// SPDX-License-Identifier: GPL-2.0
/*
* USB4 specific functionality
*
* Copyright (C) 2019, Intel Corporation
* Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
* Rajmohan Mani <rajmohan.mani@intel.com>
*/
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/units.h>
#include "sb_regs.h"
#include "tb.h"
#define USB4_DATA_RETRIES 3
#define USB4_DATA_DWORDS 16
enum usb4_sb_target {
USB4_SB_TARGET_ROUTER,
USB4_SB_TARGET_PARTNER,
USB4_SB_TARGET_RETIMER,
};
#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
#define USB4_NVM_READ_OFFSET_SHIFT 2
#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
#define USB4_NVM_READ_LENGTH_SHIFT 24
#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
#define USB4_DROM_ADDRESS_SHIFT 2
#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
#define USB4_DROM_SIZE_SHIFT 15
#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
#define USB4_BA_LENGTH_MASK GENMASK(7, 0)
#define USB4_BA_INDEX_MASK GENMASK(15, 0)
enum usb4_ba_index {
USB4_BA_MAX_USB3 = 0x1,
USB4_BA_MIN_DP_AUX = 0x2,
USB4_BA_MIN_DP_MAIN = 0x3,
USB4_BA_MAX_PCIE = 0x4,
USB4_BA_MAX_HI = 0x5,
};
#define USB4_BA_VALUE_MASK GENMASK(31, 16)
#define USB4_BA_VALUE_SHIFT 16
static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
u32 *metadata, u8 *status,
const void *tx_data, size_t tx_dwords,
void *rx_data, size_t rx_dwords)
{
u32 val;
int ret;
if (metadata) {
ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
if (ret)
return ret;
}
if (tx_dwords) {
ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
tx_dwords);
if (ret)
return ret;
}
val = opcode | ROUTER_CS_26_OV;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
if (ret)
return ret;
ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
if (ret)
return ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
if (ret)
return ret;
if (val & ROUTER_CS_26_ONS)
return -EOPNOTSUPP;
if (status)
*status = (val & ROUTER_CS_26_STATUS_MASK) >>
ROUTER_CS_26_STATUS_SHIFT;
if (metadata) {
ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
if (ret)
return ret;
}
if (rx_dwords) {
ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
rx_dwords);
if (ret)
return ret;
}
return 0;
}
static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
u8 *status, const void *tx_data, size_t tx_dwords,
void *rx_data, size_t rx_dwords)
{
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
return -EINVAL;
/*
* If the connection manager implementation provides USB4 router
* operation proxy callback, call it here instead of running the
* operation natively.
*/
if (cm_ops->usb4_switch_op) {
int ret;
ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
tx_data, tx_dwords, rx_data,
rx_dwords);
if (ret != -EOPNOTSUPP)
return ret;
/*
* If the proxy was not supported then run the native
* router operation instead.
*/
}
return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
tx_dwords, rx_data, rx_dwords);
}
static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
u32 *metadata, u8 *status)
{
return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
}
static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
u32 *metadata, u8 *status,
const void *tx_data, size_t tx_dwords,
void *rx_data, size_t rx_dwords)
{
return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
tx_dwords, rx_data, rx_dwords);
}
static void usb4_switch_check_wakes(struct tb_switch *sw)
{
bool wakeup_usb4 = false;
struct usb4_port *usb4;
struct tb_port *port;
bool wakeup = false;
u32 val;
if (!device_may_wakeup(&sw->dev))
return;
if (tb_route(sw)) {
if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
return;
tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
(val & ROUTER_CS_6_WOPS) ? "yes" : "no",
(val & ROUTER_CS_6_WOUS) ? "yes" : "no");
wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
}
/*
* Check for any downstream ports for USB4 wake,
* connection wake and disconnection wake.
*/
tb_switch_for_each_port(sw, port) {
if (!port->cap_usb4)
continue;
if (tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_18, 1))
break;
tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
(val & PORT_CS_18_WOU4S) ? "yes" : "no",
(val & PORT_CS_18_WOCS) ? "yes" : "no",
(val & PORT_CS_18_WODS) ? "yes" : "no");
wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
PORT_CS_18_WODS);
usb4 = port->usb4;
if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
pm_wakeup_event(&usb4->dev, 0);
wakeup |= wakeup_usb4;
}
if (wakeup)
pm_wakeup_event(&sw->dev, 0);
}
static bool link_is_usb4(struct tb_port *port)
{
u32 val;
if (!port->cap_usb4)
return false;
if (tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_18, 1))
return false;
return !(val & PORT_CS_18_TCM);
}
/**
* usb4_switch_setup() - Additional setup for USB4 device
* @sw: USB4 router to setup
*
* USB4 routers need additional settings in order to enable all the
* tunneling. This function enables USB and PCIe tunneling if it can be
* enabled (e.g the parent switch also supports them). If USB tunneling
* is not available for some reason (like that there is Thunderbolt 3
* switch upstream) then the internal xHCI controller is enabled
* instead.
*
* This does not set the configuration valid bit of the router. To do
* that call usb4_switch_configuration_valid().
*/
int usb4_switch_setup(struct tb_switch *sw)
{
struct tb_switch *parent = tb_switch_parent(sw);
struct tb_port *down;
bool tbt3, xhci;
u32 val = 0;
int ret;
usb4_switch_check_wakes(sw);
if (!tb_route(sw))
return 0;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
if (ret)
return ret;
down = tb_switch_downstream_port(sw);
sw->link_usb4 = link_is_usb4(down);
tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
xhci = val & ROUTER_CS_6_HCI;
tbt3 = !(val & ROUTER_CS_6_TNS);
tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
tbt3 ? "yes" : "no", xhci ? "yes" : "no");
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
val |= ROUTER_CS_5_UTO;
xhci = false;
}
/*
* Only enable PCIe tunneling if the parent router supports it
* and it is not disabled.
*/
if (tb_acpi_may_tunnel_pcie() &&
tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
val |= ROUTER_CS_5_PTO;
/*
* xHCI can be enabled if PCIe tunneling is supported
* and the parent does not have any USB3 dowstream
* adapters (so we cannot do USB 3.x tunneling).
*/
if (xhci)
val |= ROUTER_CS_5_HCO;
}
/* TBT3 supported by the CM */
val |= ROUTER_CS_5_C3S;
return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
}
/**
* usb4_switch_configuration_valid() - Set tunneling configuration to be valid
* @sw: USB4 router
*
* Sets configuration valid bit for the router. Must be called before
* any tunnels can be set through the router and after
* usb4_switch_setup() has been called. Can be called to host and device
* routers (does nothing for the latter).
*
* Returns %0 in success and negative errno otherwise.
