_cache_hot == -1)
tsk_cache_hot = task_hot(p, env);
if (tsk_cache_hot <= 0 ||
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
if (tsk_cache_hot == 1) {
schedstat_inc(env->sd->lb_hot_gained[env->idle]);
schedstat_inc(p->se.statistics.nr_forced_migrations);
}
return 1;
}
schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
return 0;
}
/*
* detach_task() -- detach the task for the migration specified in env
*/
static void detach_task(struct task_struct *p, struct lb_env *env)
{
lockdep_assert_held(&env->src_rq->lock);
p->on_rq = TASK_ON_RQ_MIGRATING;
deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
set_task_cpu(p, env->dst_cpu);
}
/*
* detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
* part of active balancing operations within "domain".
*
* Returns a task if successful and NULL otherwise.
*/
static struct task_struct *detach_one_task(struct lb_env *env)
{
struct task_struct *p, *n;
lockdep_assert_held(&env->src_rq->lock);
list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
if (!can_migrate_task(p, env))
continue;
detach_task(p, env);
/*
* Right now, this is only the second place where
* lb_gained[env->idle] is updated (other is detach_tasks)
* so we can safely collect stats here rather than
* inside detach_tasks().
*/
schedstat_inc(env->sd->lb_gained[env->idle]);
return p;
}
return NULL;
}
static const unsigned int sched_nr_migrate_break = 32;
/*
* detach_tasks() -- tries to detach up to imbalance weighted load from
* busiest_rq, as part of a balancing operation within domain "sd".
*
* Returns number of detached tasks if successful and 0 otherwise.
*/
static int detach_tasks(struct lb_env *env)
{
struct list_head *tasks = &env->src_rq->cfs_tasks;
struct task_struct *p;
unsigned long load;
int detached = 0;
lockdep_assert_held(&env->src_rq->lock);
if (env->imbalance <= 0)
return 0;
while (!list_empty(tasks)) {
/*
* We don't want to steal all, otherwise we may be treated likewise,
* which could at worst lead to a livelock crash.
*/
if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
break;
p = list_first_entry(tasks, struct task_struct, se.group_node);
env->loop++;
/* We've more or less seen every task there is, call it quits */
if (env->loop > env->loop_max)
break;
/* take a breather every nr_migrate tasks */
if (env->loop > env->loop_break) {
env->loop_break += sched_nr_migrate_break;
env->flags |= LBF_NEED_BREAK;
break;
}
if (!can_migrate_task(p, env))
goto next;
load = task_h_load(p);
if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
goto next;
if ((load / 2) > env->imbalance)
goto next;
detach_task(p, env);
list_add(&p->se.group_node, &env->tasks);
detached++;
env->imbalance -= load;
#ifdef CONFIG_PREEMPT
/*
* NEWIDLE balancing is a source of latency, so preemptible
* kernels will stop after the first task is detached to minimize
* the critical section.
*/
if (env->idle == CPU_NEWLY_IDLE)
break;
#endif
/*
* We only want to steal up to the prescribed amount of
* weighted load.
*/
if (env->imbalance <= 0)
break;
continue;
next:
list_move_tail(&p->se.group_node, tasks);
}
/*
* Right now, this is one of only two places we collect this stat
* so we can safely collect detach_one_task() stats here rather
* than inside detach_one_task().
*/
schedstat_add(env->sd->lb_gained[env->idle], detached);
return detached;
}
/*
* attach_task() -- attach the task detached by detach_task() to its new rq.
*/
static void attach_task(struct rq *rq, struct task_struct *p)
{
lockdep_assert_held(&rq->lock);
BUG_ON(task_rq(p) != rq);
activate_task(rq, p, ENQUEUE_NOCLOCK);
p->on_rq = TASK_ON_RQ_QUEUED;
check_preempt_curr(rq, p, 0);
}
/*
* attach_one_task() -- attaches the task returned from detach_one_task() to
* its new rq.
*/
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
struct rq_flags rf;
rq_lock(rq, &rf);
update_rq_clock(rq);
attach_task(rq, p);
rq_unlock(rq, &rf);
}
/*
* attach_tasks() -- attaches all tasks detached by detach_tasks() to their
* new rq.
*/
static void attach_tasks(struct lb_env *env)
{
struct list_head *tasks = &env->tasks;
struct task_struct *p;
struct rq_flags rf;
rq_lock(env->dst_rq, &rf);
update_rq_clock(env->dst_rq);
while (!list_empty(tasks)) {
p = list_first_entry(tasks, struct task_struct, se.group_node);
list_del_init(&p->se.group_node);
attach_task(env->dst_rq, p);
}
rq_unlock(env->dst_rq, &rf);
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
if (cfs_rq->load.weight)
return false;
if (cfs_rq->avg.load_sum)
return false;
if (cfs_rq->avg.util_sum)
return false;
if (cfs_rq->runnable_load_sum)
return false;
return true;
}
static void update_blocked_averages(int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct cfs_rq *cfs_rq, *pos;
struct rq_flags rf;
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
/*
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
struct sched_entity *se;
/* throttled entities do not contribute to load */
if (throttled_hierarchy(cfs_rq))
continue;
if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
update_tg_load_avg(cfs_rq, 0);
/* Propagate pending load changes to the parent, if any: */
se = cfs_rq->tg->se[cpu];
if (se && !skip_blocked_update(se))
update_load_avg(se, 0);
/*
* There can be a lot of idle CPU cgroups. Don't let fully
* decayed cfs_rqs linger on the list.
*/
if (cfs_rq_is_decayed(cfs_rq))
list_del_leaf_cfs_rq(cfs_rq);
}
rq_unlock_irqrestore(rq, &rf);
}
/*
* Compute the hierarchical load factor for cfs_rq and all its ascendants.
* This needs to be done in a top-down fashion because the load of a child
* group is a fraction of its parents load.
*/
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
{
struct rq *rq = rq_of(cfs_rq);
struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
unsigned long now = jiffies;
unsigned long load;
if (cfs_rq->last_h_load_update == now)
return;
cfs_rq->h_load_next = NULL;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
cfs_rq->h_load_next = se;
if (cfs_rq->last_h_load_update == now)
break;
}
if (!se) {
cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
cfs_rq->last_h_load_update = now;
}
while ((se = cfs_rq->h_load_next) != NULL) {
load = cfs_rq->h_load;
load = div64_ul(load * se->avg.load_avg,
cfs_rq_load_avg(cfs_rq) + 1);
cfs_rq = group_cfs_rq(se);
cfs_rq->h_load = load;
cfs_rq->last_h_load_update = now;
}
}
static unsigned long task_h_load(struct task_struct *p)
{
struct cfs_rq *cfs_rq = task_cfs_rq(p);
update_cfs_rq_h_load(cfs_rq);
return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
cfs_rq_load_avg(cfs_rq) + 1);
}
#else
static inline void update_blocked_averages(int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct cfs_rq *cfs_rq = &rq->cfs;
struct rq_flags rf;
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
rq_unlock_irqrestore(rq, &rf);
}
static unsigned long task_h_load(struct task_struct *p)
{
return p->se.avg.load_avg;
}
#endif
/********** Helpers for find_busiest_group ************************/
enum group_type {
group_other = 0,
group_imbalanced,
group_overloaded,
};
/*
* sg_lb_stats - stats of a sched_group required for load_balancing
*/
struct sg_lb_stats {
unsigned long avg_load; /*Avg load across the CPUs of the group */
unsigned long group_load; /* Total load over the CPUs of the group */
unsigned long sum_weighted_load; /* Weighted load of group's tasks */
unsigned long load_per_task;
unsigned long group_capacity;
unsigned long group_util; /* Total utilization of the group */
unsigned int sum_nr_running; /* Nr tasks running in the group */
unsigned int idle_cpus;
unsigned int group_weight;
enum group_type group_type;
int group_no_capacity;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
#endif
};
/*
* sd_lb_stats - Structure to store the statistics of a sched_domain
* during load balancing.
