/*
* Copyright (C) 2008 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include "ctree.h"
#include "transaction.h"
#include "disk-io.h"
#include "locking.h"
#include "print-tree.h"
#include "compat.h"
/* magic values for the inode_only field in btrfs_log_inode:
*
* LOG_INODE_ALL means to log everything
* LOG_INODE_EXISTS means to log just enough to recreate the inode
* during log replay
*/
#define LOG_INODE_ALL 0
#define LOG_INODE_EXISTS 1
/*
* stages for the tree walking. The first
* stage (0) is to only pin down the blocks we find
* the second stage (1) is to make sure that all the inodes
* we find in the log are created in the subvolume.
*
* The last stage is to deal with directories and links and extents
* and all the other fun semantics
*/
#define LOG_WALK_PIN_ONLY 0
#define LOG_WALK_REPLAY_INODES 1
#define LOG_WALK_REPLAY_ALL 2
static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
int inode_only);
/*
* tree logging is a special write ahead log used to make sure that
* fsyncs and O_SYNCs can happen without doing full tree commits.
*
* Full tree commits are expensive because they require commonly
* modified blocks to be recowed, creating many dirty pages in the
* extent tree an 4x-6x higher write load than ext3.
*
* Instead of doing a tree commit on every fsync, we use the
* key ranges and transaction ids to find items for a given file or directory
* that have changed in this transaction. Those items are copied into
* a special tree (one per subvolume root), that tree is written to disk
* and then the fsync is considered complete.
*
* After a crash, items are copied out of the log-tree back into the
* subvolume tree. Any file data extents found are recorded in the extent
* allocation tree, and the log-tree freed.
*
* The log tree is read three times, once to pin down all the extents it is
* using in ram and once, once to create all the inodes logged in the tree
* and once to do all the other items.
*/
/*
* btrfs_add_log_tree adds a new per-subvolume log tree into the
* tree of log tree roots. This must be called with a tree log transaction
* running (see start_log_trans).
*/
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_key key;
struct btrfs_root_item root_item;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
struct btrfs_root *new_root = root;
int ret;
u64 objectid = root->root_key.objectid;
leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
BTRFS_TREE_LOG_OBJECTID,
0, 0, 0, 0, 0);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
return ret;
}
btrfs_set_header_nritems(leaf, 0);
btrfs_set_header_level(leaf, 0);
btrfs_set_header_bytenr(leaf, leaf->start);
btrfs_set_header_generation(leaf, trans->transid);
btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
write_extent_buffer(leaf, root->fs_info->fsid,
(unsigned long)btrfs_header_fsid(leaf),
BTRFS_FSID_SIZE);
btrfs_mark_buffer_dirty(leaf);
inode_item = &root_item.inode;
memset(inode_item, 0, sizeof(*inode_item));
inode_item->generation = cpu_to_le64(1);
inode_item->size = cpu_to_le64(3);
inode_item->nlink = cpu_to_le32(1);
inode_item->nblocks = cpu_to_le64(1);
inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
btrfs_set_root_bytenr(&root_item, leaf->start);
btrfs_set_root_level(&root_item, 0);
btrfs_set_root_refs(&root_item, 0);
btrfs_set_root_used(&root_item, 0);
memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
root_item.drop_level = 0;
btrfs_tree_unlock(leaf);
free_extent_buffer(leaf);
leaf = NULL;
btrfs_set_root_dirid(&root_item, 0);
key.objectid = BTRFS_TREE_LOG_OBJECTID;
key.offset = objectid;
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
&root_item);
if (ret)
goto fail;
new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
&key);
BUG_ON(!new_root);
WARN_ON(root->log_root);
root->log_root = new_root;
/*
* log trees do not get reference counted because they go away
* before a real commit is actually done. They do store pointers
* to file data extents, and those reference counts still get
* updated (along with back refs to the log tree).
*/
new_root->ref_cows = 0;
new_root->last_trans = trans->transid;
fail:
return ret;
}
/*
* start a sub transaction and setup the log tree
* this increments the log tree writer count to make the people
* syncing the tree wait for us to finish
*/
static int start_log_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
mutex_lock(&root->fs_info->tree_log_mutex);
if (!root->fs_info->log_root_tree) {
ret = btrfs_init_log_root_tree(trans, root->fs_info);
BUG_ON(ret);
}
if (!root->log_root) {
ret = btrfs_add_log_tree(trans, root);
BUG_ON(ret);
}
atomic_inc(&root->fs_info->tree_log_writers);
root->fs_info->tree_log_batch++;
mutex_unlock(&root->fs_info->tree_log_mutex);
return 0;
}
/*
* returns 0 if there was a log transaction running and we were able
* to join, or returns -ENOENT if there were not transactions
* in progress
*/
static int join_running_log_trans(struct btrfs_root *root)
{
int ret = -ENOENT;
smp_mb();
if (!root->log_root)
return -ENOENT;
mutex_lock(&root->fs_info->tree_log_mutex);
if (root->log_root) {
ret = 0;
atomic_inc(&root->fs_info->tree_log_writers);
root->fs_info->tree_log_batch++;
}
mutex_unlock(&root->fs_info->tree_log_mutex);
return ret;
}
/*
* indicate we're done making changes to the log tree
* and wake up anyone waiting to do a sync
*/
static int end_log_trans(struct btrfs_root *root)
{
atomic_dec(&root->fs_info->tree_log_writers);
smp_mb();
if (waitqueue_active(&root->fs_info->tree_log_wait))
wake_up(&root->fs_info->tree_log_wait);
return 0;
}
/*
* the walk control struct is used to pass state down the chain when
* processing the log tree. The stage field tells us which part
* of the log tree processing we are currently doing. The others
* are state fields used for that specific part
*/
struct walk_control {
/* should we free the extent on disk when done? This is used
* at transaction commit time while freeing a log tree
*/
int free;
/* should we write out the extent buffer? This is used
* while flushing the log tree to disk during a sync
*/
int write;
/* should we wait for the extent buffer io to finish? Also used
* while flushing the log tree to disk for a sync
*/
int wait;
/* pin only walk, we record which extents on disk belong to the
* log trees
*/
int pin;
/* what stage of the replay code we're currently in */
int stage;
/* the root we are currently replaying */
struct btrfs_root *replay_dest;
/* the trans handle for the current replay */
struct btrfs_trans_handle *trans;
/* the function that gets used to process blocks we find in the
* tree. Note the extent_buffer might not be up to date when it is
* passed in, and it must be checked or read if you need the data
* inside it
*/
int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
struct walk_control *wc, u64 gen);
};
/*
* process_func used to pin down extents, write them or wait on them
*/
static int process_one_buffer(struct btrfs_root *log,
struct extent_buffer *eb,
struct walk_control *wc, u64 gen)
{
if (wc->pin) {
mutex_lock(&log->fs_info->alloc_mutex);
btrfs_update_pinned_extents(log->fs_info->extent_root,
eb->start, eb->len, 1);
mutex_unlock(&log->fs_info->alloc_mutex);
}
if (btrfs_buffer_uptodate(eb, gen)) {
if (wc->write)
btrfs_write_tree_block(eb);
if (wc->wait)
btrfs_wait_tree_block_writeback(eb);
}
return 0;
}
/*
* Item overwrite used by replay and tree logging. eb, slot and key all refer
* to the src data we are copying out.
*
* root is the tree we are copying into, and path is a scratch
* path for use in this function (it should be released on entry and
* will be released on exit).
*
* If the key is already in the destination tree the existing item is
* overwritten. If the existing item isn't big enough, it is extended.
* If it is too large, it is truncated.
*
* If the key isn't in the destination yet, a new item is inserted.
