// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_buf_item.h"
#include "xfs_refcount_item.h"
#include "xfs_log.h"
#include "xfs_refcount.h"
kmem_zone_t *xfs_cui_zone;
kmem_zone_t *xfs_cud_zone;
static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_cui_log_item, cui_item);
}
void
xfs_cui_item_free(
struct xfs_cui_log_item *cuip)
{
if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
kmem_free(cuip);
else
kmem_zone_free(xfs_cui_zone, cuip);
}
/*
* Freeing the CUI requires that we remove it from the AIL if it has already
* been placed there. However, the CUI may not yet have been placed in the AIL
* when called by xfs_cui_release() from CUD processing due to the ordering of
* committed vs unpin operations in bulk insert operations. Hence the reference
* count to ensure only the last caller frees the CUI.
*/
void
xfs_cui_release(
struct xfs_cui_log_item *cuip)
{
ASSERT(atomic_read(&cuip->cui_refcount) > 0);
if (atomic_dec_and_test(&cuip->cui_refcount)) {
xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR);
xfs_cui_item_free(cuip);
}
}
STATIC void
xfs_cui_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given cui log item. We use only 1 iovec, and we point that
* at the cui_log_format structure embedded in the cui item.
* It is at this point that we assert that all of the extent
* slots in the cui item have been filled.
*/
STATIC void
xfs_cui_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(atomic_read(&cuip->cui_next_extent) ==
cuip->cui_format.cui_nextents);
cuip->cui_format.cui_type = XFS_LI_CUI;
cuip->cui_format.cui_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
}
/*
* Pinning has no meaning for an cui item, so just return.
*/
STATIC void
xfs_cui_item_pin(
struct xfs_log_item *lip)
{
}
/*
* The unpin operation is the last place an CUI is manipulated in the log. It is
* either inserted in the AIL or aborted in the event of a log I/O error. In
* either case, the CUI transaction has been successfully committed to make it
* this far. Therefore, we expect whoever committed the CUI to either construct
* and commit the CUD or drop the CUD's reference in the event of error. Simply
* drop the log's CUI reference now that the log is done with it.
*/
STATIC void
xfs_cui_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
xfs_cui_release(cuip);
}
/*
* CUI items have no locking or pushing. However, since CUIs are pulled from
* the AIL when their corresponding CUDs are committed to disk, their situation
* is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
* will eventually flush the log. This should help in getting the CUI out of
* the AIL.
*/
STATIC uint
xfs_cui_item_push(
struct xfs_log_item *lip,
struct list_head *buffer_list)
{
return XFS_ITEM_PINNED;
}
/*
* The CUI has been either committed or aborted if the transaction has been
* cancelled. If the transaction was cancelled, an CUD isn't going to be
* constructed and thus we free the CUI here directly.
*/
STATIC void
xfs_cui_item_unlock(
struct xfs_log_item *lip)
{
if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
xfs_cui_release(CUI_ITEM(lip));
}
/*
* The CUI is logged only once and cannot be moved in the log, so simply return
* the lsn at which it's been logged.
*/
STATIC xfs_lsn_t
xfs_cui_item_committed(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
return lsn;
}
/*
* The CUI dependency tracking op doesn't do squat. It can't because
* it doesn't know where the free extent is coming from. The dependency
* tracking has to be handled by the "enclosing" metadata object. For
* example, for inodes, the inode is locked throughout the extent freeing
* so the dependency should be recorded there.
*/
STATIC void
xfs_cui_item_committing(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
}
/*
* This is the ops vector shared by all cui log items.
*/
static const struct xfs_item_ops xfs_cui_item_ops = {
.iop_size = xfs_cui_item_size,
.iop_format = xfs_cui_item_format,
.iop_pin = xfs_cui_item_pin,
.iop_unpin = xfs_cui_item_unpin,
.iop_unlock = xfs_cui_item_unlock,
.iop_committed = xfs_cui_item_committed,
.iop_push = xfs_cui_item_push,
.iop_committing = xfs_cui_item_committing,
};
/*
* Allocate and initialize an cui item with the given number of extents.