*/
struct sd_lb_stats {
struct sched_group *busiest; /* Busiest group in this sd */
struct sched_group *local; /* Local group in this sd */
unsigned long total_running;
unsigned long total_load; /* Total load of all groups in sd */
unsigned long total_capacity; /* Total capacity of all groups in sd */
unsigned long avg_load; /* Average load across all groups in sd */
struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
struct sg_lb_stats local_stat; /* Statistics of the local group */
};
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
/*
* Skimp on the clearing to avoid duplicate work. We can avoid clearing
* local_stat because update_sg_lb_stats() does a full clear/assignment.
* We must however clear busiest_stat::avg_load because
* update_sd_pick_busiest() reads this before assignment.
*/
*sds = (struct sd_lb_stats){
.busiest = NULL,
.local = NULL,
.total_running = 0UL,
.total_load = 0UL,
.total_capacity = 0UL,
.busiest_stat = {
.avg_load = 0UL,
.sum_nr_running = 0,
.group_type = group_other,
},
};
}
/**
* get_sd_load_idx - Obtain the load index for a given sched domain.
* @sd: The sched_domain whose load_idx is to be obtained.
* @idle: The idle status of the CPU for whose sd load_idx is obtained.
*
* Return: The load index.
*/
static inline int get_sd_load_idx(struct sched_domain *sd,
enum cpu_idle_type idle)
{
int load_idx;
switch (idle) {
case CPU_NOT_IDLE:
load_idx = sd->busy_idx;
break;
case CPU_NEWLY_IDLE:
load_idx = sd->newidle_idx;
break;
default:
load_idx = sd->idle_idx;
break;
}
return load_idx;
}
static unsigned long scale_rt_capacity(int cpu)
{
struct rq *rq = cpu_rq(cpu);
u64 total, used, age_stamp, avg;
s64 delta;
/*
* Since we're reading these variables without serialization make sure
* we read them once before doing sanity checks on them.
*/
age_stamp = READ_ONCE(rq->age_stamp);
avg = READ_ONCE(rq->rt_avg);
delta = __rq_clock_broken(rq) - age_stamp;
if (unlikely(delta < 0))
delta = 0;
total = sched_avg_period() + delta;
used = div_u64(avg, total);
if (likely(used < SCHED_CAPACITY_SCALE))
return SCHED_CAPACITY_SCALE - used;
return 1;
}
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
struct sched_group *sdg = sd->groups;
cpu_rq(cpu)->cpu_capacity_orig = capacity;
capacity *= scale_rt_capacity(cpu);
capacity >>= SCHED_CAPACITY_SHIFT;
if (!capacity)
capacity = 1;
cpu_rq(cpu)->cpu_capacity = capacity;
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = capacity;
}
void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
unsigned long capacity, min_capacity;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
sdg->sgc->next_update = jiffies + interval;
if (!child) {
update_cpu_capacity(sd, cpu);
return;
}
capacity = 0;
min_capacity = ULONG_MAX;
if (child->flags & SD_OVERLAP) {
/*
* SD_OVERLAP domains cannot assume that child groups
* span the current group.
*/
for_each_cpu(cpu, sched_group_span(sdg)) {
struct sched_group_capacity *sgc;
struct rq *rq = cpu_rq(cpu);
/*
* build_sched_domains() -> init_sched_groups_capacity()
* gets here before we've attached the domains to the
* runqueues.
*
* Use capacity_of(), which is set irrespective of domains
* in update_cpu_capacity().
*
* This avoids capacity from being 0 and
* causing divide-by-zero issues on boot.
*/
if (unlikely(!rq->sd)) {
capacity += capacity_of(cpu);
} else {
sgc = rq->sd->groups->sgc;
capacity += sgc->capacity;
}
min_capacity = min(capacity, min_capacity);
}
} else {
/*
* !SD_OVERLAP domains can assume that child groups
* span the current group.
*/
group = child->groups;
do {
struct sched_group_capacity *sgc = group->sgc;
capacity += sgc->capacity;
min_capacity = min(sgc->min_capacity, min_capacity);
group = group->next;
} while (group != child->groups);
}
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = min_capacity;
}
/*
* Check whether the capacity of the rq has been noticeably reduced by side
* activity. The imbalance_pct is used for the threshold.
* Return true is the capacity is reduced
*/
static inline int
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
{
return ((rq->cpu_capacity * sd->imbalance_pct) <
(rq->cpu_capacity_orig * 100));
}
/*
* Group imbalance indicates (and tries to solve) the problem where balancing
* groups is inadequate due to ->cpus_allowed constraints.
*
* Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
* cpumask covering 1 cpu of the first group and 3 cpus of the second group.
* Something like:
*
* { 0 1 2 3 } { 4 5 6 7 }
* * * * *
*
* If we were to balance group-wise we'd place two tasks in the first group and
* two tasks in the second group. Clearly this is undesired as it will overload
* cpu 3 and leave one of the cpus in the second group unused.
*
* The current solution to this issue is detecting the skew in the first group
* by noticing the lower domain failed to reach balance and had difficulty
* moving tasks due to affinity constraints.
*
* When this is so detected; this group becomes a candidate for busiest; see
* update_sd_pick_busiest(). And calculate_imbalance() and
* find_busiest_group() avoid some of the usual balance conditions to allow it
* to create an effective group imbalance.
*
* This is a somewhat tricky proposition since the next run might not find the
* group imbalance and decide the groups need to be balanced again. A most
* subtle and fragile situation.
*/
static inline int sg_imbalanced(struct sched_group *group)
{
return group->sgc->imbalance;
}
/*
* group_has_capacity returns true if the group has spare capacity that could
* be used by some tasks.
* We consider that a group has spare capacity if the * number of task is
* smaller than the number of CPUs or if the utilization is lower than the
* available capacity for CFS tasks.
* For the latter, we use a threshold to stabilize the state, to take into
* account the variance of the tasks' load and to return true if the available
* capacity in meaningful for the load balancer.
* As an example, an available capacity of 1% can appear but it doesn't make
* any benefit for the load balance.
*/
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running < sgs->group_weight)
return true;
if ((sgs->group_capacity * 100) >
(sgs->group_util * env->sd->imbalance_pct))
return true;
return false;
}
/*
* group_is_overloaded returns true if the group has more tasks than it can
* handle.
* group_is_overloaded is not equals to !group_has_capacity because a group
* with the exact right number of tasks, has no more spare capacity but is not
* overloaded so both group_has_capacity and group_is_overloaded return
* false.
*/
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running <= sgs->group_weight)
return false;
if ((sgs->group_capacity * 100) <
(sgs->group_util * env->sd->imbalance_pct))
return true;
return false;
}
/*
* group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
* per-CPU capacity than sched_group ref.
*/
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
return sg->sgc->min_capacity * capacity_margin <
ref->sgc->min_capacity * 1024;
}
static inline enum
group_type group_classify(struct sched_group *group,
struct sg_lb_stats *sgs)
{
if (sgs->group_no_capacity)
return group_overloaded;
if (sg_imbalanced(group))
return group_imbalanced;
return group_other;
}
/**
* update_sg_lb_stats - Update sched_group's statistics for load balancing.
* @env: The load balancing environment.
* @group: sched_group whose statistics are to be updated.
* @load_idx: Load index of sched_domain of this_cpu for load calc.
* @local_group: Does group contain this_cpu.
* @sgs: variable to hold the statistics for this group.
* @overload: Indicate more than one runnable task for any CPU.
*/
static inline void update_sg_lb_stats(struct lb_env *env,
struct sched_group *group, int load_idx,
int local_group, struct sg_lb_stats *sgs,
bool *overload)
{
unsigned long load;
int i, nr_running;
memset(sgs, 0, sizeof(*sgs));
for_each_cpu_and(i, sched_group_span(group), env->cpus) {
struct rq *rq = cpu_rq(i);
/* Bias balancing toward cpus of our domain */
if (local_group)
load = target_load(i, load_idx);
else
load = source_load(i, load_idx);
sgs->group_load += load;
sgs->group_util += cpu_util(i);
sgs->sum_nr_running += rq->cfs.h_nr_running;
nr_running = rq->nr_running;
if (nr_running > 1)
*overload = true;
#ifdef CONFIG_NUMA_BALANCING
sgs->nr_numa_running += rq->nr_numa_running;
sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
sgs->sum_weighted_load += weighted_cpuload(rq);
/*
* No need to call idle_cpu() if nr_running is not 0
*/
if (!nr_running && idle_cpu(i))
sgs->idle_cpus++;
}
/* Adjust by relative CPU capacity of the group */
sgs->group_capacity = group->sgc->capacity;
sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
if (sgs->sum_nr_running)
sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
sgs->group_weight = group->group_weight;
sgs->group_no_capacity = group_is_overloaded(env, sgs);
sgs->group_type = group_classify(group, sgs);
}
/**
* update_sd_pick_busiest - return 1 on busiest group
* @env: The load balancing environment.