*/
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int ret;
u32 item_size;
u64 saved_i_size = 0;
int save_old_i_size = 0;
unsigned long src_ptr;
unsigned long dst_ptr;
int overwrite_root = 0;
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
overwrite_root = 1;
item_size = btrfs_item_size_nr(eb, slot);
src_ptr = btrfs_item_ptr_offset(eb, slot);
/* look for the key in the destination tree */
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret == 0) {
char *src_copy;
char *dst_copy;
u32 dst_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
if (dst_size != item_size)
goto insert;
if (item_size == 0) {
btrfs_release_path(root, path);
return 0;
}
dst_copy = kmalloc(item_size, GFP_NOFS);
src_copy = kmalloc(item_size, GFP_NOFS);
read_extent_buffer(eb, src_copy, src_ptr, item_size);
dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
item_size);
ret = memcmp(dst_copy, src_copy, item_size);
kfree(dst_copy);
kfree(src_copy);
/*
* they have the same contents, just return, this saves
* us from cowing blocks in the destination tree and doing
* extra writes that may not have been done by a previous
* sync
*/
if (ret == 0) {
btrfs_release_path(root, path);
return 0;
}
}
insert:
btrfs_release_path(root, path);
/* try to insert the key into the destination tree */
ret = btrfs_insert_empty_item(trans, root, path,
key, item_size);
/* make sure any existing item is the correct size */
if (ret == -EEXIST) {
u32 found_size;
found_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
if (found_size > item_size) {
btrfs_truncate_item(trans, root, path, item_size, 1);
} else if (found_size < item_size) {
ret = btrfs_del_item(trans, root,
path);
BUG_ON(ret);
btrfs_release_path(root, path);
ret = btrfs_insert_empty_item(trans,
root, path, key, item_size);
BUG_ON(ret);
}
} else if (ret) {
BUG();
}
dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
path->slots[0]);
/* don't overwrite an existing inode if the generation number
* was logged as zero. This is done when the tree logging code
* is just logging an inode to make sure it exists after recovery.
*
* Also, don't overwrite i_size on directories during replay.
* log replay inserts and removes directory items based on the
* state of the tree found in the subvolume, and i_size is modified
* as it goes
*/
if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
struct btrfs_inode_item *src_item;
struct btrfs_inode_item *dst_item;
src_item = (struct btrfs_inode_item *)src_ptr;
dst_item = (struct btrfs_inode_item *)dst_ptr;
if (btrfs_inode_generation(eb, src_item) == 0)
goto no_copy;
if (overwrite_root &&
S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
save_old_i_size = 1;
saved_i_size = btrfs_inode_size(path->nodes[0],
dst_item);
}
}
copy_extent_buffer(path->nodes[0], eb, dst_ptr,
src_ptr, item_size);
if (save_old_i_size) {
struct btrfs_inode_item *dst_item;
dst_item = (struct btrfs_inode_item *)dst_ptr;
btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
}
/* make sure the generation is filled in */
if (key->type == BTRFS_INODE_ITEM_KEY) {
struct btrfs_inode_item *dst_item;
dst_item = (struct btrfs_inode_item *)dst_ptr;
if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
btrfs_set_inode_generation(path->nodes[0], dst_item,
trans->transid);
}
}
no_copy:
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(root, path);
return 0;
}
/*
* simple helper to read an inode off the disk from a given root
* This can only be called for subvolume roots and not for the log
*/
static noinline struct inode *read_one_inode(struct btrfs_root *root,
u64 objectid)
{
struct inode *inode;
inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
if (inode->i_state & I_NEW) {
BTRFS_I(inode)->root = root;
BTRFS_I(inode)->location.objectid = objectid;
BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
BTRFS_I(inode)->location.offset = 0;
btrfs_read_locked_inode(inode);
unlock_new_inode(inode);
}
if (is_bad_inode(inode)) {
iput(inode);
inode = NULL;
}
return inode;
}
/* replays a single extent in 'eb' at 'slot' with 'key' into the
* subvolume 'root'. path is released on entry and should be released
* on exit.
*
* extents in the log tree have not been allocated out of the extent
* tree yet. So, this completes the allocation, taking a reference
* as required if the extent already exists or creating a new extent
* if it isn't in the extent allocation tree yet.
*
* The extent is inserted into the file, dropping any existing extents
* from the file that overlap the new one.
*/
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int found_type;
u64 mask = root->sectorsize - 1;
u64 extent_end;
u64 alloc_hint;
u64 start = key->offset;
struct btrfs_file_extent_item *item;
struct inode *inode = NULL;
unsigned long size;
int ret = 0;
item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
found_type = btrfs_file_extent_type(eb, item);
if (found_type == BTRFS_FILE_EXTENT_REG)
extent_end = start + btrfs_file_extent_num_bytes(eb, item);
else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
size = btrfs_file_extent_inline_len(eb,
btrfs_item_nr(eb, slot));
extent_end = (start + size + mask) & ~mask;
} else {
ret = 0;
goto out;
}
inode = read_one_inode(root, key->objectid);
if (!inode) {
ret = -EIO;
goto out;
}
/*
* first check to see if we already have this extent in the
* file. This must be done before the btrfs_drop_extents run
* so we don't try to drop this extent.
*/
ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
start, 0);
if (ret == 0 && found_type == BTRFS_FILE_EXTENT_REG) {
struct btrfs_file_extent_item cmp1;
struct btrfs_file_extent_item cmp2;
struct btrfs_file_extent_item *existing;
struct extent_buffer *leaf;
leaf = path->nodes[0];
existing = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
read_extent_buffer(eb, &cmp1, (unsigned long)item,
sizeof(cmp1));
read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
sizeof(cmp2));
/*
* we already have a pointer to this exact extent,
* we don't have to do anything
*/
if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
btrfs_release_path(root, path);
goto out;
}
}
btrfs_release_path(root, path);
/* drop any overlapping extents */
ret = btrfs_drop_extents(trans, root, inode,
start, extent_end, start, &alloc_hint);
BUG_ON(ret);
BUG_ON(ret);
if (found_type == BTRFS_FILE_EXTENT_REG) {
struct btrfs_key ins;
ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
ins.type = BTRFS_EXTENT_ITEM_KEY;
/* insert the extent pointer in the file */
ret = overwrite_item(trans, root, path, eb, slot, key);
BUG_ON(ret);
/*
* is this extent already allocated in the extent
* allocation tree? If so, just add a reference
*/
ret = btrfs_lookup_extent(root, path, ins.objectid, ins.offset);
btrfs_release_path(root, path);
if (ret == 0) {
ret = btrfs_inc_extent_ref(trans, root,
ins.objectid, ins.offset,
root->root_key.objectid,
trans->transid, key->objectid, start);
} else {
/*
* insert the extent pointer in the extent
* allocation tree
*/
ret = btrfs_alloc_logged_extent(trans, root,
root->root_key.objectid,
trans->transid, key->objectid,
start, &ins);
BUG_ON(ret);
}
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
/* inline extents are easy, we just overwrite them */
ret = overwrite_item(trans, root, path, eb, slot, key);
BUG_ON(ret);
}
/* btrfs_drop_extents changes i_blocks, update it here */
inode->i_blocks += (extent_end - start) >> 9;
btrfs_update_inode(trans, root, inode);
out:
if (inode)
iput(inode);
return ret;
}
/*
* when cleaning up conflicts between the directory names in the
* subvolume, directory names in the log and directory names in the
* inode back references, we may have to unlink inodes from directories.
*
* This is a helper function to do the unlink of a specific directory
* item
*/
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct inode *dir,
struct btrfs_dir_item *di)
{
struct inode *inode;
char *name;
int name_len;
struct extent_buffer *leaf;
struct btrfs_key location;
int ret;
leaf = path->nodes[0];
btrfs_dir_item_key_to_cpu(leaf, di, &location);
name_len = btrfs_dir_name_len(leaf, di);
name = kmalloc(name_len, GFP_NOFS);
read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
btrfs_release_path(root, path);
inode = read_one_inode(root, location.objectid);
BUG_ON(!inode);
btrfs_inc_nlink(inode);
ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
kfree(name);
iput(inode);
return ret;
}
/*
* helper function to see if a given name and sequence number found
* in an inode back reference are already in a directory and correctly
* point to this inode
*/
static noinline int inode_in_dir(struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, u64 objectid, u64 index,
const char *name, int name_len)
{
struct btrfs_dir_item *di;
struct btrfs_key location;
int match = 0;
di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
index, name, name_len, 0);
if (di && !IS_ERR(di)) {
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
if (location.objectid != objectid)
goto out;
} else
goto out;
btrfs_release_path(root, path);
di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
if (di && !IS_ERR(di)) {
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
if (location.objectid != objectid)
goto out;
} else
goto out;
match = 1;
out:
btrfs_release_path(root, path);
return match;
}
/*
* helper function to check a log tree for a named back reference in
* an inode. This is used to decide if a back reference that is
* found in the subvolume conflicts with what we find in the log.