*/
struct xfs_cui_log_item *
xfs_cui_init(
struct xfs_mount *mp,
uint nextents)
{
struct xfs_cui_log_item *cuip;
ASSERT(nextents > 0);
if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
KM_SLEEP);
else
cuip = kmem_zone_zalloc(xfs_cui_zone, KM_SLEEP);
xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
cuip->cui_format.cui_nextents = nextents;
cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
atomic_set(&cuip->cui_next_extent, 0);
atomic_set(&cuip->cui_refcount, 2);
return cuip;
}
static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_cud_log_item, cud_item);
}
STATIC void
xfs_cud_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
*nvecs += 1;
*nbytes += sizeof(struct xfs_cud_log_format);
}
/*
* This is called to fill in the vector of log iovecs for the
* given cud log item. We use only 1 iovec, and we point that
* at the cud_log_format structure embedded in the cud item.
* It is at this point that we assert that all of the extent
* slots in the cud item have been filled.
*/
STATIC void
xfs_cud_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
cudp->cud_format.cud_type = XFS_LI_CUD;
cudp->cud_format.cud_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
sizeof(struct xfs_cud_log_format));
}
/*
* Pinning has no meaning for an cud item, so just return.
*/
STATIC void
xfs_cud_item_pin(
struct xfs_log_item *lip)
{
}
/*
* Since pinning has no meaning for an cud item, unpinning does
* not either.
*/
STATIC void
xfs_cud_item_unpin(
struct xfs_log_item *lip,
int remove)
{
}
/*
* There isn't much you can do to push on an cud item. It is simply stuck
* waiting for the log to be flushed to disk.
*/
STATIC uint
xfs_cud_item_push(
struct xfs_log_item *lip,
struct list_head *buffer_list)
{
return XFS_ITEM_PINNED;
}
/*
* The CUD is either committed or aborted if the transaction is cancelled. If
* the transaction is cancelled, drop our reference to the CUI and free the
* CUD.
*/
STATIC void
xfs_cud_item_unlock(
struct xfs_log_item *lip)
{
struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
xfs_cui_release(cudp->cud_cuip);
kmem_zone_free(xfs_cud_zone, cudp);
}
}
/*
* When the cud item is committed to disk, all we need to do is delete our
* reference to our partner cui item and then free ourselves. Since we're
* freeing ourselves we must return -1 to keep the transaction code from
* further referencing this item.
*/
STATIC xfs_lsn_t
xfs_cud_item_committed(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
/*
* Drop the CUI reference regardless of whether the CUD has been
* aborted. Once the CUD transaction is constructed, it is the sole
* responsibility of the CUD to release the CUI (even if the CUI is
* aborted due to log I/O error).
*/
xfs_cui_release(cudp->cud_cuip);
kmem_zone_free(xfs_cud_zone, cudp);
return (xfs_lsn_t)-1;
}
/*
* The CUD dependency tracking op doesn't do squat. It can't because
* it doesn't know where the free extent is coming from. The dependency
* tracking has to be handled by the "enclosing" metadata object. For
* example, for inodes, the inode is locked throughout the extent freeing
* so the dependency should be recorded there.
*/
STATIC void
xfs_cud_item_committing(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
}
/*
* This is the ops vector shared by all cud log items.
*/
static const struct xfs_item_ops xfs_cud_item_ops = {
.iop_size = xfs_cud_item_size,
.iop_format = xfs_cud_item_format,
.iop_pin = xfs_cud_item_pin,
.iop_unpin = xfs_cud_item_unpin,
.iop_unlock = xfs_cud_item_unlock,
.iop_committed = xfs_cud_item_committed,
.iop_push = xfs_cud_item_push,
.iop_committing = xfs_cud_item_committing,
};
/*
* Allocate and initialize an cud item with the given number of extents.
*/
struct xfs_cud_log_item *
xfs_cud_init(
struct xfs_mount *mp,
struct xfs_cui_log_item *cuip)
{
struct xfs_cud_log_item *cudp;
cudp = kmem_zone_zalloc(xfs_cud_zone, KM_SLEEP);
xfs_log_item_init(mp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops);
cudp->cud_cuip = cuip;
cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
return cudp;
}
/*
* Process a refcount update intent item that was recovered from the log.
* We need to update the refcountbt.