* @sds: sched_domain statistics
* @sg: sched_group candidate to be checked for being the busiest
* @sgs: sched_group statistics
*
* Determine if @sg is a busier group than the previously selected
* busiest group.
*
* Return: %true if @sg is a busier group than the previously selected
* busiest group. %false otherwise.
*/
static bool update_sd_pick_busiest(struct lb_env *env,
struct sd_lb_stats *sds,
struct sched_group *sg,
struct sg_lb_stats *sgs)
{
struct sg_lb_stats *busiest = &sds->busiest_stat;
if (sgs->group_type > busiest->group_type)
return true;
if (sgs->group_type < busiest->group_type)
return false;
if (sgs->avg_load <= busiest->avg_load)
return false;
if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
goto asym_packing;
/*
* Candidate sg has no more than one task per CPU and
* has higher per-CPU capacity. Migrating tasks to less
* capable CPUs may harm throughput. Maximize throughput,
* power/energy consequences are not considered.
*/
if (sgs->sum_nr_running <= sgs->group_weight &&
group_smaller_cpu_capacity(sds->local, sg))
return false;
asym_packing:
/* This is the busiest node in its class. */
if (!(env->sd->flags & SD_ASYM_PACKING))
return true;
/* No ASYM_PACKING if target cpu is already busy */
if (env->idle == CPU_NOT_IDLE)
return true;
/*
* ASYM_PACKING needs to move all the work to the highest
* prority CPUs in the group, therefore mark all groups
* of lower priority than ourself as busy.
*/
if (sgs->sum_nr_running &&
sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
if (!sds->busiest)
return true;
/* Prefer to move from lowest priority cpu's work */
if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
sg->asym_prefer_cpu))
return true;
}
return false;
}
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running > sgs->nr_numa_running)
return regular;
if (sgs->sum_nr_running > sgs->nr_preferred_running)
return remote;
return all;
}
static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
if (rq->nr_running > rq->nr_numa_running)
return regular;
if (rq->nr_running > rq->nr_preferred_running)
return remote;
return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
return all;
}
static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
return regular;
}
#endif /* CONFIG_NUMA_BALANCING */
/**
* update_sd_lb_stats - Update sched_domain's statistics for load balancing.
* @env: The load balancing environment.
* @sds: variable to hold the statistics for this sched_domain.
*/
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
{
struct sched_domain *child = env->sd->child;
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats *local = &sds->local_stat;
struct sg_lb_stats tmp_sgs;
int load_idx, prefer_sibling = 0;
bool overload = false;
if (child && child->flags & SD_PREFER_SIBLING)
prefer_sibling = 1;
load_idx = get_sd_load_idx(env->sd, env->idle);
do {
struct sg_lb_stats *sgs = &tmp_sgs;
int local_group;
local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
if (local_group) {
sds->local = sg;
sgs = local;
if (env->idle != CPU_NEWLY_IDLE ||
time_after_eq(jiffies, sg->sgc->next_update))
update_group_capacity(env->sd, env->dst_cpu);
}
update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
&overload);
if (local_group)
goto next_group;
/*
* In case the child domain prefers tasks go to siblings
* first, lower the sg capacity so that we'll try
* and move all the excess tasks away. We lower the capacity
* of a group only if the local group has the capacity to fit
* these excess tasks. The extra check prevents the case where
* you always pull from the heaviest group when it is already
* under-utilized (possible with a large weight task outweighs
* the tasks on the system).
*/
if (prefer_sibling && sds->local &&
group_has_capacity(env, local) &&
(sgs->sum_nr_running > local->sum_nr_running + 1)) {
sgs->group_no_capacity = 1;
sgs->group_type = group_classify(sg, sgs);
}
if (update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
sds->busiest_stat = *sgs;
}
next_group:
/* Now, start updating sd_lb_stats */
sds->total_running += sgs->sum_nr_running;
sds->total_load += sgs->group_load;
sds->total_capacity += sgs->group_capacity;
sg = sg->next;
} while (sg != env->sd->groups);
if (env->sd->flags & SD_NUMA)
env->fbq_type = fbq_classify_group(&sds->busiest_stat);
if (!env->sd->parent) {
/* update overload indicator if we are at root domain */
if (env->dst_rq->rd->overload != overload)
env->dst_rq->rd->overload = overload;
}
}
/**
* check_asym_packing - Check to see if the group is packed into the
* sched domain.
*
* This is primarily intended to used at the sibling level. Some
* cores like POWER7 prefer to use lower numbered SMT threads. In the
* case of POWER7, it can move to lower SMT modes only when higher
* threads are idle. When in lower SMT modes, the threads will
* perform better since they share less core resources. Hence when we
* have idle threads, we want them to be the higher ones.
*
* This packing function is run on idle threads. It checks to see if
* the busiest CPU in this domain (core in the P7 case) has a higher
* CPU number than the packing function is being run on. Here we are
* assuming lower CPU number will be equivalent to lower a SMT thread
* number.
*
* Return: 1 when packing is required and a task should be moved to
* this CPU. The amount of the imbalance is returned in env->imbalance.
*
* @env: The load balancing environment.
* @sds: Statistics of the sched_domain which is to be packed
*/
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
{
int busiest_cpu;
if (!(env->sd->flags & SD_ASYM_PACKING))
return 0;
if (env->idle == CPU_NOT_IDLE)
return 0;
if (!sds->busiest)
return 0;
busiest_cpu = sds->busiest->asym_prefer_cpu;
if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
return 0;
env->imbalance = DIV_ROUND_CLOSEST(
sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
SCHED_CAPACITY_SCALE);
return 1;
}
/**
* fix_small_imbalance - Calculate the minor imbalance that exists
* amongst the groups of a sched_domain, during
* load balancing.
* @env: The load balancing environment.
* @sds: Statistics of the sched_domain whose imbalance is to be calculated.
*/
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
unsigned long tmp, capa_now = 0, capa_move = 0;
unsigned int imbn = 2;
unsigned long scaled_busy_load_per_task;
struct sg_lb_stats *local, *busiest;
local = &sds->local_stat;
busiest = &sds->busiest_stat;
if (!local->sum_nr_running)
local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
else if (busiest->load_per_task > local->load_per_task)
imbn = 1;
scaled_busy_load_per_task =
(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
busiest->group_capacity;
if (busiest->avg_load + scaled_busy_load_per_task >=
local->avg_load + (scaled_busy_load_per_task * imbn)) {
env->imbalance = busiest->load_per_task;
return;
}
/*
* OK, we don't have enough imbalance to justify moving tasks,
* however we may be able to increase total CPU capacity used by
* moving them.
*/
capa_now += busiest->group_capacity *
min(busiest->load_per_task, busiest->avg_load);
capa_now += local->group_capacity *
min(local->load_per_task, local->avg_load);
capa_now /= SCHED_CAPACITY_SCALE;
/* Amount of load we'd subtract */
if (busiest->avg_load > scaled_busy_load_per_task) {
capa_move += busiest->group_capacity *
min(busiest->load_per_task,
busiest->avg_load - scaled_busy_load_per_task);
}
/* Amount of load we'd add */
if (busiest->avg_load * busiest->group_capacity <
busiest->load_per_task * SCHED_CAPACITY_SCALE) {
tmp = (busiest->avg_load * busiest->group_capacity) /
local->group_capacity;
} else {
tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
local->group_capacity;
}
capa_move += local->group_capacity *
min(local->load_per_task, local->avg_load + tmp);
capa_move /= SCHED_CAPACITY_SCALE;
/* Move if we gain throughput */
if (capa_move > capa_now)
env->imbalance = busiest->load_per_task;
}
/**
* calculate_imbalance - Calculate the amount of imbalance present within the
* groups of a given sched_domain during load balance.
* @env: load balance environment
* @sds: statistics of the sched_domain whose imbalance is to be calculated.