*
* inode backreferences may have multiple refs in a single item,
* during replay we process one reference at a time, and we don't
* want to delete valid links to a file from the subvolume if that
* link is also in the log.
*/
static noinline int backref_in_log(struct btrfs_root *log,
struct btrfs_key *key,
char *name, int namelen)
{
struct btrfs_path *path;
struct btrfs_inode_ref *ref;
unsigned long ptr;
unsigned long ptr_end;
unsigned long name_ptr;
int found_name_len;
int item_size;
int ret;
int match = 0;
path = btrfs_alloc_path();
ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
if (ret != 0)
goto out;
item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
ptr_end = ptr + item_size;
while (ptr < ptr_end) {
ref = (struct btrfs_inode_ref *)ptr;
found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
if (found_name_len == namelen) {
name_ptr = (unsigned long)(ref + 1);
ret = memcmp_extent_buffer(path->nodes[0], name,
name_ptr, namelen);
if (ret == 0) {
match = 1;
goto out;
}
}
ptr = (unsigned long)(ref + 1) + found_name_len;
}
out:
btrfs_free_path(path);
return match;
}
/*
* replay one inode back reference item found in the log tree.
* eb, slot and key refer to the buffer and key found in the log tree.
* root is the destination we are replaying into, and path is for temp
* use by this function. (it should be released on return).
*/
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
struct inode *dir;
int ret;
struct btrfs_key location;
struct btrfs_inode_ref *ref;
struct btrfs_dir_item *di;
struct inode *inode;
char *name;
int namelen;
unsigned long ref_ptr;
unsigned long ref_end;
location.objectid = key->objectid;
location.type = BTRFS_INODE_ITEM_KEY;
location.offset = 0;
/*
* it is possible that we didn't log all the parent directories
* for a given inode. If we don't find the dir, just don't
* copy the back ref in. The link count fixup code will take
* care of the rest
*/
dir = read_one_inode(root, key->offset);
if (!dir)
return -ENOENT;
inode = read_one_inode(root, key->objectid);
BUG_ON(!dir);
ref_ptr = btrfs_item_ptr_offset(eb, slot);
ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
again:
ref = (struct btrfs_inode_ref *)ref_ptr;
namelen = btrfs_inode_ref_name_len(eb, ref);
name = kmalloc(namelen, GFP_NOFS);
BUG_ON(!name);
read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
/* if we already have a perfect match, we're done */
if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
btrfs_inode_ref_index(eb, ref),
name, namelen)) {
goto out;
}
/*
* look for a conflicting back reference in the metadata.
* if we find one we have to unlink that name of the file
* before we add our new link. Later on, we overwrite any
* existing back reference, and we don't want to create
* dangling pointers in the directory.
*/
conflict_again:
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret == 0) {
char *victim_name;
int victim_name_len;
struct btrfs_inode_ref *victim_ref;
unsigned long ptr;
unsigned long ptr_end;
struct extent_buffer *leaf = path->nodes[0];
/* are we trying to overwrite a back ref for the root directory
* if so, just jump out, we're done
*/
if (key->objectid == key->offset)
goto out_nowrite;
/* check all the names in this back reference to see
* if they are in the log. if so, we allow them to stay
* otherwise they must be unlinked as a conflict
*/
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
while(ptr < ptr_end) {
victim_ref = (struct btrfs_inode_ref *)ptr;
victim_name_len = btrfs_inode_ref_name_len(leaf,
victim_ref);
victim_name = kmalloc(victim_name_len, GFP_NOFS);
BUG_ON(!victim_name);
read_extent_buffer(leaf, victim_name,
(unsigned long)(victim_ref + 1),
victim_name_len);
if (!backref_in_log(log, key, victim_name,
victim_name_len)) {
btrfs_inc_nlink(inode);
btrfs_release_path(root, path);
ret = btrfs_unlink_inode(trans, root, dir,
inode, victim_name,
victim_name_len);
kfree(victim_name);
btrfs_release_path(root, path);
goto conflict_again;
}
kfree(victim_name);
ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
}
BUG_ON(ret);
}
btrfs_release_path(root, path);
/* look for a conflicting sequence number */
di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
btrfs_inode_ref_index(eb, ref),
name, namelen, 0);
if (di && !IS_ERR(di)) {
ret = drop_one_dir_item(trans, root, path, dir, di);
BUG_ON(ret);
}
btrfs_release_path(root, path);
/* look for a conflicting name */
di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
name, namelen, 0);
if (di && !IS_ERR(di)) {
ret = drop_one_dir_item(trans, root, path, dir, di);
BUG_ON(ret);
}
btrfs_release_path(root, path);
/* insert our name */
ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
btrfs_inode_ref_index(eb, ref));
BUG_ON(ret);
btrfs_update_inode(trans, root, inode);
out:
ref_ptr = (unsigned long)(ref + 1) + namelen;
kfree(name);
if (ref_ptr < ref_end)
goto again;
/* finally write the back reference in the inode */
ret = overwrite_item(trans, root, path, eb, slot, key);
BUG_ON(ret);
out_nowrite:
btrfs_release_path(root, path);
iput(dir);
iput(inode);
return 0;
}
/*
* replay one csum item from the log tree into the subvolume 'root'
* eb, slot and key all refer to the log tree
* path is for temp use by this function and should be released on return
*
* This copies the checksums out of the log tree and inserts them into
* the subvolume. Any existing checksums for this range in the file
* are overwritten, and new items are added where required.
*
* We keep this simple by reusing the btrfs_ordered_sum code from
* the data=ordered mode. This basically means making a copy
* of all the checksums in ram, which we have to do anyway for kmap
* rules.
*
* The copy is then sent down to btrfs_csum_file_blocks, which
* does all the hard work of finding existing items in the file
* or adding new ones.
*/
static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int ret;
u32 item_size = btrfs_item_size_nr(eb, slot);
u64 cur_offset;
unsigned long file_bytes;
struct btrfs_ordered_sum *sums;
struct btrfs_sector_sum *sector_sum;
struct inode *inode;
unsigned long ptr;
file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize;
inode = read_one_inode(root, key->objectid);
if (!inode) {
return -EIO;
}
sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
if (!sums) {
iput(inode);
return -ENOMEM;
}
INIT_LIST_HEAD(&sums->list);
sums->len = file_bytes;
sums->file_offset = key->offset;
/*
* copy all the sums into the ordered sum struct
*/
sector_sum = sums->sums;
cur_offset = key->offset;
ptr = btrfs_item_ptr_offset(eb, slot);
while(item_size > 0) {
sector_sum->offset = cur_offset;
read_extent_buffer(eb, §or_sum->sum, ptr, BTRFS_CRC32_SIZE);
sector_sum++;
item_size -= BTRFS_CRC32_SIZE;
ptr += BTRFS_CRC32_SIZE;
cur_offset += root->sectorsize;
}
/* let btrfs_csum_file_blocks add them into the file */
ret = btrfs_csum_file_blocks(trans, root, inode, sums);
BUG_ON(ret);
kfree(sums);
iput(inode);
return 0;
}
/*
* There are a few corners where the link count of the file can't
* be properly maintained during replay. So, instead of adding
* lots of complexity to the log code, we just scan the backrefs
* for any file that has been through replay.
*
* The scan will update the link count on the inode to reflect the
* number of back refs found. If it goes down to zero, the iput
* will free the inode.