*/
int usb4_switch_configuration_valid(struct tb_switch *sw)
{
u32 val;
int ret;
if (!tb_route(sw))
return 0;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
val |= ROUTER_CS_5_CV;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
ROUTER_CS_6_CR, 50);
}
/**
* usb4_switch_read_uid() - Read UID from USB4 router
* @sw: USB4 router
* @uid: UID is stored here
*
* Reads 64-bit UID from USB4 router config space.
*/
int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
{
return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
}
static int usb4_switch_drom_read_block(void *data,
unsigned int dwaddress, void *buf,
size_t dwords)
{
struct tb_switch *sw = data;
u8 status = 0;
u32 metadata;
int ret;
metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
USB4_DROM_ADDRESS_MASK;
ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
&status, NULL, 0, buf, dwords);
if (ret)
return ret;
return status ? -EIO : 0;
}
/**
* usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
* @sw: USB4 router
* @address: Byte address inside DROM to start reading
* @buf: Buffer where the DROM content is stored
* @size: Number of bytes to read from DROM
*
* Uses USB4 router operations to read router DROM. For devices this
* should always work but for hosts it may return %-EOPNOTSUPP in which
* case the host router does not have DROM.
*/
int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size)
{
return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
usb4_switch_drom_read_block, sw);
}
/**
* usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
* @sw: USB4 router
*
* Checks whether conditions are met so that lane bonding can be
* established with the upstream router. Call only for device routers.
*/
bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
{
struct tb_port *up;
int ret;
u32 val;
up = tb_upstream_port(sw);
ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
if (ret)
return false;
return !!(val & PORT_CS_18_BE);
}
/**
* usb4_switch_set_wake() - Enabled/disable wake
* @sw: USB4 router
* @flags: Wakeup flags (%0 to disable)
*
* Enables/disables router to wake up from sleep.
*/
int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
{
struct usb4_port *usb4;
struct tb_port *port;
u64 route = tb_route(sw);
u32 val;
int ret;
/*
* Enable wakes coming from all USB4 downstream ports (from
* child routers). For device routers do this also for the
* upstream USB4 port.
*/
tb_switch_for_each_port(sw, port) {
if (!tb_port_is_null(port))
continue;
if (!route && tb_is_upstream_port(port))
continue;
if (!port->cap_usb4)
continue;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
if (tb_is_upstream_port(port)) {
val |= PORT_CS_19_WOU4;
} else {
bool configured = val & PORT_CS_19_PC;
usb4 = port->usb4;
if (((flags & TB_WAKE_ON_CONNECT) |
device_may_wakeup(&usb4->dev)) && !configured)
val |= PORT_CS_19_WOC;
if (((flags & TB_WAKE_ON_DISCONNECT) |
device_may_wakeup(&usb4->dev)) && configured)
val |= PORT_CS_19_WOD;
if ((flags & TB_WAKE_ON_USB4) && configured)
val |= PORT_CS_19_WOU4;
}
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
}
/*
* Enable wakes from PCIe, USB 3.x and DP on this router. Only
* needed for device routers.
*/
if (route) {
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
if (flags & TB_WAKE_ON_USB3)
val |= ROUTER_CS_5_WOU;
if (flags & TB_WAKE_ON_PCIE)
val |= ROUTER_CS_5_WOP;
if (flags & TB_WAKE_ON_DP)
val |= ROUTER_CS_5_WOD;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
}
return 0;
}
/**
* usb4_switch_set_sleep() - Prepare the router to enter sleep
* @sw: USB4 router
*
* Sets sleep bit for the router. Returns when the router sleep ready
* bit has been asserted.
*/
int usb4_switch_set_sleep(struct tb_switch *sw)
{
int ret;
u32 val;
/* Set sleep bit and wait for sleep ready to be asserted */
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
val |= ROUTER_CS_5_SLP;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
ROUTER_CS_6_SLPR, 500);
}
/**
* usb4_switch_nvm_sector_size() - Return router NVM sector size
* @sw: USB4 router
*
* If the router supports NVM operations this function returns the NVM
* sector size in bytes. If NVM operations are not supported returns
* %-EOPNOTSUPP.
*/
int usb4_switch_nvm_sector_size(struct tb_switch *sw)
{
u32 metadata;
u8 status;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
&status);
if (ret)
return ret;
if (status)
return status == 0x2 ? -EOPNOTSUPP : -EIO;
return metadata & USB4_NVM_SECTOR_SIZE_MASK;
}
static int usb4_switch_nvm_read_block(void *data,
unsigned int dwaddress, void *buf, size_t dwords)
{
struct tb_switch *sw = data;
u8 status = 0;
u32 metadata;
int ret;
metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
USB4_NVM_READ_LENGTH_MASK;
metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
USB4_NVM_READ_OFFSET_MASK;
ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
&status, NULL, 0, buf, dwords);
if (ret)
return ret;
return status ? -EIO : 0;
}
/**
* usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
* @sw: USB4 router
* @address: Starting address in bytes
* @buf: Read data is placed here
* @size: How many bytes to read
*
* Reads NVM contents of the router. If NVM is not supported returns
* %-EOPNOTSUPP.
*/
int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size)
{
return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
usb4_switch_nvm_read_block, sw);
}
/**
* usb4_switch_nvm_set_offset() - Set NVM write offset
* @sw: USB4 router
* @address: Start offset
*
* Explicitly sets NVM write offset. Normally when writing to NVM this
* is done automatically by usb4_switch_nvm_write().
*
* Returns %0 in success and negative errno if there was a failure.
*/
int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
{
u32 metadata, dwaddress;
u8 status = 0;
int ret;
dwaddress = address / 4;
metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
USB4_NVM_SET_OFFSET_MASK;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
&status);
if (ret)
return ret;
return status ? -EIO : 0;
}
static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
const void *buf, size_t dwords)
{
struct tb_switch *sw = data;
u8 status;
int ret;
ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
buf, dwords, NULL, 0);
if (ret)
return ret;
return status ? -EIO : 0;
}
/**
* usb4_switch_nvm_write() - Write to the router NVM
* @sw: USB4 router
* @address: Start address where to write in bytes
* @buf: Pointer to the data to write
* @size: Size of @buf in bytes
*
* Writes @buf to the router NVM using USB4 router operations. If NVM
* write is not supported returns %-EOPNOTSUPP.
*/
int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
const void *buf, size_t size)
{
int ret;
ret = usb4_switch_nvm_set_offset(sw, address);
if (ret)
return ret;
return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
usb4_switch_nvm_write_next_block, sw);
}
/**
* usb4_switch_nvm_authenticate() - Authenticate new NVM
* @sw: USB4 router
*
* After the new NVM has been written via usb4_switch_nvm_write(), this
* function triggers NVM authentication process. The router gets power
* cycled and if the authentication is successful the new NVM starts
* running. In case of failure returns negative errno.
*
* The caller should call usb4_switch_nvm_authenticate_status() to read
* the status of the authentication after power cycle. It should be the
* first router operation to avoid the status being lost.