*/
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
unsigned long max_pull, load_above_capacity = ~0UL;
struct sg_lb_stats *local, *busiest;
local = &sds->local_stat;
busiest = &sds->busiest_stat;
if (busiest->group_type == group_imbalanced) {
/*
* In the group_imb case we cannot rely on group-wide averages
* to ensure cpu-load equilibrium, look at wider averages. XXX
*/
busiest->load_per_task =
min(busiest->load_per_task, sds->avg_load);
}
/*
* Avg load of busiest sg can be less and avg load of local sg can
* be greater than avg load across all sgs of sd because avg load
* factors in sg capacity and sgs with smaller group_type are
* skipped when updating the busiest sg:
*/
if (busiest->avg_load <= sds->avg_load ||
local->avg_load >= sds->avg_load) {
env->imbalance = 0;
return fix_small_imbalance(env, sds);
}
/*
* If there aren't any idle cpus, avoid creating some.
*/
if (busiest->group_type == group_overloaded &&
local->group_type == group_overloaded) {
load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
if (load_above_capacity > busiest->group_capacity) {
load_above_capacity -= busiest->group_capacity;
load_above_capacity *= scale_load_down(NICE_0_LOAD);
load_above_capacity /= busiest->group_capacity;
} else
load_above_capacity = ~0UL;
}
/*
* We're trying to get all the cpus to the average_load, so we don't
* want to push ourselves above the average load, nor do we wish to
* reduce the max loaded cpu below the average load. At the same time,
* we also don't want to reduce the group load below the group
* capacity. Thus we look for the minimum possible imbalance.
*/
max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
/* How much load to actually move to equalise the imbalance */
env->imbalance = min(
max_pull * busiest->group_capacity,
(sds->avg_load - local->avg_load) * local->group_capacity
) / SCHED_CAPACITY_SCALE;
/*
* if *imbalance is less than the average load per runnable task
* there is no guarantee that any tasks will be moved so we'll have
* a think about bumping its value to force at least one task to be
* moved
*/
if (env->imbalance < busiest->load_per_task)
return fix_small_imbalance(env, sds);
}
/******* find_busiest_group() helpers end here *********************/
/**
* find_busiest_group - Returns the busiest group within the sched_domain
* if there is an imbalance.
*
* Also calculates the amount of weighted load which should be moved
* to restore balance.
*
* @env: The load balancing environment.
*
* Return: - The busiest group if imbalance exists.
*/
static struct sched_group *find_busiest_group(struct lb_env *env)
{
struct sg_lb_stats *local, *busiest;
struct sd_lb_stats sds;
init_sd_lb_stats(&sds);
/*
* Compute the various statistics relavent for load balancing at
* this level.
*/
update_sd_lb_stats(env, &sds);
local = &sds.local_stat;
busiest = &sds.busiest_stat;
/* ASYM feature bypasses nice load balance check */
if (check_asym_packing(env, &sds))
return sds.busiest;
/* There is no busy sibling group to pull tasks from */
if (!sds.busiest || busiest->sum_nr_running == 0)
goto out_balanced;
/* XXX broken for overlapping NUMA groups */
sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
/ sds.total_capacity;
/*
* If the busiest group is imbalanced the below checks don't
* work because they assume all things are equal, which typically
* isn't true due to cpus_allowed constraints and the like.
*/
if (busiest->group_type == group_imbalanced)
goto force_balance;
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
busiest->group_no_capacity)
goto force_balance;
/*
* If the local group is busier than the selected busiest group
* don't try and pull any tasks.
*/
if (local->avg_load >= busiest->avg_load)
goto out_balanced;
/*
* Don't pull any tasks if this group is already above the domain
* average load.
*/
if (local->avg_load >= sds.avg_load)
goto out_balanced;
if (env->idle == CPU_IDLE) {
/*
* This cpu is idle. If the busiest group is not overloaded
* and there is no imbalance between this and busiest group
* wrt idle cpus, it is balanced. The imbalance becomes
* significant if the diff is greater than 1 otherwise we
* might end up to just move the imbalance on another group
*/
if ((busiest->group_type != group_overloaded) &&
(local->idle_cpus <= (busiest->idle_cpus + 1)))
goto out_balanced;
} else {
/*
* In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
* imbalance_pct to be conservative.
*/
if (100 * busiest->avg_load <=
env->sd->imbalance_pct * local->avg_load)
goto out_balanced;
}
force_balance:
/* Looks like there is an imbalance. Compute it */
calculate_imbalance(env, &sds);
return sds.busiest;
out_balanced:
env->imbalance = 0;
return NULL;
}
/*
* find_busiest_queue - find the busiest runqueue among the cpus in group.
*/
static struct rq *find_busiest_queue(struct lb_env *env,
struct sched_group *group)
{
struct rq *busiest = NULL, *rq;
unsigned long busiest_load = 0, busiest_capacity = 1;
int i;
for_each_cpu_and(i, sched_group_span(group), env->cpus) {
unsigned long capacity, wl;
enum fbq_type rt;
rq = cpu_rq(i);
rt = fbq_classify_rq(rq);
/*
* We classify groups/runqueues into three groups:
* - regular: there are !numa tasks
* - remote: there are numa tasks that run on the 'wrong' node
* - all: there is no distinction
*
* In order to avoid migrating ideally placed numa tasks,
* ignore those when there's better options.
*
* If we ignore the actual busiest queue to migrate another
* task, the next balance pass can still reduce the busiest
* queue by moving tasks around inside the node.
*
* If we cannot move enough load due to this classification
* the next pass will adjust the group classification and
* allow migration of more tasks.
*
* Both cases only affect the total convergence complexity.
*/
if (rt > env->fbq_type)
continue;
capacity = capacity_of(i);
wl = weighted_cpuload(rq);
/*
* When comparing with imbalance, use weighted_cpuload()
* which is not scaled with the cpu capacity.
*/
if (rq->nr_running == 1 && wl > env->imbalance &&
!check_cpu_capacity(rq, env->sd))
continue;
/*
* For the load comparisons with the other cpu's, consider
* the weighted_cpuload() scaled with the cpu capacity, so
* that the load can be moved away from the cpu that is
* potentially running at a lower capacity.
*
* Thus we're looking for max(wl_i / capacity_i), crosswise
* multiplication to rid ourselves of the division works out
* to: wl_i * capacity_j > wl_j * capacity_i; where j is
* our previous maximum.
*/
if (wl * busiest_capacity > busiest_load * capacity) {
busiest_load = wl;
busiest_capacity = capacity;
busiest = rq;
}
}
return busiest;
}
/*
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
* so long as it is large enough.
*/
#define MAX_PINNED_INTERVAL 512
static int need_active_balance(struct lb_env *env)
{
struct sched_domain *sd = env->sd;
if (env->idle == CPU_NEWLY_IDLE) {
/*
* ASYM_PACKING needs to force migrate tasks from busy but
* lower priority CPUs in order to pack all tasks in the
* highest priority CPUs.
*/
if ((sd->flags & SD_ASYM_PACKING) &&
sched_asym_prefer(env->dst_cpu, env->src_cpu))
return 1;
}
/*
* The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
* It's worth migrating the task if the src_cpu's capacity is reduced
* because of other sched_class or IRQs if more capacity stays
* available on dst_cpu.
*/
if ((env->idle != CPU_NOT_IDLE) &&
(env->src_rq->cfs.h_nr_running == 1)) {
if ((check_cpu_capacity(env->src_rq, sd)) &&
(capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
return 1;
}
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}
static int active_load_balance_cpu_stop(void *data);
static int should_we_balance(struct lb_env *env)
{
struct sched_group *sg = env->sd->groups;
int cpu, balance_cpu = -1;
/*
* In the newly idle case, we will allow all the cpu's
* to do the newly idle load balance.
*/
if (env->idle == CPU_NEWLY_IDLE)
return 1;
/* Try to find first idle cpu */
for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
if (!idle_cpu(cpu))
continue;
balance_cpu = cpu;
break;
}
if (balance_cpu == -1)
balance_cpu = group_balance_cpu(sg);
/*
* First idle cpu or the first cpu(busiest) in this sched group
* is eligible for doing load balancing at this and above domains.