*/
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
u64 nlink = 0;
unsigned long ptr;
unsigned long ptr_end;
int name_len;
key.objectid = inode->i_ino;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
path = btrfs_alloc_path();
while(1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
break;
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &key,
path->slots[0]);
if (key.objectid != inode->i_ino ||
key.type != BTRFS_INODE_REF_KEY)
break;
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
while(ptr < ptr_end) {
struct btrfs_inode_ref *ref;
ref = (struct btrfs_inode_ref *)ptr;
name_len = btrfs_inode_ref_name_len(path->nodes[0],
ref);
ptr = (unsigned long)(ref + 1) + name_len;
nlink++;
}
if (key.offset == 0)
break;
key.offset--;
btrfs_release_path(root, path);
}
btrfs_free_path(path);
if (nlink != inode->i_nlink) {
inode->i_nlink = nlink;
btrfs_update_inode(trans, root, inode);
}
BTRFS_I(inode)->index_cnt = (u64)-1;
return 0;
}
static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path)
{
int ret;
struct btrfs_key key;
struct inode *inode;
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = (u64)-1;
while(1) {
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
break;
if (ret == 1) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
key.type != BTRFS_ORPHAN_ITEM_KEY)
break;
ret = btrfs_del_item(trans, root, path);
BUG_ON(ret);
btrfs_release_path(root, path);
inode = read_one_inode(root, key.offset);
BUG_ON(!inode);
ret = fixup_inode_link_count(trans, root, inode);
BUG_ON(ret);
iput(inode);
if (key.offset == 0)
break;
key.offset--;
}
btrfs_release_path(root, path);
return 0;
}
/*
* record a given inode in the fixup dir so we can check its link
* count when replay is done. The link count is incremented here
* so the inode won't go away until we check it
*/
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 objectid)
{
struct btrfs_key key;
int ret = 0;
struct inode *inode;
inode = read_one_inode(root, objectid);
BUG_ON(!inode);
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
key.offset = objectid;
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
btrfs_release_path(root, path);
if (ret == 0) {
btrfs_inc_nlink(inode);
btrfs_update_inode(trans, root, inode);
} else if (ret == -EEXIST) {
ret = 0;
} else {
BUG();
}
iput(inode);
return ret;
}
/*
* when replaying the log for a directory, we only insert names
* for inodes that actually exist. This means an fsync on a directory
* does not implicitly fsync all the new files in it
*/
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, u64 index,
char *name, int name_len, u8 type,
struct btrfs_key *location)
{
struct inode *inode;
struct inode *dir;
int ret;
inode = read_one_inode(root, location->objectid);
if (!inode)
return -ENOENT;
dir = read_one_inode(root, dirid);
if (!dir) {
iput(inode);
return -EIO;
}
ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
/* FIXME, put inode into FIXUP list */
iput(inode);
iput(dir);
return ret;
}
/*
* take a single entry in a log directory item and replay it into
* the subvolume.
*
* if a conflicting item exists in the subdirectory already,
* the inode it points to is unlinked and put into the link count
* fix up tree.
*
* If a name from the log points to a file or directory that does
* not exist in the FS, it is skipped. fsyncs on directories
* do not force down inodes inside that directory, just changes to the
* names or unlinks in a directory.
*/
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb,
struct btrfs_dir_item *di,
struct btrfs_key *key)
{
char *name;
int name_len;
struct btrfs_dir_item *dst_di;
struct btrfs_key found_key;
struct btrfs_key log_key;
struct inode *dir;
u8 log_type;
int exists;
int ret;
dir = read_one_inode(root, key->objectid);
BUG_ON(!dir);
name_len = btrfs_dir_name_len(eb, di);
name = kmalloc(name_len, GFP_NOFS);
log_type = btrfs_dir_type(eb, di);
read_extent_buffer(eb, name, (unsigned long)(di + 1),
name_len);
btrfs_dir_item_key_to_cpu(eb, di, &log_key);
exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
if (exists == 0)
exists = 1;
else
exists = 0;
btrfs_release_path(root, path);
if (key->type == BTRFS_DIR_ITEM_KEY) {
dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
name, name_len, 1);
}
else if (key->type == BTRFS_DIR_INDEX_KEY) {
dst_di = btrfs_lookup_dir_index_item(trans, root, path,
key->objectid,
key->offset, name,
name_len, 1);
} else {
BUG();
}
if (!dst_di || IS_ERR(dst_di)) {
/* we need a sequence number to insert, so we only
* do inserts for the BTRFS_DIR_INDEX_KEY types
*/
if (key->type != BTRFS_DIR_INDEX_KEY)
goto out;
goto insert;
}
btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
/* the existing item matches the logged item */
if (found_key.objectid == log_key.objectid &&
found_key.type == log_key.type &&
found_key.offset == log_key.offset &&
btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
goto out;
}
/*
* don't drop the conflicting directory entry if the inode
* for the new entry doesn't exist
*/
if (!exists)
goto out;
ret = drop_one_dir_item(trans, root, path, dir, dst_di);
BUG_ON(ret);
if (key->type == BTRFS_DIR_INDEX_KEY)
goto insert;
out:
btrfs_release_path(root, path);
kfree(name);
iput(dir);
return 0;
insert:
btrfs_release_path(root, path);
ret = insert_one_name(trans, root, path, key->objectid, key->offset,
name, name_len, log_type, &log_key);
if (ret && ret != -ENOENT)
BUG();
goto out;
}
/*
* find all the names in a directory item and reconcile them into
* the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
* one name in a directory item, but the same code gets used for
* both directory index types
*/
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int ret;
u32 item_size = btrfs_item_size_nr(eb, slot);
struct btrfs_dir_item *di;
int name_len;
unsigned long ptr;
unsigned long ptr_end;
ptr = btrfs_item_ptr_offset(eb, slot);
ptr_end = ptr + item_size;
while(ptr < ptr_end) {
di = (struct btrfs_dir_item *)ptr;
name_len = btrfs_dir_name_len(eb, di);
ret = replay_one_name(trans, root, path, eb, di, key);
BUG_ON(ret);
ptr = (unsigned long)(di + 1);
ptr += name_len;
}
return 0;
}
/*
* directory replay has two parts. There are the standard directory
* items in the log copied from the subvolume, and range items
* created in the log while the subvolume was logged.
*
* The range items tell us which parts of the key space the log
* is authoritative for. During replay, if a key in the subvolume
* directory is in a logged range item, but not actually in the log
* that means it was deleted from the directory before the fsync
* and should be removed.
*/
static noinline int find_dir_range(struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, int key_type,
u64 *start_ret, u64 *end_ret)
{
struct btrfs_key key;
u64 found_end;
struct btrfs_dir_log_item *item;
int ret;
int nritems;
if (*start_ret == (u64)-1)
return 1;
key.objectid = dirid;
key.type = key_type;
key.offset = *start_ret;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
if (ret > 0) {
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
}
if (ret != 0)
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != key_type || key.objectid != dirid) {
ret = 1;
goto next;
}
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
found_end = btrfs_dir_log_end(path->nodes[0], item);
if (*start_ret >= key.offset && *start_ret <= found_end) {
ret = 0;
*start_ret = key.offset;
*end_ret = found_end;
goto out;
}
ret = 1;
next:
/* check the next slot in the tree to see if it is a valid item */
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret)
goto out;
} else {
path->slots[0]++;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != key_type || key.objectid != dirid) {
ret = 1;
goto out;
}
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
found_end = btrfs_dir_log_end(path->nodes[0], item);
*start_ret = key.offset;
*end_ret = found_end;
ret = 0;
out:
btrfs_release_path(root, path);
return ret;
}
/*
* this looks for a given directory item in the log. If the directory
* item is not in the log, the item is removed and the inode it points
* to is unlinked
*/
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
struct btrfs_path *log_path,
struct inode *dir,
struct btrfs_key *dir_key)
{
int ret;
struct extent_buffer *eb;
int slot;
u32 item_size;
struct btrfs_dir_item *di;
struct btrfs_dir_item *log_di;
int name_len;
unsigned long ptr;
unsigned long ptr_end;
char *name;
struct inode *inode;
struct btrfs_key location;
again:
eb = path->nodes[0];
slot = path->slots[0];
item_size = btrfs_item_size_nr(eb, slot);
ptr = btrfs_item_ptr_offset(eb, slot);
ptr_end = ptr + item_size;
while(ptr < ptr_end) {
di = (struct btrfs_dir_item *)ptr;
name_len = btrfs_dir_name_len(eb, di);
name = kmalloc(name_len, GFP_NOFS);
if (!name) {
ret = -ENOMEM;
goto out;
}
read_extent_buffer(eb, name, (unsigned long)(di + 1),
name_len);
log_di = NULL;
if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
log_di = btrfs_lookup_dir_item(trans, log, log_path,
dir_key->objectid,
name, name_len, 0);
} else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
log_di = btrfs_lookup_dir_index_item(trans, log,
log_path,
dir_key->objectid,
dir_key->offset,
name, name_len, 0);
}
if (!log_di || IS_ERR(log_di)) {
btrfs_dir_item_key_to_cpu(eb, di, &location);
btrfs_release_path(root, path);
btrfs_release_path(log, log_path);
inode = read_one_inode(root, location.objectid);
BUG_ON(!inode);
ret = link_to_fixup_dir(trans, root,
path, location.objectid);
BUG_ON(ret);
btrfs_inc_nlink(inode);
ret = btrfs_unlink_inode(trans, root, dir, inode,
name, name_len);
BUG_ON(ret);
kfree(name);
iput(inode);
/* there might still be more names under this key
* check and repeat if required
*/
ret = btrfs_search_slot(NULL, root, dir_key, path,
0, 0);
if (ret == 0)
goto again;
ret = 0;
goto out;
}
btrfs_release_path(log, log_path);
kfree(name);
ptr = (unsigned long)(di + 1);
ptr += name_len;
}
ret = 0;
out:
btrfs_release_path(root, path);
btrfs_release_path(log, log_path);
return ret;
}
/*
* deletion replay happens before we copy any new directory items
* out of the log or out of backreferences from inodes. It
* scans the log to find ranges of keys that log is authoritative for,
* and then scans the directory to find items in those ranges that are
* not present in the log.