*/
int usb4_switch_nvm_authenticate(struct tb_switch *sw)
{
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
switch (ret) {
/*
* The router is power cycled once NVM_AUTH is started so it is
* expected to get any of the following errors back.
*/
case -EACCES:
case -ENOTCONN:
case -ETIMEDOUT:
return 0;
default:
return ret;
}
}
/**
* usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
* @sw: USB4 router
* @status: Status code of the operation
*
* The function checks if there is status available from the last NVM
* authenticate router operation. If there is status then %0 is returned
* and the status code is placed in @status. Returns negative errno in case
* of failure.
*
* Must be called before any other router operation.
*/
int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
{
const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
u16 opcode;
u32 val;
int ret;
if (cm_ops->usb4_switch_nvm_authenticate_status) {
ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
if (ret != -EOPNOTSUPP)
return ret;
}
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
if (ret)
return ret;
/* Check that the opcode is correct */
opcode = val & ROUTER_CS_26_OPCODE_MASK;
if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
if (val & ROUTER_CS_26_OV)
return -EBUSY;
if (val & ROUTER_CS_26_ONS)
return -EOPNOTSUPP;
*status = (val & ROUTER_CS_26_STATUS_MASK) >>
ROUTER_CS_26_STATUS_SHIFT;
} else {
*status = 0;
}
return 0;
}
/**
* usb4_switch_credits_init() - Read buffer allocation parameters
* @sw: USB4 router
*
* Reads @sw buffer allocation parameters and initializes @sw buffer
* allocation fields accordingly. Specifically @sw->credits_allocation
* is set to %true if these parameters can be used in tunneling.
*
* Returns %0 on success and negative errno otherwise.
*/
int usb4_switch_credits_init(struct tb_switch *sw)
{
int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
int ret, length, i, nports;
const struct tb_port *port;
u32 data[USB4_DATA_DWORDS];
u32 metadata = 0;
u8 status = 0;
memset(data, 0, sizeof(data));
ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
&status, NULL, 0, data, ARRAY_SIZE(data));
if (ret)
return ret;
if (status)
return -EIO;
length = metadata & USB4_BA_LENGTH_MASK;
if (WARN_ON(length > ARRAY_SIZE(data)))
return -EMSGSIZE;
max_usb3 = -1;
min_dp_aux = -1;
min_dp_main = -1;
max_pcie = -1;
max_dma = -1;
tb_sw_dbg(sw, "credit allocation parameters:\n");
for (i = 0; i < length; i++) {
u16 index, value;
index = data[i] & USB4_BA_INDEX_MASK;
value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
switch (index) {
case USB4_BA_MAX_USB3:
tb_sw_dbg(sw, " USB3: %u\n", value);
max_usb3 = value;
break;
case USB4_BA_MIN_DP_AUX:
tb_sw_dbg(sw, " DP AUX: %u\n", value);
min_dp_aux = value;
break;
case USB4_BA_MIN_DP_MAIN:
tb_sw_dbg(sw, " DP main: %u\n", value);
min_dp_main = value;
break;
case USB4_BA_MAX_PCIE:
tb_sw_dbg(sw, " PCIe: %u\n", value);
max_pcie = value;
break;
case USB4_BA_MAX_HI:
tb_sw_dbg(sw, " DMA: %u\n", value);
max_dma = value;
break;
default:
tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
index);
break;
}
}
/*
* Validate the buffer allocation preferences. If we find
* issues, log a warning and fall back using the hard-coded
* values.
*/
/* Host router must report baMaxHI */
if (!tb_route(sw) && max_dma < 0) {
tb_sw_warn(sw, "host router is missing baMaxHI\n");
goto err_invalid;
}
nports = 0;
tb_switch_for_each_port(sw, port) {
if (tb_port_is_null(port))
nports++;
}
/* Must have DP buffer allocation (multiple USB4 ports) */
if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
goto err_invalid;
}
tb_switch_for_each_port(sw, port) {
if (tb_port_is_dpout(port) && min_dp_main < 0) {
tb_sw_warn(sw, "missing baMinDPmain");
goto err_invalid;
}
if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
min_dp_aux < 0) {
tb_sw_warn(sw, "missing baMinDPaux");
goto err_invalid;
}
if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
max_usb3 < 0) {
tb_sw_warn(sw, "missing baMaxUSB3");
goto err_invalid;
}
if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
max_pcie < 0) {
tb_sw_warn(sw, "missing baMaxPCIe");
goto err_invalid;
}
}
/*
* Buffer allocation passed the validation so we can use it in
* path creation.
*/
sw->credit_allocation = true;
if (max_usb3 > 0)
sw->max_usb3_credits = max_usb3;
if (min_dp_aux > 0)
sw->min_dp_aux_credits = min_dp_aux;
if (min_dp_main > 0)
sw->min_dp_main_credits = min_dp_main;
if (max_pcie > 0)
sw->max_pcie_credits = max_pcie;
if (max_dma > 0)
sw->max_dma_credits = max_dma;
return 0;
err_invalid:
return -EINVAL;
}
/**
* usb4_switch_query_dp_resource() - Query availability of DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* For DP tunneling this function can be used to query availability of
* DP IN resource. Returns true if the resource is available for DP
* tunneling, false otherwise.
*/
bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u32 metadata = in->port;
u8 status;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
&status);
/*
* If DP resource allocation is not supported assume it is
* always available.
*/
if (ret == -EOPNOTSUPP)
return true;
if (ret)
return false;
return !status;
}
/**
* usb4_switch_alloc_dp_resource() - Allocate DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* Allocates DP IN resource for DP tunneling using USB4 router
* operations. If the resource was allocated returns %0. Otherwise
* returns negative errno, in particular %-EBUSY if the resource is
* already allocated.
*/
int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u32 metadata = in->port;
u8 status;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
&status);
if (ret == -EOPNOTSUPP)
return 0;
if (ret)
return ret;
return status ? -EBUSY : 0;
}
/**
* usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* Releases the previously allocated DP IN resource.
*/
int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u32 metadata = in->port;
u8 status;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
&status);
if (ret == -EOPNOTSUPP)
return 0;
if (ret)
return ret;
return status ? -EIO : 0;
}
static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
{
struct tb_port *p;
int usb4_idx = 0;
/* Assume port is primary */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_null(p))
continue;
if (tb_is_upstream_port(p))
continue;
if (!p->link_nr) {
if (p == port)
break;
usb4_idx++;
}
}
return usb4_idx;
}
/**
* usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
* @sw: USB4 router
* @port: USB4 port
*
* USB4 routers have direct mapping between USB4 ports and PCIe
* downstream adapters where the PCIe topology is extended. This
* function returns the corresponding downstream PCIe adapter or %NULL
* if no such mapping was possible.