*/
return balance_cpu == env->dst_cpu;
}
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*/
static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *continue_balancing)
{
int ld_moved, cur_ld_moved, active_balance = 0;
struct sched_domain *sd_parent = sd->parent;
struct sched_group *group;
struct rq *busiest;
struct rq_flags rf;
struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
struct lb_env env = {
.sd = sd,
.dst_cpu = this_cpu,
.dst_rq = this_rq,
.dst_grpmask = sched_group_span(sd->groups),
.idle = idle,
.loop_break = sched_nr_migrate_break,
.cpus = cpus,
.fbq_type = all,
.tasks = LIST_HEAD_INIT(env.tasks),
};
cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
schedstat_inc(sd->lb_count[idle]);
redo:
if (!should_we_balance(&env)) {
*continue_balancing = 0;
goto out_balanced;
}
group = find_busiest_group(&env);
if (!group) {
schedstat_inc(sd->lb_nobusyg[idle]);
goto out_balanced;
}
busiest = find_busiest_queue(&env, group);
if (!busiest) {
schedstat_inc(sd->lb_nobusyq[idle]);
goto out_balanced;
}
BUG_ON(busiest == env.dst_rq);
schedstat_add(sd->lb_imbalance[idle], env.imbalance);
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
ld_moved = 0;
if (busiest->nr_running > 1) {
/*
* Attempt to move tasks. If find_busiest_group has found
* an imbalance but busiest->nr_running <= 1, the group is
* still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance.
*/
env.flags |= LBF_ALL_PINNED;
env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
more_balance:
rq_lock_irqsave(busiest, &rf);
update_rq_clock(busiest);
/*
* cur_ld_moved - load moved in current iteration
* ld_moved - cumulative load moved across iterations
*/
cur_ld_moved = detach_tasks(&env);
/*
* We've detached some tasks from busiest_rq. Every
* task is masked "TASK_ON_RQ_MIGRATING", so we can safely
* unlock busiest->lock, and we are able to be sure
* that nobody can manipulate the tasks in parallel.
* See task_rq_lock() family for the details.
*/
rq_unlock(busiest, &rf);
if (cur_ld_moved) {
attach_tasks(&env);
ld_moved += cur_ld_moved;
}
local_irq_restore(rf.flags);
if (env.flags & LBF_NEED_BREAK) {
env.flags &= ~LBF_NEED_BREAK;
goto more_balance;
}
/*
* Revisit (affine) tasks on src_cpu that couldn't be moved to
* us and move them to an alternate dst_cpu in our sched_group
* where they can run. The upper limit on how many times we
* iterate on same src_cpu is dependent on number of cpus in our
* sched_group.
*
* This changes load balance semantics a bit on who can move
* load to a given_cpu. In addition to the given_cpu itself
* (or a ilb_cpu acting on its behalf where given_cpu is
* nohz-idle), we now have balance_cpu in a position to move
* load to given_cpu. In rare situations, this may cause
* conflicts (balance_cpu and given_cpu/ilb_cpu deciding
* _independently_ and at _same_ time to move some load to
* given_cpu) causing exceess load to be moved to given_cpu.
* This however should not happen so much in practice and
* moreover subsequent load balance cycles should correct the
* excess load moved.
*/
if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
/* Prevent to re-select dst_cpu via env's cpus */
cpumask_clear_cpu(env.dst_cpu, env.cpus);
env.dst_rq = cpu_rq(env.new_dst_cpu);
env.dst_cpu = env.new_dst_cpu;
env.flags &= ~LBF_DST_PINNED;
env.loop = 0;
env.loop_break = sched_nr_migrate_break;
/*
* Go back to "more_balance" rather than "redo" since we
* need to continue with same src_cpu.
*/
goto more_balance;
}
/*
* We failed to reach balance because of affinity.
*/
if (sd_parent) {
int *group_imbalance = &sd_parent->groups->sgc->imbalance;
if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
*group_imbalance = 1;
}
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(env.flags & LBF_ALL_PINNED)) {
cpumask_clear_cpu(cpu_of(busiest), cpus);
/*
* Attempting to continue load balancing at the current
* sched_domain level only makes sense if there are
* active CPUs remaining as possible busiest CPUs to
* pull load from which are not contained within the
* destination group that is receiving any migrated
* load.
*/
if (!cpumask_subset(cpus, env.dst_grpmask)) {
env.loop = 0;
env.loop_break = sched_nr_migrate_break;
goto redo;
}
goto out_all_pinned;
}
}
if (!ld_moved) {
schedstat_inc(sd->lb_failed[idle]);
/*
* Increment the failure counter only on periodic balance.
* We do not want newidle balance, which can be very
* frequent, pollute the failure counter causing
* excessive cache_hot migrations and active balances.
*/
if (idle != CPU_NEWLY_IDLE)
sd->nr_balance_failed++;
if (need_active_balance(&env)) {
unsigned long flags;
raw_spin_lock_irqsave(&busiest->lock, flags);
/* don't kick the active_load_balance_cpu_stop,
* if the curr task on busiest cpu can't be
* moved to this_cpu
*/
if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
raw_spin_unlock_irqrestore(&busiest->lock,
flags);
env.flags |= LBF_ALL_PINNED;
goto out_one_pinned;
}
/*
* ->active_balance synchronizes accesses to
* ->active_balance_work. Once set, it's cleared
* only after active load balance is finished.
*/
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
}
raw_spin_unlock_irqrestore(&busiest->lock, flags);
if (active_balance) {
stop_one_cpu_nowait(cpu_of(busiest),
active_load_balance_cpu_stop, busiest,
&busiest->active_balance_work);
}
/* We've kicked active balancing, force task migration. */
sd->nr_balance_failed = sd->cache_nice_tries+1;
}
} else
sd->nr_balance_failed = 0;
if (likely(!active_balance)) {
/* We were unbalanced, so reset the balancing interval */
sd->balance_interval = sd->min_interval;
} else {
/*
* If we've begun active balancing, start to back off. This
* case may not be covered by the all_pinned logic if there
* is only 1 task on the busy runqueue (because we don't call
* detach_tasks).
*/
if (sd->balance_interval < sd->max_interval)
sd->balance_interval *= 2;
}
goto out;
out_balanced:
/*
* We reach balance although we may have faced some affinity
* constraints. Clear the imbalance flag if it was set.
*/
if (sd_parent) {
int *group_imbalance = &sd_parent->groups->sgc->imbalance;
if (*group_imbalance)
*group_imbalance = 0;
}
out_all_pinned:
/*
* We reach balance because all tasks are pinned at this level so
* we can't migrate them. Let the imbalance flag set so parent level
* can try to migrate them.
*/
schedstat_inc(sd->lb_balanced[idle]);
sd->nr_balance_failed = 0;
out_one_pinned:
/* tune up the balancing interval */
if (((env.flags & LBF_ALL_PINNED) &&
sd->balance_interval < MAX_PINNED_INTERVAL) ||
(sd->balance_interval < sd->max_interval))
sd->balance_interval *= 2;
ld_moved = 0;
out:
return ld_moved;
}
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
unsigned long interval = sd->balance_interval;
if (cpu_busy)
interval *= sd->busy_factor;
/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
return interval;
}
static inline void
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
{
unsigned long interval, next;
/* used by idle balance, so cpu_busy = 0 */
interval = get_sd_balance_interval(sd, 0);
next = sd->last_balance + interval;
if (time_after(*next_balance, next))
*next_balance = next;
}
/*
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*/
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
unsigned long next_balance = jiffies + HZ;
int this_cpu = this_rq->cpu;
struct sched_domain *sd;
int pulled_task = 0;
u64 curr_cost = 0;
/*
* We must set idle_stamp _before_ calling idle_balance(), such that we
* measure the duration of idle_balance() as idle time.
*/
this_rq->idle_stamp = rq_clock(this_rq);
/*
* Do not pull tasks towards !active CPUs...
*/
if (!cpu_active(this_cpu))
return 0;
/*
* This is OK, because current is on_cpu, which avoids it being picked
* for load-balance and preemption/IRQs are still disabled avoiding
* further scheduler activity on it and we're being very careful to
* re-start the picking loop.