*
* Anything we don't find in the log is unlinked and removed from the
* directory.
*/
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
u64 dirid)
{
u64 range_start;
u64 range_end;
int key_type = BTRFS_DIR_LOG_ITEM_KEY;
int ret = 0;
struct btrfs_key dir_key;
struct btrfs_key found_key;
struct btrfs_path *log_path;
struct inode *dir;
dir_key.objectid = dirid;
dir_key.type = BTRFS_DIR_ITEM_KEY;
log_path = btrfs_alloc_path();
if (!log_path)
return -ENOMEM;
dir = read_one_inode(root, dirid);
/* it isn't an error if the inode isn't there, that can happen
* because we replay the deletes before we copy in the inode item
* from the log
*/
if (!dir) {
btrfs_free_path(log_path);
return 0;
}
again:
range_start = 0;
range_end = 0;
while(1) {
ret = find_dir_range(log, path, dirid, key_type,
&range_start, &range_end);
if (ret != 0)
break;
dir_key.offset = range_start;
while(1) {
int nritems;
ret = btrfs_search_slot(NULL, root, &dir_key, path,
0, 0);
if (ret < 0)
goto out;
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret)
break;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != dirid ||
found_key.type != dir_key.type)
goto next_type;
if (found_key.offset > range_end)
break;
ret = check_item_in_log(trans, root, log, path,
log_path, dir, &found_key);
BUG_ON(ret);
if (found_key.offset == (u64)-1)
break;
dir_key.offset = found_key.offset + 1;
}
btrfs_release_path(root, path);
if (range_end == (u64)-1)
break;
range_start = range_end + 1;
}
next_type:
ret = 0;
if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
key_type = BTRFS_DIR_LOG_INDEX_KEY;
dir_key.type = BTRFS_DIR_INDEX_KEY;
btrfs_release_path(root, path);
goto again;
}
out:
btrfs_release_path(root, path);
btrfs_free_path(log_path);
iput(dir);
return ret;
}
/*
* the process_func used to replay items from the log tree. This
* gets called in two different stages. The first stage just looks
* for inodes and makes sure they are all copied into the subvolume.
*
* The second stage copies all the other item types from the log into
* the subvolume. The two stage approach is slower, but gets rid of
* lots of complexity around inodes referencing other inodes that exist
* only in the log (references come from either directory items or inode
* back refs).
*/
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
struct walk_control *wc, u64 gen)
{
int nritems;
struct btrfs_path *path;
struct btrfs_root *root = wc->replay_dest;
struct btrfs_key key;
u32 item_size;
int level;
int i;
int ret;
btrfs_read_buffer(eb, gen);
level = btrfs_header_level(eb);
if (level != 0)
return 0;
path = btrfs_alloc_path();
BUG_ON(!path);
nritems = btrfs_header_nritems(eb);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(eb, &key, i);
item_size = btrfs_item_size_nr(eb, i);
/* inode keys are done during the first stage */
if (key.type == BTRFS_INODE_ITEM_KEY &&
wc->stage == LOG_WALK_REPLAY_INODES) {
struct inode *inode;
struct btrfs_inode_item *inode_item;
u32 mode;
inode_item = btrfs_item_ptr(eb, i,
struct btrfs_inode_item);
mode = btrfs_inode_mode(eb, inode_item);
if (S_ISDIR(mode)) {
ret = replay_dir_deletes(wc->trans,
root, log, path, key.objectid);
BUG_ON(ret);
}
ret = overwrite_item(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
/* for regular files, truncate away
* extents past the new EOF
*/
if (S_ISREG(mode)) {
inode = read_one_inode(root,
key.objectid);
BUG_ON(!inode);
ret = btrfs_truncate_inode_items(wc->trans,
root, inode, inode->i_size,
BTRFS_EXTENT_DATA_KEY);
BUG_ON(ret);
iput(inode);
}
ret = link_to_fixup_dir(wc->trans, root,
path, key.objectid);
BUG_ON(ret);
}
if (wc->stage < LOG_WALK_REPLAY_ALL)
continue;
/* these keys are simply copied */
if (key.type == BTRFS_XATTR_ITEM_KEY) {
ret = overwrite_item(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
} else if (key.type == BTRFS_INODE_REF_KEY) {
ret = add_inode_ref(wc->trans, root, log, path,
eb, i, &key);
BUG_ON(ret && ret != -ENOENT);
} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
ret = replay_one_extent(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
} else if (key.type == BTRFS_CSUM_ITEM_KEY) {
ret = replay_one_csum(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
} else if (key.type == BTRFS_DIR_ITEM_KEY ||
key.type == BTRFS_DIR_INDEX_KEY) {
ret = replay_one_dir_item(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
}
}
btrfs_free_path(path);
return 0;
}
static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level,
struct walk_control *wc)
{
u64 root_owner;
u64 root_gen;
u64 bytenr;
u64 ptr_gen;
struct extent_buffer *next;
struct extent_buffer *cur;
struct extent_buffer *parent;
u32 blocksize;
int ret = 0;
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
while(*level > 0) {
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
cur = path->nodes[*level];
if (btrfs_header_level(cur) != *level)
WARN_ON(1);
if (path->slots[*level] >=
btrfs_header_nritems(cur))
break;
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
blocksize = btrfs_level_size(root, *level - 1);
parent = path->nodes[*level];
root_owner = btrfs_header_owner(parent);
root_gen = btrfs_header_generation(parent);
next = btrfs_find_create_tree_block(root, bytenr, blocksize);
wc->process_func(root, next, wc, ptr_gen);
if (*level == 1) {
path->slots[*level]++;
if (wc->free) {
btrfs_read_buffer(next, ptr_gen);
btrfs_tree_lock(next);
clean_tree_block(trans, root, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
ret = btrfs_drop_leaf_ref(trans, root, next);
BUG_ON(ret);
WARN_ON(root_owner !=
BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_extent(trans, root, bytenr,
blocksize, root_owner,
root_gen, 0, 0, 1);
BUG_ON(ret);
}
free_extent_buffer(next);
continue;
}
btrfs_read_buffer(next, ptr_gen);
WARN_ON(*level <= 0);
if (path->nodes[*level-1])
free_extent_buffer(path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(next);
path->slots[*level] = 0;
cond_resched();
}
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
if (path->nodes[*level] == root->node) {
parent = path->nodes[*level];
} else {
parent = path->nodes[*level + 1];
}
bytenr = path->nodes[*level]->start;
blocksize = btrfs_level_size(root, *level);
root_owner = btrfs_header_owner(parent);
root_gen = btrfs_header_generation(parent);
wc->process_func(root, path->nodes[*level], wc,
btrfs_header_generation(path->nodes[*level]));
if (wc->free) {
next = path->nodes[*level];
btrfs_tree_lock(next);
clean_tree_block(trans, root, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
if (*level == 0) {
ret = btrfs_drop_leaf_ref(trans, root, next);
BUG_ON(ret);
}
WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_extent(trans, root, bytenr, blocksize,
root_owner, root_gen, 0, 0, 1);
BUG_ON(ret);
}
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level += 1;
cond_resched();
return 0;
}
static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level,
struct walk_control *wc)
{
u64 root_owner;
u64 root_gen;
int i;
int slot;
int ret;
for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
slot = path->slots[i];
if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
struct extent_buffer *node;
node = path->nodes[i];
path->slots[i]++;
*level = i;
WARN_ON(*level == 0);
return 0;
} else {
if (path->nodes[*level] == root->node) {
root_owner = root->root_key.objectid;
root_gen =
btrfs_header_generation(path->nodes[*level]);
} else {
struct extent_buffer *node;
node = path->nodes[*level + 1];
root_owner = btrfs_header_owner(node);
root_gen = btrfs_header_generation(node);
}
wc->process_func(root, path->nodes[*level], wc,
btrfs_header_generation(path->nodes[*level]));
if (wc->free) {
struct extent_buffer *next;
next = path->nodes[*level];
btrfs_tree_lock(next);
clean_tree_block(trans, root, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
if (*level == 0) {
ret = btrfs_drop_leaf_ref(trans, root,
next);
BUG_ON(ret);
}
WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_extent(trans, root,
path->nodes[*level]->start,
path->nodes[*level]->len,
root_owner, root_gen, 0, 0, 1);
BUG_ON(ret);
}
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level = i + 1;
}
}
return 1;
}
/*
* drop the reference count on the tree rooted at 'snap'. This traverses
* the tree freeing any blocks that have a ref count of zero after being
* decremented.