*/
struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
const struct tb_port *port)
{
int usb4_idx = usb4_port_idx(sw, port);
struct tb_port *p;
int pcie_idx = 0;
/* Find PCIe down port matching usb4_port */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_pcie_down(p))
continue;
if (pcie_idx == usb4_idx)
return p;
pcie_idx++;
}
return NULL;
}
/**
* usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
* @sw: USB4 router
* @port: USB4 port
*
* USB4 routers have direct mapping between USB4 ports and USB 3.x
* downstream adapters where the USB 3.x topology is extended. This
* function returns the corresponding downstream USB 3.x adapter or
* %NULL if no such mapping was possible.
*/
struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
const struct tb_port *port)
{
int usb4_idx = usb4_port_idx(sw, port);
struct tb_port *p;
int usb_idx = 0;
/* Find USB3 down port matching usb4_port */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_usb3_down(p))
continue;
if (usb_idx == usb4_idx)
return p;
usb_idx++;
}
return NULL;
}
/**
* usb4_switch_add_ports() - Add USB4 ports for this router
* @sw: USB4 router
*
* For USB4 router finds all USB4 ports and registers devices for each.
* Can be called to any router.
*
* Return %0 in case of success and negative errno in case of failure.
*/
int usb4_switch_add_ports(struct tb_switch *sw)
{
struct tb_port *port;
if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
return 0;
tb_switch_for_each_port(sw, port) {
struct usb4_port *usb4;
if (!tb_port_is_null(port))
continue;
if (!port->cap_usb4)
continue;
usb4 = usb4_port_device_add(port);
if (IS_ERR(usb4)) {
usb4_switch_remove_ports(sw);
return PTR_ERR(usb4);
}
port->usb4 = usb4;
}
return 0;
}
/**
* usb4_switch_remove_ports() - Removes USB4 ports from this router
* @sw: USB4 router
*
* Unregisters previously registered USB4 ports.
*/
void usb4_switch_remove_ports(struct tb_switch *sw)
{
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (port->usb4) {
usb4_port_device_remove(port->usb4);
port->usb4 = NULL;
}
}
}
/**
* usb4_port_unlock() - Unlock USB4 downstream port
* @port: USB4 port to unlock
*
* Unlocks USB4 downstream port so that the connection manager can
* access the router below this port.
*/
int usb4_port_unlock(struct tb_port *port)
{
int ret;
u32 val;
ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
if (ret)
return ret;
val &= ~ADP_CS_4_LCK;
return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
}
/**
* usb4_port_hotplug_enable() - Enables hotplug for a port
* @port: USB4 port to operate on
*
* Enables hot plug events on a given port. This is only intended
* to be used on lane, DP-IN, and DP-OUT adapters.
*/
int usb4_port_hotplug_enable(struct tb_port *port)
{
int ret;
u32 val;
ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
if (ret)
return ret;
val &= ~ADP_CS_5_DHP;
return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
}
static int usb4_port_set_configured(struct tb_port *port, bool configured)
{
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
if (configured)
val |= PORT_CS_19_PC;
else
val &= ~PORT_CS_19_PC;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
}
/**
* usb4_port_configure() - Set USB4 port configured
* @port: USB4 router
*
* Sets the USB4 link to be configured for power management purposes.
*/
int usb4_port_configure(struct tb_port *port)
{
return usb4_port_set_configured(port, true);
}
/**
* usb4_port_unconfigure() - Set USB4 port unconfigured
* @port: USB4 router
*
* Sets the USB4 link to be unconfigured for power management purposes.
*/
void usb4_port_unconfigure(struct tb_port *port)
{
usb4_port_set_configured(port, false);
}
static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
{
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
if (configured)
val |= PORT_CS_19_PID;
else
val &= ~PORT_CS_19_PID;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
}
/**
* usb4_port_configure_xdomain() - Configure port for XDomain
* @port: USB4 port connected to another host
* @xd: XDomain that is connected to the port
*
* Marks the USB4 port as being connected to another host and updates
* the link type. Returns %0 in success and negative errno in failure.
*/
int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
{
xd->link_usb4 = link_is_usb4(port);
return usb4_set_xdomain_configured(port, true);
}
/**
* usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
* @port: USB4 port that was connected to another host
*
* Clears USB4 port from being marked as XDomain.
*/
void usb4_port_unconfigure_xdomain(struct tb_port *port)
{
usb4_set_xdomain_configured(port, false);
}
static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
u32 value, int timeout_msec)
{
ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
u32 val;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
if (ret)
return ret;
if ((val & bit) == value)
return 0;
usleep_range(50, 100);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
dwords);
}
static int usb4_port_write_data(struct tb_port *port, const void *data,
size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
dwords);
}
static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
u8 index, u8 reg, void *buf, u8 size)
{
size_t dwords = DIV_ROUND_UP(size, 4);
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
val = reg;
val |= size << PORT_CS_1_LENGTH_SHIFT;
val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
if (target == USB4_SB_TARGET_RETIMER)
val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
val |= PORT_CS_1_PND;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
PORT_CS_1_PND, 0, 500);
if (ret)
return ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
if (val & PORT_CS_1_NR)
return -ENODEV;
if (val & PORT_CS_1_RC)
return -EIO;
return buf ? usb4_port_read_data(port, buf, dwords) : 0;
}
static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
u8 index, u8 reg, const void *buf, u8 size)
{
size_t dwords = DIV_ROUND_UP(size, 4);
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
if (buf) {
ret = usb4_port_write_data(port, buf, dwords);
if (ret)
return ret;
}
val = reg;
val |= size << PORT_CS_1_LENGTH_SHIFT;
val |= PORT_CS_1_WNR_WRITE;
val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
if (target == USB4_SB_TARGET_RETIMER)
val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
val |= PORT_CS_1_PND;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
PORT_CS_1_PND, 0, 500);
if (ret)
return ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
if (val & PORT_CS_1_NR)
return -ENODEV;
if (val & PORT_CS_1_RC)
return -EIO;
return 0;
}
static int usb4_port_sb_opcode_err_to_errno(u32 val)
{
switch (val) {
case 0:
return 0;
case USB4_SB_OPCODE_ERR:
return -EAGAIN;
case USB4_SB_OPCODE_ONS:
return -EOPNOTSUPP;
default:
return -EIO;
}
}
static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
{
ktime_t timeout;
u32 val;
int ret;
val = opcode;
ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
sizeof(val));
if (ret)
return ret;
timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
/* Check results */
ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
&val, sizeof(val));
if (ret)
return ret;
if (val != opcode)
return usb4_port_sb_opcode_err_to_errno(val);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
{
u32 val = !offline;
int ret;
ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_METADATA, &val, sizeof(val));
if (ret)
return ret;
val = USB4_SB_OPCODE_ROUTER_OFFLINE;
return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE, &val, sizeof(val));
}
/**
* usb4_port_router_offline() - Put the USB4 port to offline mode
* @port: USB4 port
*
* This function puts the USB4 port into offline mode. In this mode the
* port does not react on hotplug events anymore. This needs to be
* called before retimer access is done when the USB4 links is not up.