*/
int
xfs_cui_recover(
struct xfs_trans *parent_tp,
struct xfs_cui_log_item *cuip)
{
int i;
int error = 0;
unsigned int refc_type;
struct xfs_phys_extent *refc;
xfs_fsblock_t startblock_fsb;
bool op_ok;
struct xfs_cud_log_item *cudp;
struct xfs_trans *tp;
struct xfs_btree_cur *rcur = NULL;
enum xfs_refcount_intent_type type;
xfs_fsblock_t new_fsb;
xfs_extlen_t new_len;
struct xfs_bmbt_irec irec;
bool requeue_only = false;
struct xfs_mount *mp = parent_tp->t_mountp;
ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags));
/*
* First check the validity of the extents described by the
* CUI. If any are bad, then assume that all are bad and
* just toss the CUI.
*/
for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
refc = &cuip->cui_format.cui_extents[i];
startblock_fsb = XFS_BB_TO_FSB(mp,
XFS_FSB_TO_DADDR(mp, refc->pe_startblock));
switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
case XFS_REFCOUNT_INCREASE:
case XFS_REFCOUNT_DECREASE:
case XFS_REFCOUNT_ALLOC_COW:
case XFS_REFCOUNT_FREE_COW:
op_ok = true;
break;
default:
op_ok = false;
break;
}
if (!op_ok || startblock_fsb == 0 ||
refc->pe_len == 0 ||
startblock_fsb >= mp->m_sb.sb_dblocks ||
refc->pe_len >= mp->m_sb.sb_agblocks ||
(refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) {
/*
* This will pull the CUI from the AIL and
* free the memory associated with it.
*/
set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
xfs_cui_release(cuip);
return -EIO;
}
}
/*
* Under normal operation, refcount updates are deferred, so we
* wouldn't be adding them directly to a transaction. All
* refcount updates manage reservation usage internally and
* dynamically by deferring work that won't fit in the
* transaction. Normally, any work that needs to be deferred
* gets attached to the same defer_ops that scheduled the
* refcount update. However, we're in log recovery here, so we
* we use the passed in defer_ops and to finish up any work that
* doesn't fit. We need to reserve enough blocks to handle a
* full btree split on either end of the refcount range.
*/
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp);
if (error)
return error;
/*
* Recovery stashes all deferred ops during intent processing and
* finishes them on completion. Transfer current dfops state to this
* transaction and transfer the result back before we return.
*/
xfs_defer_move(tp, parent_tp);
cudp = xfs_trans_get_cud(tp, cuip);
for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
refc = &cuip->cui_format.cui_extents[i];
refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
switch (refc_type) {
case XFS_REFCOUNT_INCREASE:
case XFS_REFCOUNT_DECREASE:
case XFS_REFCOUNT_ALLOC_COW:
case XFS_REFCOUNT_FREE_COW:
type = refc_type;
break;
default:
error = -EFSCORRUPTED;
goto abort_error;
}
if (requeue_only) {
new_fsb = refc->pe_startblock;
new_len = refc->pe_len;
} else
error = xfs_trans_log_finish_refcount_update(tp, cudp,
tp->t_dfops, type, refc->pe_startblock,
refc->pe_len, &new_fsb, &new_len, &rcur);
if (error)
goto abort_error;
/* Requeue what we didn't finish. */
if (new_len > 0) {
irec.br_startblock = new_fsb;
irec.br_blockcount = new_len;
switch (type) {
case XFS_REFCOUNT_INCREASE:
error = xfs_refcount_increase_extent(
tp->t_mountp, tp->t_dfops,
&irec);
break;
case XFS_REFCOUNT_DECREASE:
error = xfs_refcount_decrease_extent(
tp->t_mountp, tp->t_dfops,
&irec);
break;
case XFS_REFCOUNT_ALLOC_COW:
error = xfs_refcount_alloc_cow_extent(
tp->t_mountp, tp->t_dfops,
irec.br_startblock,
irec.br_blockcount);
break;
case XFS_REFCOUNT_FREE_COW:
error = xfs_refcount_free_cow_extent(
tp->t_mountp, tp->t_dfops,
irec.br_startblock,
irec.br_blockcount);
break;
default:
ASSERT(0);
}
if (error)
goto abort_error;
requeue_only = true;
}
}
xfs_refcount_finish_one_cleanup(tp, rcur, error);
set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
xfs_defer_move(parent_tp, tp);
error = xfs_trans_commit(tp);
return error;
abort_error:
xfs_refcount_finish_one_cleanup(tp, rcur, error);
xfs_defer_move(parent_tp, tp);
xfs_trans_cancel(tp);
return error;
}