*/
static int walk_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *log, struct walk_control *wc)
{
int ret = 0;
int wret;
int level;
struct btrfs_path *path;
int i;
int orig_level;
path = btrfs_alloc_path();
BUG_ON(!path);
level = btrfs_header_level(log->node);
orig_level = level;
path->nodes[level] = log->node;
extent_buffer_get(log->node);
path->slots[level] = 0;
while(1) {
wret = walk_down_log_tree(trans, log, path, &level, wc);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
wret = walk_up_log_tree(trans, log, path, &level, wc);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
}
/* was the root node processed? if not, catch it here */
if (path->nodes[orig_level]) {
wc->process_func(log, path->nodes[orig_level], wc,
btrfs_header_generation(path->nodes[orig_level]));
if (wc->free) {
struct extent_buffer *next;
next = path->nodes[orig_level];
btrfs_tree_lock(next);
clean_tree_block(trans, log, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
if (orig_level == 0) {
ret = btrfs_drop_leaf_ref(trans, log,
next);
BUG_ON(ret);
}
WARN_ON(log->root_key.objectid !=
BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_extent(trans, log,
next->start, next->len,
log->root_key.objectid,
btrfs_header_generation(next),
0, 0, 1);
BUG_ON(ret);
}
}
for (i = 0; i <= orig_level; i++) {
if (path->nodes[i]) {
free_extent_buffer(path->nodes[i]);
path->nodes[i] = NULL;
}
}
btrfs_free_path(path);
if (wc->free)
free_extent_buffer(log->node);
return ret;
}
int wait_log_commit(struct btrfs_root *log)
{
DEFINE_WAIT(wait);
u64 transid = log->fs_info->tree_log_transid;
do {
prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
TASK_UNINTERRUPTIBLE);
mutex_unlock(&log->fs_info->tree_log_mutex);
if (atomic_read(&log->fs_info->tree_log_commit))
schedule();
finish_wait(&log->fs_info->tree_log_wait, &wait);
mutex_lock(&log->fs_info->tree_log_mutex);
} while(transid == log->fs_info->tree_log_transid &&
atomic_read(&log->fs_info->tree_log_commit));
return 0;
}
/*
* btrfs_sync_log does sends a given tree log down to the disk and
* updates the super blocks to record it. When this call is done,
* you know that any inodes previously logged are safely on disk
*/
int btrfs_sync_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
unsigned long batch;
struct btrfs_root *log = root->log_root;
struct walk_control wc = {
.write = 1,
.process_func = process_one_buffer
};
mutex_lock(&log->fs_info->tree_log_mutex);
if (atomic_read(&log->fs_info->tree_log_commit)) {
wait_log_commit(log);
goto out;
}
atomic_set(&log->fs_info->tree_log_commit, 1);
while(1) {
mutex_unlock(&log->fs_info->tree_log_mutex);
schedule_timeout_uninterruptible(1);
mutex_lock(&log->fs_info->tree_log_mutex);
batch = log->fs_info->tree_log_batch;
while(atomic_read(&log->fs_info->tree_log_writers)) {
DEFINE_WAIT(wait);
prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
TASK_UNINTERRUPTIBLE);
batch = log->fs_info->tree_log_batch;
mutex_unlock(&log->fs_info->tree_log_mutex);
if (atomic_read(&log->fs_info->tree_log_writers))
schedule();
mutex_lock(&log->fs_info->tree_log_mutex);
finish_wait(&log->fs_info->tree_log_wait, &wait);
}
if (batch == log->fs_info->tree_log_batch)
break;
}
ret = walk_log_tree(trans, log, &wc);
BUG_ON(ret);
ret = walk_log_tree(trans, log->fs_info->log_root_tree, &wc);
BUG_ON(ret);
wc.wait = 1;
ret = walk_log_tree(trans, log, &wc);
BUG_ON(ret);
ret = walk_log_tree(trans, log->fs_info->log_root_tree, &wc);
BUG_ON(ret);
btrfs_set_super_log_root(&root->fs_info->super_for_commit,
log->fs_info->log_root_tree->node->start);
btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
btrfs_header_level(log->fs_info->log_root_tree->node));
write_ctree_super(trans, log->fs_info->tree_root);
log->fs_info->tree_log_transid++;
log->fs_info->tree_log_batch = 0;
atomic_set(&log->fs_info->tree_log_commit, 0);
smp_mb();
if (waitqueue_active(&log->fs_info->tree_log_wait))
wake_up(&log->fs_info->tree_log_wait);
out:
mutex_unlock(&log->fs_info->tree_log_mutex);
return 0;
}
/*
* free all the extents used by the tree log. This should be called
* at commit time of the full transaction
*/
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
{
int ret;
struct btrfs_root *log;
struct key;
struct walk_control wc = {
.free = 1,
.process_func = process_one_buffer
};
if (!root->log_root)
return 0;
log = root->log_root;
ret = walk_log_tree(trans, log, &wc);
BUG_ON(ret);
log = root->log_root;
ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
&log->root_key);
BUG_ON(ret);
root->log_root = NULL;
kfree(root->log_root);
return 0;
}
/*
* helper function to update the item for a given subvolumes log root
* in the tree of log roots
*/
static int update_log_root(struct btrfs_trans_handle *trans,
struct btrfs_root *log)
{
u64 bytenr = btrfs_root_bytenr(&log->root_item);
int ret;
if (log->node->start == bytenr)
return 0;
btrfs_set_root_bytenr(&log->root_item, log->node->start);
btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
&log->root_key, &log->root_item);
BUG_ON(ret);
return ret;
}
/*
* If both a file and directory are logged, and unlinks or renames are
* mixed in, we have a few interesting corners:
*
* create file X in dir Y
* link file X to X.link in dir Y
* fsync file X
* unlink file X but leave X.link
* fsync dir Y
*
* After a crash we would expect only X.link to exist. But file X
* didn't get fsync'd again so the log has back refs for X and X.link.
*
* We solve this by removing directory entries and inode backrefs from the
* log when a file that was logged in the current transaction is
* unlinked. Any later fsync will include the updated log entries, and
* we'll be able to reconstruct the proper directory items from backrefs.
*
* This optimizations allows us to avoid relogging the entire inode
* or the entire directory.