*
* Returns %0 in case of success and negative errno if there was an
* error.
*/
int usb4_port_router_offline(struct tb_port *port)
{
return usb4_port_set_router_offline(port, true);
}
/**
* usb4_port_router_online() - Put the USB4 port back to online
* @port: USB4 port
*
* Makes the USB4 port functional again.
*/
int usb4_port_router_online(struct tb_port *port)
{
return usb4_port_set_router_offline(port, false);
}
/**
* usb4_port_enumerate_retimers() - Send RT broadcast transaction
* @port: USB4 port
*
* This forces the USB4 port to send broadcast RT transaction which
* makes the retimers on the link to assign index to themselves. Returns
* %0 in case of success and negative errno if there was an error.
*/
int usb4_port_enumerate_retimers(struct tb_port *port)
{
u32 val;
val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE, &val, sizeof(val));
}
/**
* usb4_port_clx_supported() - Check if CLx is supported by the link
* @port: Port to check for CLx support for
*
* PORT_CS_18_CPS bit reflects if the link supports CLx including
* active cables (if connected on the link).
*/
bool usb4_port_clx_supported(struct tb_port *port)
{
int ret;
u32 val;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_18, 1);
if (ret)
return false;
return !!(val & PORT_CS_18_CPS);
}
/**
* usb4_port_asym_supported() - If the port supports asymmetric link
* @port: USB4 port
*
* Checks if the port and the cable supports asymmetric link and returns
* %true in that case.
*/
bool usb4_port_asym_supported(struct tb_port *port)
{
u32 val;
if (!port->cap_usb4)
return false;
if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
return false;
return !!(val & PORT_CS_18_CSA);
}
/**
* usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
* @port: USB4 port
* @width: Asymmetric width to configure
*
* Sets USB4 port link width to @width. Can be called for widths where
* usb4_port_asym_width_supported() returned @true.
*/
int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
{
u32 val;
int ret;
if (!port->cap_phy)
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
if (ret)
return ret;
val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
switch (width) {
case TB_LINK_WIDTH_DUAL:
val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
break;
case TB_LINK_WIDTH_ASYM_TX:
val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
break;
case TB_LINK_WIDTH_ASYM_RX:
val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
break;
default:
return -EINVAL;
}
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_phy + LANE_ADP_CS_1, 1);
}
/**
* usb4_port_asym_start() - Start symmetry change and wait for completion
* @port: USB4 port
*
* Start symmetry change of the link to asymmetric or symmetric
* (according to what was previously set in tb_port_set_link_width().
* Wait for completion of the change.
*
* Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
* a negative errno in case of a failure.
*/
int usb4_port_asym_start(struct tb_port *port)
{
int ret;
u32 val;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
val &= ~PORT_CS_19_START_ASYM;
val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
/*
* Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
* port started the symmetry transition.
*/
ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
PORT_CS_19_START_ASYM, 0, 1000);
if (ret)
return ret;
/* Then wait for the transtion to be completed */
return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
PORT_CS_18_TIP, 0, 5000);
}
/**
* usb4_port_margining_caps() - Read USB4 port marginig capabilities
* @port: USB4 port
* @caps: Array with at least two elements to hold the results
*
* Reads the USB4 port lane margining capabilities into @caps.
*/
int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
{
int ret;
ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
if (ret)
return ret;
return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_DATA, caps, sizeof(*caps) * 2);
}
/**
* usb4_port_hw_margin() - Run hardware lane margining on port
* @port: USB4 port
* @lanes: Which lanes to run (must match the port capabilities). Can be
* %0, %1 or %7.
* @ber_level: BER level contour value
* @timing: Perform timing margining instead of voltage
* @right_high: Use Right/high margin instead of left/low
* @results: Array with at least two elements to hold the results
*
* Runs hardware lane margining on USB4 port and returns the result in
* @results.
*/
int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
unsigned int ber_level, bool timing, bool right_high,
u32 *results)
{
u32 val;
int ret;
val = lanes;
if (timing)
val |= USB4_MARGIN_HW_TIME;
if (right_high)
val |= USB4_MARGIN_HW_RH;
if (ber_level)
val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
USB4_MARGIN_HW_BER_MASK;
ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_METADATA, &val, sizeof(val));
if (ret)
return ret;
ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
if (ret)
return ret;
return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_DATA, results, sizeof(*results) * 2);
}
/**
* usb4_port_sw_margin() - Run software lane margining on port
* @port: USB4 port
* @lanes: Which lanes to run (must match the port capabilities). Can be
* %0, %1 or %7.
* @timing: Perform timing margining instead of voltage
* @right_high: Use Right/high margin instead of left/low
* @counter: What to do with the error counter
*
* Runs software lane margining on USB4 port. Read back the error
* counters by calling usb4_port_sw_margin_errors(). Returns %0 in
* success and negative errno otherwise.
*/
int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
bool right_high, u32 counter)
{
u32 val;
int ret;
val = lanes;
if (timing)
val |= USB4_MARGIN_SW_TIME;
if (right_high)
val |= USB4_MARGIN_SW_RH;
val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
USB4_MARGIN_SW_COUNTER_MASK;
ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_METADATA, &val, sizeof(val));
if (ret)
return ret;
return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
}
/**
* usb4_port_sw_margin_errors() - Read the software margining error counters
* @port: USB4 port
* @errors: Error metadata is copied here.
*
* This reads back the software margining error counters from the port.
* Returns %0 in success and negative errno otherwise.
*/
int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
{
int ret;
ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
if (ret)
return ret;
return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_METADATA, errors, sizeof(*errors));
}
static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
enum usb4_sb_opcode opcode,
int timeout_msec)
{
return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
timeout_msec);
}
/**
* usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
* @port: USB4 port
* @index: Retimer index
*
* Enables sideband channel transations on SBTX. Can be used when USB4
* link does not go up, for example if there is no device connected.
*/
int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
{
int ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
500);
if (ret != -ENODEV)
return ret;
/*
* Per the USB4 retimer spec, the retimer is not required to
* send an RT (Retimer Transaction) response for the first
* SET_INBOUND_SBTX command
*/
return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
500);
}
/**
* usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
* @port: USB4 port
* @index: Retimer index
*
* Disables sideband channel transations on SBTX. The reverse of
* usb4_port_retimer_set_inbound_sbtx().
*/
int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
{
return usb4_port_retimer_op(port, index,
USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
}
/**
* usb4_port_retimer_read() - Read from retimer sideband registers
* @port: USB4 port
* @index: Retimer index
* @reg: Sideband register to read
* @buf: Data from @reg is stored here
* @size: Number of bytes to read
*
* Function reads retimer sideband registers starting from @reg. The
* retimer is connected to @port at @index. Returns %0 in case of
* success, and read data is copied to @buf. If there is no retimer
* present at given @index returns %-ENODEV. In any other failure
* returns negative errno.