*/
rq_unpin_lock(this_rq, rf);
if (this_rq->avg_idle < sysctl_sched_migration_cost ||
!this_rq->rd->overload) {
rcu_read_lock();
sd = rcu_dereference_check_sched_domain(this_rq->sd);
if (sd)
update_next_balance(sd, &next_balance);
rcu_read_unlock();
goto out;
}
raw_spin_unlock(&this_rq->lock);
update_blocked_averages(this_cpu);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
int continue_balancing = 1;
u64 t0, domain_cost;
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
update_next_balance(sd, &next_balance);
break;
}
if (sd->flags & SD_BALANCE_NEWIDLE) {
t0 = sched_clock_cpu(this_cpu);
pulled_task = load_balance(this_cpu, this_rq,
sd, CPU_NEWLY_IDLE,
&continue_balancing);
domain_cost = sched_clock_cpu(this_cpu) - t0;
if (domain_cost > sd->max_newidle_lb_cost)
sd->max_newidle_lb_cost = domain_cost;
curr_cost += domain_cost;
}
update_next_balance(sd, &next_balance);
/*
* Stop searching for tasks to pull if there are
* now runnable tasks on this rq.
*/
if (pulled_task || this_rq->nr_running > 0)
break;
}
rcu_read_unlock();
raw_spin_lock(&this_rq->lock);
if (curr_cost > this_rq->max_idle_balance_cost)
this_rq->max_idle_balance_cost = curr_cost;
/*
* While browsing the domains, we released the rq lock, a task could
* have been enqueued in the meantime. Since we're not going idle,
* pretend we pulled a task.
*/
if (this_rq->cfs.h_nr_running && !pulled_task)
pulled_task = 1;
out:
/* Move the next balance forward */
if (time_after(this_rq->next_balance, next_balance))
this_rq->next_balance = next_balance;
/* Is there a task of a high priority class? */
if (this_rq->nr_running != this_rq->cfs.h_nr_running)
pulled_task = -1;
if (pulled_task)
this_rq->idle_stamp = 0;
rq_repin_lock(this_rq, rf);
return pulled_task;
}
/*
* active_load_balance_cpu_stop is run by cpu stopper. It pushes
* running tasks off the busiest CPU onto idle CPUs. It requires at
* least 1 task to be running on each physical CPU where possible, and
* avoids physical / logical imbalances.
*/
static int active_load_balance_cpu_stop(void *data)
{
struct rq *busiest_rq = data;
int busiest_cpu = cpu_of(busiest_rq);
int target_cpu = busiest_rq->push_cpu;
struct rq *target_rq = cpu_rq(target_cpu);
struct sched_domain *sd;
struct task_struct *p = NULL;
struct rq_flags rf;
rq_lock_irq(busiest_rq, &rf);
/*
* Between queueing the stop-work and running it is a hole in which
* CPUs can become inactive. We should not move tasks from or to
* inactive CPUs.
*/
if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
goto out_unlock;
/* make sure the requested cpu hasn't gone down in the meantime */
if (unlikely(busiest_cpu != smp_processor_id() ||
!busiest_rq->active_balance))
goto out_unlock;
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1)
goto out_unlock;
/*
* This condition is "impossible", if it occurs
* we need to fix it. Originally reported by
* Bjorn Helgaas on a 128-cpu setup.
*/
BUG_ON(busiest_rq == target_rq);
/* Search for an sd spanning us and the target CPU. */
rcu_read_lock();
for_each_domain(target_cpu, sd) {
if ((sd->flags & SD_LOAD_BALANCE) &&
cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
break;
}
if (likely(sd)) {
struct lb_env env = {
.sd = sd,
.dst_cpu = target_cpu,
.dst_rq = target_rq,
.src_cpu = busiest_rq->cpu,
.src_rq = busiest_rq,
.idle = CPU_IDLE,
/*
* can_migrate_task() doesn't need to compute new_dst_cpu
* for active balancing. Since we have CPU_IDLE, but no
* @dst_grpmask we need to make that test go away with lying
* about DST_PINNED.
*/
.flags = LBF_DST_PINNED,
};
schedstat_inc(sd->alb_count);
update_rq_clock(busiest_rq);
p = detach_one_task(&env);
if (p) {
schedstat_inc(sd->alb_pushed);
/* Active balancing done, reset the failure counter. */
sd->nr_balance_failed = 0;
} else {
schedstat_inc(sd->alb_failed);
}
}
rcu_read_unlock();
out_unlock:
busiest_rq->active_balance = 0;
rq_unlock(busiest_rq, &rf);
if (p)
attach_one_task(target_rq, p);
local_irq_enable();
return 0;
}
static inline int on_null_domain(struct rq *rq)
{
return unlikely(!rcu_dereference_sched(rq->sd));
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* idle load balancing details
* - When one of the busy CPUs notice that there may be an idle rebalancing
* needed, they will kick the idle load balancer, which then does idle
* load balancing for all the idle CPUs.
*/
static struct {
cpumask_var_t idle_cpus_mask;
atomic_t nr_cpus;
unsigned long next_balance; /* in jiffy units */
} nohz ____cacheline_aligned;
static inline int find_new_ilb(void)
{
int ilb = cpumask_first(nohz.idle_cpus_mask);
if (ilb < nr_cpu_ids && idle_cpu(ilb))
return ilb;
return nr_cpu_ids;
}
/*
* Kick a CPU to do the nohz balancing, if it is time for it. We pick the
* nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
* CPU (if there is one).
*/
static void nohz_balancer_kick(void)
{
int ilb_cpu;
nohz.next_balance++;
ilb_cpu = find_new_ilb();
if (ilb_cpu >= nr_cpu_ids)
return;
if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
return;
/*
* Use smp_send_reschedule() instead of resched_cpu().
* This way we generate a sched IPI on the target cpu which
* is idle. And the softirq performing nohz idle load balance
* will be run before returning from the IPI.
*/
smp_send_reschedule(ilb_cpu);
return;
}
void nohz_balance_exit_idle(unsigned int cpu)
{
if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
/*
* Completely isolated CPUs don't ever set, so we must test.
*/
if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
atomic_dec(&nohz.nr_cpus);
}
clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
}
}
static inline void set_cpu_sd_state_busy(void)
{
struct sched_domain *sd;
int cpu = smp_processor_id();
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd || !sd->nohz_idle)
goto unlock;
sd->nohz_idle = 0;
atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
void set_cpu_sd_state_idle(void)
{
struct sched_domain *sd;
int cpu = smp_processor_id();
rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd || sd->nohz_idle)
goto unlock;
sd->nohz_idle = 1;
atomic_dec(&sd->shared->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
/*
* This routine will record that the cpu is going idle with tick stopped.
* This info will be used in performing idle load balancing in the future.
*/
void nohz_balance_enter_idle(int cpu)
{
/*
* If this cpu is going down, then nothing needs to be done.
*/
if (!cpu_active(cpu))
return;
/* Spare idle load balancing on CPUs that don't want to be disturbed: */
if (!is_housekeeping_cpu(cpu))
return;
if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
return;
/*
* If we're a completely isolated CPU, we don't play.
*/
if (on_null_domain(cpu_rq(cpu)))
return;
cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
atomic_inc(&nohz.nr_cpus);
set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
}
#endif
static DEFINE_SPINLOCK(balancing);
/*
* Scale the max load_balance interval with the number of CPUs in the system.
* This trades load-balance latency on larger machines for less cross talk.
*/
void update_max_interval(void)
{
max_load_balance_interval = HZ*num_online_cpus()/10;
}
/*
* It checks each scheduling domain to see if it is due to be balanced,
* and initiates a balancing operation if so.
*
* Balancing parameters are set up in init_sched_domains.
*/
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
int continue_balancing = 1;
int cpu = rq->cpu;
unsigned long interval;
struct sched_domain *sd;
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
int need_serialize, need_decay = 0;
u64 max_cost = 0;
update_blocked_averages(cpu);
rcu_read_lock();
for_each_domain(cpu, sd) {
/*
* Decay the newidle max times here because this is a regular
* visit to all the domains. Decay ~1% per second.
*/
if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
sd->max_newidle_lb_cost =
(sd->max_newidle_lb_cost * 253) / 256;
sd->next_decay_max_lb_cost = jiffies + HZ;
need_decay = 1;
}
max_cost += sd->max_newidle_lb_cost;
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
/*
* Stop the load balance at this level. There is another
* CPU in our sched group which is doing load balancing more
* actively.