*/
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
struct inode *dir, u64 index)
{
struct btrfs_root *log;
struct btrfs_dir_item *di;
struct btrfs_path *path;
int ret;
int bytes_del = 0;
ret = join_running_log_trans(root);
if (ret)
return 0;
mutex_lock(&BTRFS_I(dir)->log_mutex);
log = root->log_root;
path = btrfs_alloc_path();
di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
name, name_len, -1);
if (di && !IS_ERR(di)) {
ret = btrfs_delete_one_dir_name(trans, log, path, di);
bytes_del += name_len;
BUG_ON(ret);
}
btrfs_release_path(log, path);
di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
index, name, name_len, -1);
if (di && !IS_ERR(di)) {
ret = btrfs_delete_one_dir_name(trans, log, path, di);
bytes_del += name_len;
BUG_ON(ret);
}
/* update the directory size in the log to reflect the names
* we have removed
*/
if (bytes_del) {
struct btrfs_key key;
key.objectid = dir->i_ino;
key.offset = 0;
key.type = BTRFS_INODE_ITEM_KEY;
btrfs_release_path(log, path);
ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
if (ret == 0) {
struct btrfs_inode_item *item;
u64 i_size;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_inode_item);
i_size = btrfs_inode_size(path->nodes[0], item);
if (i_size > bytes_del)
i_size -= bytes_del;
else
i_size = 0;
btrfs_set_inode_size(path->nodes[0], item, i_size);
btrfs_mark_buffer_dirty(path->nodes[0]);
} else
ret = 0;
btrfs_release_path(log, path);
}
btrfs_free_path(path);
mutex_unlock(&BTRFS_I(dir)->log_mutex);
end_log_trans(root);
return 0;
}
/* see comments for btrfs_del_dir_entries_in_log */
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
struct inode *inode, u64 dirid)
{
struct btrfs_root *log;
u64 index;
int ret;
ret = join_running_log_trans(root);
if (ret)
return 0;
log = root->log_root;
mutex_lock(&BTRFS_I(inode)->log_mutex);
ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
dirid, &index);
mutex_unlock(&BTRFS_I(inode)->log_mutex);
end_log_trans(root);
if (ret == 0 || ret == -ENOENT)
return 0;
return ret;
}
/*
* creates a range item in the log for 'dirid'. first_offset and
* last_offset tell us which parts of the key space the log should
* be considered authoritative for.
*/
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
struct btrfs_root *log,
struct btrfs_path *path,
int key_type, u64 dirid,
u64 first_offset, u64 last_offset)
{
int ret;
struct btrfs_key key;
struct btrfs_dir_log_item *item;
key.objectid = dirid;
key.offset = first_offset;
if (key_type == BTRFS_DIR_ITEM_KEY)
key.type = BTRFS_DIR_LOG_ITEM_KEY;
else
key.type = BTRFS_DIR_LOG_INDEX_KEY;
ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
BUG_ON(ret);
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(log, path);
return 0;
}
/*
* log all the items included in the current transaction for a given
* directory. This also creates the range items in the log tree required
* to replay anything deleted before the fsync
*/
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path, int key_type,
u64 min_offset, u64 *last_offset_ret)
{
struct btrfs_key min_key;
struct btrfs_key max_key;
struct btrfs_root *log = root->log_root;
struct extent_buffer *src;
int ret;
int i;
int nritems;
u64 first_offset = min_offset;
u64 last_offset = (u64)-1;
log = root->log_root;
max_key.objectid = inode->i_ino;
max_key.offset = (u64)-1;
max_key.type = key_type;
min_key.objectid = inode->i_ino;
min_key.type = key_type;
min_key.offset = min_offset;
path->keep_locks = 1;
ret = btrfs_search_forward(root, &min_key, &max_key,
path, 0, trans->transid);
/*
* we didn't find anything from this transaction, see if there
* is anything at all
*/
if (ret != 0 || min_key.objectid != inode->i_ino ||
min_key.type != key_type) {
min_key.objectid = inode->i_ino;
min_key.type = key_type;
min_key.offset = (u64)-1;
btrfs_release_path(root, path);
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
if (ret < 0) {
btrfs_release_path(root, path);
return ret;
}
ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
/* if ret == 0 there are items for this type,
* create a range to tell us the last key of this type.
* otherwise, there are no items in this directory after
* *min_offset, and we create a range to indicate that.
*/
if (ret == 0) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(path->nodes[0], &tmp,
path->slots[0]);
if (key_type == tmp.type) {
first_offset = max(min_offset, tmp.offset) + 1;
}
}
goto done;
}
/* go backward to find any previous key */
ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
if (ret == 0) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
if (key_type == tmp.type) {
first_offset = tmp.offset;
ret = overwrite_item(trans, log, dst_path,
path->nodes[0], path->slots[0],
&tmp);
}
}
btrfs_release_path(root, path);
/* find the first key from this transaction again */
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
if (ret != 0) {
WARN_ON(1);
goto done;
}
/*
* we have a block from this transaction, log every item in it
* from our directory
*/
while(1) {
struct btrfs_key tmp;
src = path->nodes[0];
nritems = btrfs_header_nritems(src);
for (i = path->slots[0]; i < nritems; i++) {
btrfs_item_key_to_cpu(src, &min_key, i);
if (min_key.objectid != inode->i_ino ||
min_key.type != key_type)
goto done;
ret = overwrite_item(trans, log, dst_path, src, i,
&min_key);
BUG_ON(ret);
}
path->slots[0] = nritems;
/*
* look ahead to the next item and see if it is also
* from this directory and from this transaction
*/
ret = btrfs_next_leaf(root, path);
if (ret == 1) {
last_offset = (u64)-1;
goto done;
}
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
last_offset = (u64)-1;
goto done;
}
if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
ret = overwrite_item(trans, log, dst_path,
path->nodes[0], path->slots[0],
&tmp);
BUG_ON(ret);
last_offset = tmp.offset;
goto done;
}
}
done:
*last_offset_ret = last_offset;
btrfs_release_path(root, path);
btrfs_release_path(log, dst_path);
/* insert the log range keys to indicate where the log is valid */
ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
first_offset, last_offset);
BUG_ON(ret);
return 0;
}
/*
* logging directories is very similar to logging inodes, We find all the items
* from the current transaction and write them to the log.
*
* The recovery code scans the directory in the subvolume, and if it finds a
* key in the range logged that is not present in the log tree, then it means
* that dir entry was unlinked during the transaction.
*
* In order for that scan to work, we must include one key smaller than
* the smallest logged by this transaction and one key larger than the largest
* key logged by this transaction.
*/
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path)
{
u64 min_key;
u64 max_key;
int ret;
int key_type = BTRFS_DIR_ITEM_KEY;
again:
min_key = 0;
max_key = 0;
while(1) {
ret = log_dir_items(trans, root, inode, path,
dst_path, key_type, min_key,
&max_key);
BUG_ON(ret);
if (max_key == (u64)-1)
break;
min_key = max_key + 1;
}
if (key_type == BTRFS_DIR_ITEM_KEY) {
key_type = BTRFS_DIR_INDEX_KEY;
goto again;
}
return 0;
}
/*
* a helper function to drop items from the log before we relog an
* inode. max_key_type indicates the highest item type to remove.
* This cannot be run for file data extents because it does not
* free the extents they point to.
*/
static int drop_objectid_items(struct btrfs_trans_handle *trans,
struct btrfs_root *log,
struct btrfs_path *path,
u64 objectid, int max_key_type)
{
int ret;
struct btrfs_key key;
struct btrfs_key found_key;
key.objectid = objectid;
key.type = max_key_type;
key.offset = (u64)-1;
while(1) {
ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
if (ret != 1)
break;
if (path->slots[0] == 0)
break;
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != objectid)
break;
ret = btrfs_del_item(trans, log, path);
BUG_ON(ret);
btrfs_release_path(log, path);
}
btrfs_release_path(log, path);
return 0;
}
/* log a single inode in the tree log.
* At least one parent directory for this inode must exist in the tree
* or be logged already.
*
* Any items from this inode changed by the current transaction are copied
* to the log tree. An extra reference is taken on any extents in this
* file, allowing us to avoid a whole pile of corner cases around logging
* blocks that have been removed from the tree.
*
* See LOG_INODE_ALL and related defines for a description of what inode_only
* does.
*
* This handles both files and directories.