*/
int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
u8 size)
{
return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
size);
}
/**
* usb4_port_retimer_write() - Write to retimer sideband registers
* @port: USB4 port
* @index: Retimer index
* @reg: Sideband register to write
* @buf: Data that is written starting from @reg
* @size: Number of bytes to write
*
* Writes retimer sideband registers starting from @reg. The retimer is
* connected to @port at @index. Returns %0 in case of success. If there
* is no retimer present at given @index returns %-ENODEV. In any other
* failure returns negative errno.
*/
int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
const void *buf, u8 size)
{
return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
size);
}
/**
* usb4_port_retimer_is_last() - Is the retimer last on-board retimer
* @port: USB4 port
* @index: Retimer index
*
* If the retimer at @index is last one (connected directly to the
* Type-C port) this function returns %1. If it is not returns %0. If
* the retimer is not present returns %-ENODEV. Otherwise returns
* negative errno.
*/
int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
{
u32 metadata;
int ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
500);
if (ret)
return ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
return ret ? ret : metadata & 1;
}
/**
* usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
* @port: USB4 port
* @index: Retimer index
*
* Reads NVM sector size (in bytes) of a retimer at @index. This
* operation can be used to determine whether the retimer supports NVM
* upgrade for example. Returns sector size in bytes or negative errno
* in case of error. Specifically returns %-ENODEV if there is no
* retimer at @index.
*/
int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
{
u32 metadata;
int ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
500);
if (ret)
return ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
}
/**
* usb4_port_retimer_nvm_set_offset() - Set NVM write offset
* @port: USB4 port
* @index: Retimer index
* @address: Start offset
*
* Exlicitly sets NVM write offset. Normally when writing to NVM this is
* done automatically by usb4_port_retimer_nvm_write().
*
* Returns %0 in success and negative errno if there was a failure.
*/
int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
unsigned int address)
{
u32 metadata, dwaddress;
int ret;
dwaddress = address / 4;
metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
USB4_NVM_SET_OFFSET_MASK;
ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
if (ret)
return ret;
return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
500);
}
struct retimer_info {
struct tb_port *port;
u8 index;
};
static int usb4_port_retimer_nvm_write_next_block(void *data,
unsigned int dwaddress, const void *buf, size_t dwords)
{
const struct retimer_info *info = data;
struct tb_port *port = info->port;
u8 index = info->index;
int ret;
ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
buf, dwords * 4);
if (ret)
return ret;
return usb4_port_retimer_op(port, index,
USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
}
/**
* usb4_port_retimer_nvm_write() - Write to retimer NVM
* @port: USB4 port
* @index: Retimer index
* @address: Byte address where to start the write
* @buf: Data to write
* @size: Size in bytes how much to write
*
* Writes @size bytes from @buf to the retimer NVM. Used for NVM
* upgrade. Returns %0 if the data was written successfully and negative
* errno in case of failure. Specifically returns %-ENODEV if there is
* no retimer at @index.
*/
int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
const void *buf, size_t size)
{
struct retimer_info info = { .port = port, .index = index };
int ret;
ret = usb4_port_retimer_nvm_set_offset(port, index, address);
if (ret)
return ret;
return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
usb4_port_retimer_nvm_write_next_block, &info);
}
/**
* usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
* @port: USB4 port
* @index: Retimer index
*
* After the new NVM image has been written via usb4_port_retimer_nvm_write()
* this function can be used to trigger the NVM upgrade process. If
* successful the retimer restarts with the new NVM and may not have the
* index set so one needs to call usb4_port_enumerate_retimers() to
* force index to be assigned.
*/
int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
{
u32 val;
/*
* We need to use the raw operation here because once the
* authentication completes the retimer index is not set anymore
* so we do not get back the status now.
*/
val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
USB4_SB_OPCODE, &val, sizeof(val));
}
/**
* usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
* @port: USB4 port
* @index: Retimer index
* @status: Raw status code read from metadata
*
* This can be called after usb4_port_retimer_nvm_authenticate() and
* usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
*
* Returns %0 if the authentication status was successfully read. The
* completion metadata (the result) is then stored into @status. If
* reading the status fails, returns negative errno.
*/
int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
u32 *status)
{
u32 metadata, val;
int ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
sizeof(val));
if (ret)
return ret;
ret = usb4_port_sb_opcode_err_to_errno(val);
switch (ret) {
case 0:
*status = 0;
return 0;
case -EAGAIN:
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
&metadata, sizeof(metadata));
if (ret)
return ret;
*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
return 0;
default:
return ret;
}
}
static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
void *buf, size_t dwords)
{
const struct retimer_info *info = data;
struct tb_port *port = info->port;
u8 index = info->index;
u32 metadata;
int ret;
metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
if (dwords < USB4_DATA_DWORDS)
metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
if (ret)
return ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
if (ret)
return ret;
return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
dwords * 4);
}
/**
* usb4_port_retimer_nvm_read() - Read contents of retimer NVM
* @port: USB4 port
* @index: Retimer index
* @address: NVM address (in bytes) to start reading
* @buf: Data read from NVM is stored here
* @size: Number of bytes to read
*
* Reads retimer NVM and copies the contents to @buf. Returns %0 if the
* read was successful and negative errno in case of failure.
* Specifically returns %-ENODEV if there is no retimer at @index.
*/
int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
unsigned int address, void *buf, size_t size)
{
struct retimer_info info = { .port = port, .index = index };
return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
usb4_port_retimer_nvm_read_block, &info);
}
static inline unsigned int
usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
{
/* Take the possible bandwidth limitation into account */
if (port->max_bw)
return min(bw, port->max_bw);
return bw;
}
/**
* usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
* @port: USB3 adapter port
*
* Return maximum supported link rate of a USB3 adapter in Mb/s.
* Negative errno in case of error.
*/
int usb4_usb3_port_max_link_rate(struct tb_port *port)
{
int ret, lr;
u32 val;
if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_4, 1);
if (ret)
return ret;
lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
return usb4_usb3_port_max_bandwidth(port, ret);
}
static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
{
int ret;
u32 val;
if (!tb_port_is_usb3_down(port))
return -EINVAL;
if (tb_route(port->sw))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
if (request)
val |= ADP_USB3_CS_2_CMR;
else
val &= ~ADP_USB3_CS_2_CMR;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
/*
* We can use val here directly as the CMR bit is in the same place
* as HCA. Just mask out others.