*/
if (!continue_balancing) {
if (need_decay)
continue;
break;
}
interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
need_serialize = sd->flags & SD_SERIALIZE;
if (need_serialize) {
if (!spin_trylock(&balancing))
goto out;
}
if (time_after_eq(jiffies, sd->last_balance + interval)) {
if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
/*
* The LBF_DST_PINNED logic could have changed
* env->dst_cpu, so we can't know our idle
* state even if we migrated tasks. Update it.
*/
idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
}
sd->last_balance = jiffies;
interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
}
if (need_serialize)
spin_unlock(&balancing);
out:
if (time_after(next_balance, sd->last_balance + interval)) {
next_balance = sd->last_balance + interval;
update_next_balance = 1;
}
}
if (need_decay) {
/*
* Ensure the rq-wide value also decays but keep it at a
* reasonable floor to avoid funnies with rq->avg_idle.
*/
rq->max_idle_balance_cost =
max((u64)sysctl_sched_migration_cost, max_cost);
}
rcu_read_unlock();
/*
* next_balance will be updated only when there is a need.
* When the cpu is attached to null domain for ex, it will not be
* updated.
*/
if (likely(update_next_balance)) {
rq->next_balance = next_balance;
#ifdef CONFIG_NO_HZ_COMMON
/*
* If this CPU has been elected to perform the nohz idle
* balance. Other idle CPUs have already rebalanced with
* nohz_idle_balance() and nohz.next_balance has been
* updated accordingly. This CPU is now running the idle load
* balance for itself and we need to update the
* nohz.next_balance accordingly.
*/
if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
nohz.next_balance = rq->next_balance;
#endif
}
}
#ifdef CONFIG_NO_HZ_COMMON
/*
* In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
* rebalancing for all the cpus for whom scheduler ticks are stopped.
*/
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
int this_cpu = this_rq->cpu;
struct rq *rq;
int balance_cpu;
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
if (idle != CPU_IDLE ||
!test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
goto end;
for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
continue;
/*
* If this cpu gets work to do, stop the load balancing
* work being done for other cpus. Next load
* balancing owner will pick it up.
*/
if (need_resched())
break;
rq = cpu_rq(balance_cpu);
/*
* If time for next balance is due,
* do the balance.
*/
if (time_after_eq(jiffies, rq->next_balance)) {
struct rq_flags rf;
rq_lock_irq(rq, &rf);
update_rq_clock(rq);
cpu_load_update_idle(rq);
rq_unlock_irq(rq, &rf);
rebalance_domains(rq, CPU_IDLE);
}
if (time_after(next_balance, rq->next_balance)) {
next_balance = rq->next_balance;
update_next_balance = 1;
}
}
/*
* next_balance will be updated only when there is a need.
* When the CPU is attached to null domain for ex, it will not be
* updated.
*/
if (likely(update_next_balance))
nohz.next_balance = next_balance;
end:
clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
}
/*
* Current heuristic for kicking the idle load balancer in the presence
* of an idle cpu in the system.
* - This rq has more than one task.
* - This rq has at least one CFS task and the capacity of the CPU is
* significantly reduced because of RT tasks or IRQs.
* - At parent of LLC scheduler domain level, this cpu's scheduler group has
* multiple busy cpu.
* - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
* domain span are idle.
*/
static inline bool nohz_kick_needed(struct rq *rq)
{
unsigned long now = jiffies;
struct sched_domain_shared *sds;
struct sched_domain *sd;
int nr_busy, i, cpu = rq->cpu;
bool kick = false;
if (unlikely(rq->idle_balance))
return false;
/*
* We may be recently in ticked or tickless idle mode. At the first
* busy tick after returning from idle, we will update the busy stats.
*/
set_cpu_sd_state_busy();
nohz_balance_exit_idle(cpu);
/*
* None are in tickless mode and hence no need for NOHZ idle load
* balancing.
*/
if (likely(!atomic_read(&nohz.nr_cpus)))
return false;
if (time_before(now, nohz.next_balance))
return false;
if (rq->nr_running >= 2)
return true;
rcu_read_lock();
sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
if (sds) {
/*
* XXX: write a coherent comment on why we do this.
* See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
*/
nr_busy = atomic_read(&sds->nr_busy_cpus);
if (nr_busy > 1) {
kick = true;
goto unlock;
}
}
sd = rcu_dereference(rq->sd);
if (sd) {
if ((rq->cfs.h_nr_running >= 1) &&
check_cpu_capacity(rq, sd)) {
kick = true;
goto unlock;
}
}
sd = rcu_dereference(per_cpu(sd_asym, cpu));
if (sd) {
for_each_cpu(i, sched_domain_span(sd)) {
if (i == cpu ||
!cpumask_test_cpu(i, nohz.idle_cpus_mask))
continue;
if (sched_asym_prefer(i, cpu)) {
kick = true;
goto unlock;
}
}
}
unlock:
rcu_read_unlock();
return kick;
}
#else
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
#endif
/*
* run_rebalance_domains is triggered when needed from the scheduler tick.
* Also triggered for nohz idle balancing (with nohz_balancing_kick set).
*/
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
{
struct rq *this_rq = this_rq();
enum cpu_idle_type idle = this_rq->idle_balance ?
CPU_IDLE : CPU_NOT_IDLE;
/*
* If this cpu has a pending nohz_balance_kick, then do the
* balancing on behalf of the other idle cpus whose ticks are
* stopped. Do nohz_idle_balance *before* rebalance_domains to
* give the idle cpus a chance to load balance. Else we may
* load balance only within the local sched_domain hierarchy
* and abort nohz_idle_balance altogether if we pull some load.
*/
nohz_idle_balance(this_rq, idle);
rebalance_domains(this_rq, idle);
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
*/
void trigger_load_balance(struct rq *rq)
{
/* Don't need to rebalance while attached to NULL domain */
if (unlikely(on_null_domain(rq)))
return;
if (time_after_eq(jiffies, rq->next_balance))
raise_softirq(SCHED_SOFTIRQ);
#ifdef CONFIG_NO_HZ_COMMON
if (nohz_kick_needed(rq))
nohz_balancer_kick();
#endif
}
static void rq_online_fair(struct rq *rq)
{
update_sysctl();
update_runtime_enabled(rq);
}
static void rq_offline_fair(struct rq *rq)
{
update_sysctl();
/* Ensure any throttled groups are reachable by pick_next_task */
unthrottle_offline_cfs_rqs(rq);
}
#endif /* CONFIG_SMP */
/*
* scheduler tick hitting a task of our scheduling class:
*/
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &curr->se;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
entity_tick(cfs_rq, se, queued);
}
if (static_branch_unlikely(&sched_numa_balancing))
task_tick_numa(rq, curr);
}
/*
* called on fork with the child task as argument from the parent's context
* - child not yet on the tasklist
* - preemption disabled
*/
static void task_fork_fair(struct task_struct *p)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se, *curr;
struct rq *rq = this_rq();
struct rq_flags rf;
rq_lock(rq, &rf);
update_rq_clock(rq);
cfs_rq = task_cfs_rq(current);
curr = cfs_rq->curr;
if (curr) {
update_curr(cfs_rq);
se->vruntime = curr->vruntime;
}
place_entity(cfs_rq, se, 1);
if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
/*
* Upon rescheduling, sched_class::put_prev_task() will place
* 'current' within the tree based on its new key value.
*/
swap(curr->vruntime, se->vruntime);
resched_curr(rq);
}
se->vruntime -= cfs_rq->min_vruntime;
rq_unlock(rq, &rf);
}
/*
* Priority of the task has changed. Check to see if we preempt
* the current task.
*/
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
{
if (!task_on_rq_queued(p))
return;
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
if (rq->curr == p) {
if (p->prio > oldprio)
resched_curr(rq);
} else
check_preempt_curr(rq, p, 0);
}
static inline bool vruntime_normalized(struct task_struct *p)
{
struct sched_entity *se = &p->se;
/*
* In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
* the dequeue_entity(.flags=0) will already have normalized the
* vruntime.
*/
if (p->on_rq)
return true;
/*
* When !on_rq, vruntime of the task has usually NOT been normalized.