*/
static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
int inode_only)
{
struct btrfs_path *path;
struct btrfs_path *dst_path;
struct btrfs_key min_key;
struct btrfs_key max_key;
struct btrfs_root *log = root->log_root;
unsigned long src_offset;
unsigned long dst_offset;
struct extent_buffer *src;
struct btrfs_file_extent_item *extent;
struct btrfs_inode_item *inode_item;
u32 size;
int ret;
log = root->log_root;
path = btrfs_alloc_path();
dst_path = btrfs_alloc_path();
min_key.objectid = inode->i_ino;
min_key.type = BTRFS_INODE_ITEM_KEY;
min_key.offset = 0;
max_key.objectid = inode->i_ino;
if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
max_key.type = BTRFS_XATTR_ITEM_KEY;
else
max_key.type = (u8)-1;
max_key.offset = (u64)-1;
/*
* if this inode has already been logged and we're in inode_only
* mode, we don't want to delete the things that have already
* been written to the log.
*
* But, if the inode has been through an inode_only log,
* the logged_trans field is not set. This allows us to catch
* any new names for this inode in the backrefs by logging it
* again
*/
if (inode_only == LOG_INODE_EXISTS &&
BTRFS_I(inode)->logged_trans == trans->transid) {
btrfs_free_path(path);
btrfs_free_path(dst_path);
goto out;
}
mutex_lock(&BTRFS_I(inode)->log_mutex);
/*
* a brute force approach to making sure we get the most uptodate
* copies of everything.
*/
if (S_ISDIR(inode->i_mode)) {
int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
if (inode_only == LOG_INODE_EXISTS)
max_key_type = BTRFS_XATTR_ITEM_KEY;
ret = drop_objectid_items(trans, log, path,
inode->i_ino, max_key_type);
} else {
ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
}
BUG_ON(ret);
path->keep_locks = 1;
while(1) {
ret = btrfs_search_forward(root, &min_key, &max_key,
path, 0, trans->transid);
if (ret != 0)
break;
if (min_key.objectid != inode->i_ino)
break;
if (min_key.type > max_key.type)
break;
src = path->nodes[0];
size = btrfs_item_size_nr(src, path->slots[0]);
ret = btrfs_insert_empty_item(trans, log, dst_path, &min_key,
size);
if (ret)
BUG();
dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
dst_path->slots[0]);
src_offset = btrfs_item_ptr_offset(src, path->slots[0]);
copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
src_offset, size);
if (inode_only == LOG_INODE_EXISTS &&
min_key.type == BTRFS_INODE_ITEM_KEY) {
inode_item = btrfs_item_ptr(dst_path->nodes[0],
dst_path->slots[0],
struct btrfs_inode_item);
btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
/* set the generation to zero so the recover code
* can tell the difference between an logging
* just to say 'this inode exists' and a logging
* to say 'update this inode with these values'
*/
btrfs_set_inode_generation(dst_path->nodes[0],
inode_item, 0);
}
/* take a reference on file data extents so that truncates
* or deletes of this inode don't have to relog the inode
* again
*/
if (btrfs_key_type(&min_key) == BTRFS_EXTENT_DATA_KEY) {
int found_type;
extent = btrfs_item_ptr(src, path->slots[0],
struct btrfs_file_extent_item);
found_type = btrfs_file_extent_type(src, extent);
if (found_type == BTRFS_FILE_EXTENT_REG) {
u64 ds = btrfs_file_extent_disk_bytenr(src,
extent);
u64 dl = btrfs_file_extent_disk_num_bytes(src,
extent);
/* ds == 0 is a hole */
if (ds != 0) {
ret = btrfs_inc_extent_ref(trans, log,
ds, dl,
log->root_key.objectid,
0,
inode->i_ino,
min_key.offset);
BUG_ON(ret);
}
}
}
btrfs_mark_buffer_dirty(dst_path->nodes[0]);
btrfs_release_path(root, path);
btrfs_release_path(log, dst_path);
if (min_key.offset < (u64)-1)
min_key.offset++;
else if (min_key.type < (u8)-1)
min_key.type++;
else if (min_key.objectid < (u64)-1)
min_key.objectid++;
else
break;
}
if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
btrfs_release_path(root, path);
btrfs_release_path(log, dst_path);
ret = log_directory_changes(trans, root, inode, path, dst_path);
BUG_ON(ret);
}
mutex_unlock(&BTRFS_I(inode)->log_mutex);
btrfs_free_path(path);
btrfs_free_path(dst_path);
mutex_lock(&root->fs_info->tree_log_mutex);
ret = update_log_root(trans, log);
BUG_ON(ret);
mutex_unlock(&root->fs_info->tree_log_mutex);
out:
return 0;
}
int btrfs_log_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
int inode_only)
{
int ret;
start_log_trans(trans, root);
ret = __btrfs_log_inode(trans, root, inode, inode_only);
end_log_trans(root);
return ret;
}
/*
* helper function around btrfs_log_inode to make sure newly created
* parent directories also end up in the log. A minimal inode and backref
* only logging is done of any parent directories that are older than
* the last committed transaction
*/
int btrfs_log_dentry(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct dentry *dentry)
{
int inode_only = LOG_INODE_ALL;
struct super_block *sb;
int ret;
start_log_trans(trans, root);
sb = dentry->d_inode->i_sb;
while(1) {
ret = __btrfs_log_inode(trans, root, dentry->d_inode,
inode_only);
BUG_ON(ret);
inode_only = LOG_INODE_EXISTS;
dentry = dentry->d_parent;
if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
break;
if (BTRFS_I(dentry->d_inode)->generation <=
root->fs_info->last_trans_committed)
break;
}
end_log_trans(root);
return 0;
}
/*
* it is not safe to log dentry if the chunk root has added new
* chunks. This returns 0 if the dentry was logged, and 1 otherwise.
* If this returns 1, you must commit the transaction to safely get your
* data on disk.
*/
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct dentry *dentry)
{
u64 gen;
gen = root->fs_info->last_trans_new_blockgroup;
if (gen > root->fs_info->last_trans_committed)
return 1;
else
return btrfs_log_dentry(trans, root, dentry);
}
/*
* should be called during mount to recover any replay any log trees
* from the FS
*/
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
{
int ret;
struct btrfs_path *path;
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_key tmp_key;
struct btrfs_root *log;
struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
u64 highest_inode;
struct walk_control wc = {
.process_func = process_one_buffer,
.stage = 0,
};
fs_info->log_root_recovering = 1;
path = btrfs_alloc_path();
BUG_ON(!path);
trans = btrfs_start_transaction(fs_info->tree_root, 1);
wc.trans = trans;
wc.pin = 1;
walk_log_tree(trans, log_root_tree, &wc);
again:
key.objectid = BTRFS_TREE_LOG_OBJECTID;
key.offset = (u64)-1;
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
while(1) {
ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
if (ret < 0)
break;
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
btrfs_release_path(log_root_tree, path);
if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
break;
log = btrfs_read_fs_root_no_radix(log_root_tree,
&found_key);
BUG_ON(!log);
tmp_key.objectid = found_key.offset;
tmp_key.type = BTRFS_ROOT_ITEM_KEY;
tmp_key.offset = (u64)-1;
wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
BUG_ON(!wc.replay_dest);
btrfs_record_root_in_trans(wc.replay_dest);
ret = walk_log_tree(trans, log, &wc);
BUG_ON(ret);
if (wc.stage == LOG_WALK_REPLAY_ALL) {
ret = fixup_inode_link_counts(trans, wc.replay_dest,
path);
BUG_ON(ret);
}
ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
if (ret == 0) {
wc.replay_dest->highest_inode = highest_inode;
wc.replay_dest->last_inode_alloc = highest_inode;
}
key.offset = found_key.offset - 1;
free_extent_buffer(log->node);
kfree(log);
if (found_key.offset == 0)
break;
}
btrfs_release_path(log_root_tree, path);
/* step one is to pin it all, step two is to replay just inodes */
if (wc.pin) {
wc.pin = 0;
wc.process_func = replay_one_buffer;
wc.stage = LOG_WALK_REPLAY_INODES;
goto again;
}
/* step three is to replay everything */
if (wc.stage < LOG_WALK_REPLAY_ALL) {
wc.stage++;
goto again;
}
btrfs_free_path(path);
free_extent_buffer(log_root_tree->node);
log_root_tree->log_root = NULL;
fs_info->log_root_recovering = 0;
/* step 4: commit the transaction, which also unpins the blocks */
btrfs_commit_transaction(trans, fs_info->tree_root);
kfree(log_root_tree);
return 0;
}