*/
val &= ADP_USB3_CS_2_CMR;
return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
ADP_USB3_CS_1_HCA, val, 1500);
}
static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
{
return usb4_usb3_port_cm_request(port, true);
}
static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
{
return usb4_usb3_port_cm_request(port, false);
}
static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
{
unsigned long uframes;
uframes = bw * 512UL << scale;
return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
}
static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
{
unsigned long uframes;
/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
uframes = ((unsigned long)mbps * MEGA) / 8000;
return DIV_ROUND_UP(uframes, 512UL << scale);
}
static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
int *upstream_bw,
int *downstream_bw)
{
u32 val, bw, scale;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
bw = val & ADP_USB3_CS_2_AUBW_MASK;
*upstream_bw = usb3_bw_to_mbps(bw, scale);
bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
*downstream_bw = usb3_bw_to_mbps(bw, scale);
return 0;
}
/**
* usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
* @port: USB3 adapter port
* @upstream_bw: Allocated upstream bandwidth is stored here
* @downstream_bw: Allocated downstream bandwidth is stored here
*
* Stores currently allocated USB3 bandwidth into @upstream_bw and
* @downstream_bw in Mb/s. Returns %0 in case of success and negative
* errno in failure.
*/
int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
downstream_bw);
usb4_usb3_port_clear_cm_request(port);
return ret;
}
static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
int *upstream_bw,
int *downstream_bw)
{
u32 val, bw, scale;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_1, 1);
if (ret)
return ret;
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
bw = val & ADP_USB3_CS_1_CUBW_MASK;
*upstream_bw = usb3_bw_to_mbps(bw, scale);
bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
*downstream_bw = usb3_bw_to_mbps(bw, scale);
return 0;
}
static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
int upstream_bw,
int downstream_bw)
{
u32 val, ubw, dbw, scale;
int ret, max_bw;
/* Figure out suitable scale */
scale = 0;
max_bw = max(upstream_bw, downstream_bw);
while (scale < 64) {
if (mbps_to_usb3_bw(max_bw, scale) < 4096)
break;
scale++;
}
if (WARN_ON(scale >= 64))
return -EINVAL;
ret = tb_port_write(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
ubw = mbps_to_usb3_bw(upstream_bw, scale);
dbw = mbps_to_usb3_bw(downstream_bw, scale);
tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
val |= ubw;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
}
/**
* usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
* @port: USB3 adapter port
* @upstream_bw: New upstream bandwidth
* @downstream_bw: New downstream bandwidth
*
* This can be used to set how much bandwidth is allocated for the USB3
* tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
* new values programmed to the USB3 adapter allocation registers. If
* the values are lower than what is currently consumed the allocation
* is set to what is currently consumed instead (consumed bandwidth
* cannot be taken away by CM). The actual new values are returned in
* @upstream_bw and @downstream_bw.
*
* Returns %0 in case of success and negative errno if there was a
* failure.
*/
int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret, consumed_up, consumed_down, allocate_up, allocate_down;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
&consumed_down);
if (ret)
goto err_request;
/* Don't allow it go lower than what is consumed */
allocate_up = max(*upstream_bw, consumed_up);
allocate_down = max(*downstream_bw, consumed_down);
ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
allocate_down);
if (ret)
goto err_request;
*upstream_bw = allocate_up;
*downstream_bw = allocate_down;
err_request:
usb4_usb3_port_clear_cm_request(port);
return ret;
}
/**
* usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
* @port: USB3 adapter port
* @upstream_bw: New allocated upstream bandwidth
* @downstream_bw: New allocated downstream bandwidth
*
* Releases USB3 allocated bandwidth down to what is actually consumed.
* The new bandwidth is returned in @upstream_bw and @downstream_bw.
*
* Returns 0% in success and negative errno in case of failure.
*/
int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret, consumed_up, consumed_down;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
&consumed_down);
if (ret)
goto err_request;
/*
* Always keep 1000 Mb/s to make sure xHCI has at least some
* bandwidth available for isochronous traffic.
*/
if (consumed_up < 1000)
consumed_up = 1000;
if (consumed_down < 1000)
consumed_down = 1000;
ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
consumed_down);
if (ret)
goto err_request;
*upstream_bw = consumed_up;
*downstream_bw = consumed_down;
err_request:
usb4_usb3_port_clear_cm_request(port);
return ret;
}
static bool is_usb4_dpin(const struct tb_port *port)
{
if (!tb_port_is_dpin(port))
return false;
if (!tb_switch_is_usb4(port->sw))
return false;
return true;
}
/**
* usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
* @port: DP IN adapter
* @cm_id: CM ID to assign
*
* Sets CM ID for the @port. Returns %0 on success and negative errno
* otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
* support this.
*/
int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
{
u32 val;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
val &= ~ADP_DP_CS_2_CM_ID_MASK;
val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
/**
* usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
* supported
* @port: DP IN adapter to check
*
* Can be called to any DP IN adapter. Returns true if the adapter
* supports USB4 bandwidth allocation mode, false otherwise.
*/
bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
{
int ret;
u32 val;
if (!is_usb4_dpin(port))
return false;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + DP_LOCAL_CAP, 1);
if (ret)
return false;
return !!(val & DP_COMMON_CAP_BW_MODE);
}
/**
* usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
* enabled
* @port: DP IN adapter to check
*
* Can be called to any DP IN adapter. Returns true if the bandwidth
* allocation mode has been enabled, false otherwise.
*/
bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
{
int ret;
u32 val;
if (!is_usb4_dpin(port))
return false;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_8, 1);
if (ret)
return false;
return !!(val & ADP_DP_CS_8_DPME);
}
/**
* usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
* bandwidth allocation mode
* @port: DP IN adapter
* @supported: Does the CM support bandwidth allocation mode
*
* Can be called to any DP IN adapter. Sets or clears the CM support bit
* of the DP IN adapter. Returns %0 in success and negative errno
* otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
* does not support this.
*/
int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
bool supported)
{
u32 val;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
if (supported)
val |= ADP_DP_CS_2_CMMS;
else
val &= ~ADP_DP_CS_2_CMMS;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
/**
* usb4_dp_port_group_id() - Return Group ID assigned for the adapter
* @port: DP IN adapter
*
* Reads bandwidth allocation Group ID from the DP IN adapter and
* returns it. If the adapter does not support setting Group_ID
* %-EOPNOTSUPP is returned.
*/
int usb4_dp_port_group_id(struct tb_port *port)
{
u32 val;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
}
/**
* usb4_dp_port_set_group_id() - Set adapter Group ID
* @port: DP IN adapter
* @group_id: Group ID for the adapter
*
* Sets bandwidth allocation mode Group ID for the DP IN adapter.
* Returns %0 in case of success and negative errno otherwise.
* Specifically returns %-EOPNOTSUPP if the adapter does not support
* this.
*/
int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
{
u32 val;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
/**
* usb4_dp_port_nrd() - Read non-reduced rate and lanes
* @port: DP IN adapter
* @rate: Non-reduced rate in Mb/s is placed here
* @lanes: Non-reduced lanes are placed here
*
* Reads the non-reduced rate and lanes from the DP IN adapter. Returns
* %0 in success and negative errno otherwise. Specifically returns
* %-EOPNOTSUPP if the adapter does not support this.