* But there are some cases where it has already been normalized:
*
* - A forked child which is waiting for being woken up by
* wake_up_new_task().
* - A task which has been woken up by try_to_wake_up() and
* waiting for actually being woken up by sched_ttwu_pending().
*/
if (!se->sum_exec_runtime || p->state == TASK_WAKING)
return true;
return false;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Propagate the changes of the sched_entity across the tg tree to make it
* visible to the root
*/
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq;
/* Start to propagate at parent */
se = se->parent;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
if (cfs_rq_throttled(cfs_rq))
break;
update_load_avg(se, UPDATE_TG);
}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif
static void detach_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/* Catch up with the cfs_rq and remove our load when we leave */
update_load_avg(se, 0);
detach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
propagate_entity_cfs_rq(se);
}
static void attach_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Since the real-depth could have been changed (only FAIR
* class maintain depth value), reset depth properly.
*/
se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
/* Synchronize entity with its cfs_rq */
update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
propagate_entity_cfs_rq(se);
}
static void detach_task_cfs_rq(struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (!vruntime_normalized(p)) {
/*
* Fix up our vruntime so that the current sleep doesn't
* cause 'unlimited' sleep bonus.
*/
place_entity(cfs_rq, se, 0);
se->vruntime -= cfs_rq->min_vruntime;
}
detach_entity_cfs_rq(se);
}
static void attach_task_cfs_rq(struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
attach_entity_cfs_rq(se);
if (!vruntime_normalized(p))
se->vruntime += cfs_rq->min_vruntime;
}
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
detach_task_cfs_rq(p);
}
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
attach_task_cfs_rq(p);
if (task_on_rq_queued(p)) {
/*
* We were most likely switched from sched_rt, so
* kick off the schedule if running, otherwise just see
* if we can still preempt the current task.
*/
if (rq->curr == p)
resched_curr(rq);
else
check_preempt_curr(rq, p, 0);
}
}
/* Account for a task changing its policy or group.
*
* This routine is mostly called to set cfs_rq->curr field when a task
* migrates between groups/classes.
*/
static void set_curr_task_fair(struct rq *rq)
{
struct sched_entity *se = &rq->curr->se;
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
set_next_entity(cfs_rq, se);
/* ensure bandwidth has been allocated on our new cfs_rq */
account_cfs_rq_runtime(cfs_rq, 0);
}
}
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
#ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq->propagate_avg = 0;
#endif
atomic_long_set(&cfs_rq->removed_load_avg, 0);
atomic_long_set(&cfs_rq->removed_util_avg, 0);
#endif
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void task_set_group_fair(struct task_struct *p)
{
struct sched_entity *se = &p->se;
set_task_rq(p, task_cpu(p));
se->depth = se->parent ? se->parent->depth + 1 : 0;
}
static void task_move_group_fair(struct task_struct *p)
{
detach_task_cfs_rq(p);
set_task_rq(p, task_cpu(p));
#ifdef CONFIG_SMP
/* Tell se's cfs_rq has been changed -- migrated */
p->se.avg.last_update_time = 0;
#endif
attach_task_cfs_rq(p);
}
static void task_change_group_fair(struct task_struct *p, int type)
{
switch (type) {
case TASK_SET_GROUP:
task_set_group_fair(p);
break;
case TASK_MOVE_GROUP:
task_move_group_fair(p);
break;
}
}
void free_fair_sched_group(struct task_group *tg)
{
int i;
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
if (tg->se)
kfree(tg->se[i]);
}
kfree(tg->cfs_rq);
kfree(tg->se);
}
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
struct sched_entity *se;
struct cfs_rq *cfs_rq;
int i;
tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
if (!tg->cfs_rq)
goto err;
tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
if (!tg->se)
goto err;
tg->shares = NICE_0_LOAD;
init_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(i) {
cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
GFP_KERNEL, cpu_to_node(i));
if (!cfs_rq)
goto err;
se = kzalloc_node(sizeof(struct sched_entity),
GFP_KERNEL, cpu_to_node(i));
if (!se)
goto err_free_rq;
init_cfs_rq(cfs_rq);
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
init_entity_runnable_average(se);
}
return 1;
err_free_rq:
kfree(cfs_rq);
err:
return 0;
}
void online_fair_sched_group(struct task_group *tg)
{
struct sched_entity *se;
struct rq *rq;
int i;
for_each_possible_cpu(i) {
rq = cpu_rq(i);
se = tg->se[i];
raw_spin_lock_irq(&rq->lock);
update_rq_clock(rq);
attach_entity_cfs_rq(se);
sync_throttle(tg, i);
raw_spin_unlock_irq(&rq->lock);
}
}
void unregister_fair_sched_group(struct task_group *tg)
{
unsigned long flags;
struct rq *rq;
int cpu;
for_each_possible_cpu(cpu) {
if (tg->se[cpu])
remove_entity_load_avg(tg->se[cpu]);
/*
* Only empty task groups can be destroyed; so we can speculatively
* check on_list without danger of it being re-added.
*/
if (!tg->cfs_rq[cpu]->on_list)
continue;
rq = cpu_rq(cpu);
raw_spin_lock_irqsave(&rq->lock, flags);
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
}
void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
struct sched_entity *parent)
{
struct rq *rq = cpu_rq(cpu);
cfs_rq->tg = tg;
cfs_rq->rq = rq;
init_cfs_rq_runtime(cfs_rq);
tg->cfs_rq[cpu] = cfs_rq;
tg->se[cpu] = se;
/* se could be NULL for root_task_group */
if (!se)
return;
if (!parent) {
se->cfs_rq = &rq->cfs;
se->depth = 0;
} else {
se->cfs_rq = parent->my_q;
se->depth = parent->depth + 1;
}
se->my_q = cfs_rq;
/* guarantee group entities always have weight */
update_load_set(&se->load, NICE_0_LOAD);
se->parent = parent;
}
static DEFINE_MUTEX(shares_mutex);
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
int i;
/*
* We can't change the weight of the root cgroup.
*/
if (!tg->se[0])
return -EINVAL;
shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
mutex_lock(&shares_mutex);
if (tg->shares == shares)
goto done;
tg->shares = shares;
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
struct sched_entity *se = tg->se[i];
struct rq_flags rf;
/* Propagate contribution to hierarchy */
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
for_each_sched_entity(se) {
update_load_avg(se, UPDATE_TG);
update_cfs_shares(se);
}
rq_unlock_irqrestore(rq, &rf);
}
done:
mutex_unlock(&shares_mutex);
return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */
void free_fair_sched_group(struct task_group *tg) { }
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
void online_fair_sched_group(struct task_group *tg) { }
void unregister_fair_sched_group(struct task_group *tg) { }
#endif /* CONFIG_FAIR_GROUP_SCHED */
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
{
struct sched_entity *se = &task->se;
unsigned int rr_interval = 0;
/*
* Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
* idle runqueue:
*/
if (rq->cfs.load.weight)
rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
return rr_interval;
}
/*
* All the scheduling class methods:
*/
const struct sched_class fair_sched_class = {
.next = &idle_sched_class,
.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
.yield_to_task = yield_to_task_fair,
.check_preempt_curr = check_preempt_wakeup,
.pick_next_task = pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,
.rq_online = rq_online_fair,
.rq_offline = rq_offline_fair,
.task_dead = task_dead_fair,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
.set_curr_task = set_curr_task_fair,
.task_tick = task_tick_fair,
.task_fork = task_fork_fair,
.prio_changed = prio_changed_fair,
.switched_from = switched_from_fair,
.switched_to = switched_to_fair,
.get_rr_interval = get_rr_interval_fair,
.update_curr = update_curr_fair,
#ifdef CONFIG_FAIR_GROUP_SCHED
.task_change_group = task_change_group_fair,
#endif
};
#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
struct cfs_rq *cfs_rq, *pos;
rcu_read_lock();
for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
print_cfs_rq(m, cpu, cfs_rq);
rcu_read_unlock();
}
#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
int node;
unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
for_each_online_node(node) {
if (p->numa_faults) {
tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
}
if (p->numa_group) {
gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
}
print_numa_stats(m, node, tsf, tpf, gsf, gpf);
}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
#ifdef CONFIG_NO_HZ_COMMON
nohz.next_balance = jiffies;
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */
}