*/
int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
{
u32 val, tmp;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
switch (tmp) {
case DP_COMMON_CAP_RATE_RBR:
*rate = 1620;
break;
case DP_COMMON_CAP_RATE_HBR:
*rate = 2700;
break;
case DP_COMMON_CAP_RATE_HBR2:
*rate = 5400;
break;
case DP_COMMON_CAP_RATE_HBR3:
*rate = 8100;
break;
}
tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
switch (tmp) {
case DP_COMMON_CAP_1_LANE:
*lanes = 1;
break;
case DP_COMMON_CAP_2_LANES:
*lanes = 2;
break;
case DP_COMMON_CAP_4_LANES:
*lanes = 4;
break;
}
return 0;
}
/**
* usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
* @port: DP IN adapter
* @rate: Non-reduced rate in Mb/s
* @lanes: Non-reduced lanes
*
* Before the capabilities reduction this function can be used to set
* the non-reduced values for the DP IN adapter. Returns %0 in success
* and negative errno otherwise. If the adapter does not support this
* %-EOPNOTSUPP is returned.
*/
int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
{
u32 val;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
switch (rate) {
case 1620:
break;
case 2700:
val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
& ADP_DP_CS_2_NRD_MLR_MASK;
break;
case 5400:
val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
& ADP_DP_CS_2_NRD_MLR_MASK;
break;
case 8100:
val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
& ADP_DP_CS_2_NRD_MLR_MASK;
break;
default:
return -EINVAL;
}
val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
switch (lanes) {
case 1:
break;
case 2:
val |= DP_COMMON_CAP_2_LANES;
break;
case 4:
val |= DP_COMMON_CAP_4_LANES;
break;
default:
return -EINVAL;
}
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
/**
* usb4_dp_port_granularity() - Return granularity for the bandwidth values
* @port: DP IN adapter
*
* Reads the programmed granularity from @port. If the DP IN adapter does
* not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
* errno in other error cases.
*/
int usb4_dp_port_granularity(struct tb_port *port)
{
u32 val;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
val &= ADP_DP_CS_2_GR_MASK;
val >>= ADP_DP_CS_2_GR_SHIFT;
switch (val) {
case ADP_DP_CS_2_GR_0_25G:
return 250;
case ADP_DP_CS_2_GR_0_5G:
return 500;
case ADP_DP_CS_2_GR_1G:
return 1000;
}
return -EINVAL;
}
/**
* usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
* @port: DP IN adapter
* @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
*
* Sets the granularity used with the estimated, allocated and requested
* bandwidth. Returns %0 in success and negative errno otherwise. If the
* adapter does not support this %-EOPNOTSUPP is returned.
*/
int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
{
u32 val;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
val &= ~ADP_DP_CS_2_GR_MASK;
switch (granularity) {
case 250:
val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
break;
case 500:
val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
break;
case 1000:
val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
break;
default:
return -EINVAL;
}
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
/**
* usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
* @port: DP IN adapter
* @bw: Estimated bandwidth in Mb/s.
*
* Sets the estimated bandwidth to @bw. Set the granularity by calling
* usb4_dp_port_set_granularity() before calling this. The @bw is round
* down to the closest granularity multiplier. Returns %0 in success
* and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
* the adapter does not support this.
*/
int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
{
u32 val, granularity;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = usb4_dp_port_granularity(port);
if (ret < 0)
return ret;
granularity = ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
/**
* usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
* @port: DP IN adapter
*
* Reads and returns allocated bandwidth for @port in Mb/s (taking into
* account the programmed granularity). Returns negative errno in case
* of error.
*/
int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
{
u32 val, granularity;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = usb4_dp_port_granularity(port);
if (ret < 0)
return ret;
granularity = ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + DP_STATUS, 1);
if (ret)
return ret;
val &= DP_STATUS_ALLOCATED_BW_MASK;
val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
return val * granularity;
}
static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
{
u32 val;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
if (ack)
val |= ADP_DP_CS_2_CA;
else
val &= ~ADP_DP_CS_2_CA;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
{
return __usb4_dp_port_set_cm_ack(port, true);
}
static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
int timeout_msec)
{
ktime_t end;
u32 val;
int ret;
ret = __usb4_dp_port_set_cm_ack(port, false);
if (ret)
return ret;
end = ktime_add_ms(ktime_get(), timeout_msec);
do {
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_8, 1);
if (ret)
return ret;
if (!(val & ADP_DP_CS_8_DR))
break;
usleep_range(50, 100);
} while (ktime_before(ktime_get(), end));
if (val & ADP_DP_CS_8_DR)
return -ETIMEDOUT;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
if (ret)
return ret;
val &= ~ADP_DP_CS_2_CA;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_2, 1);
}
/**
* usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
* @port: DP IN adapter
* @bw: New allocated bandwidth in Mb/s
*
* Communicates the new allocated bandwidth with the DPCD (graphics
* driver). Takes into account the programmed granularity. Returns %0 in
* success and negative errno in case of error.
*/
int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
{
u32 val, granularity;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = usb4_dp_port_granularity(port);
if (ret < 0)
return ret;
granularity = ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + DP_STATUS, 1);
if (ret)
return ret;
val &= ~DP_STATUS_ALLOCATED_BW_MASK;
val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + DP_STATUS, 1);
if (ret)
return ret;
ret = usb4_dp_port_set_cm_ack(port);
if (ret)
return ret;
return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
}
/**
* usb4_dp_port_requested_bandwidth() - Read requested bandwidth
* @port: DP IN adapter
*
* Reads the DPCD (graphics driver) requested bandwidth and returns it
* in Mb/s. Takes the programmed granularity into account. In case of
* error returns negative errno. Specifically returns %-EOPNOTSUPP if
* the adapter does not support bandwidth allocation mode, and %ENODATA
* if there is no active bandwidth request from the graphics driver.
*/
int usb4_dp_port_requested_bandwidth(struct tb_port *port)
{
u32 val, granularity;
int ret;
if (!is_usb4_dpin(port))
return -EOPNOTSUPP;
ret = usb4_dp_port_granularity(port);
if (ret < 0)
return ret;
granularity = ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_DP_CS_8, 1);
if (ret)
return ret;
if (!(val & ADP_DP_CS_8_DR))
return -ENODATA;
return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
}
/**
* usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
* @port: PCIe adapter
* @enable: Enable/disable extended encapsulation
*
* Enables or disables extended encapsulation used in PCIe tunneling. Caller
* needs to make sure both adapters support this before enabling. Returns %0 on
* success and negative errno otherwise.
*/
int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
{
u32 val;
int ret;
if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_1, 1);
if (ret)
return ret;
if (enable)
val |= ADP_PCIE_CS_1_EE;
else
val &= ~ADP_PCIE_CS_1_EE;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_PCIE_CS_1, 1);
}