// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*
* This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_SR2 0x0024 /* SAMA7G5 Status Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_RICR 0x003C /* Read Instruction Code Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_REFRESH 0x0050 /* Refresh Register */
#define QSPI_WRACNT 0x0054 /* Write Access Counter Register */
#define QSPI_DLLCFG 0x0058 /* DLL Configuration Register */
#define QSPI_PCALCFG 0x005C /* Pad Calibration Configuration Register */
#define QSPI_PCALBP 0x0060 /* Pad Calibration Bypass Register */
#define QSPI_TOUT 0x0064 /* Timeout Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
#define SAMA7G5_QSPI0_MAX_SPEED_HZ 200000000
#define SAMA7G5_QSPI1_SDR_MAX_SPEED_HZ 133000000
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_DLLON BIT(2)
#define QSPI_CR_DLLOFF BIT(3)
#define QSPI_CR_STPCAL BIT(4)
#define QSPI_CR_SRFRSH BIT(5)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_UPDCFG BIT(8)
#define QSPI_CR_STTFR BIT(9)
#define QSPI_CR_RTOUT BIT(10)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_DQSDLYEN BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_OENSD BIT(15)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_LWRA BIT(11)
#define QSPI_SR_QITF BIT(12)
#define QSPI_SR_QITR BIT(13)
#define QSPI_SR_CSFA BIT(14)
#define QSPI_SR_CSRA BIT(15)
#define QSPI_SR_RFRSHD BIT(16)
#define QSPI_SR_TOUT BIT(17)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_SR2 (SAMA7G5 Status Register) */
#define QSPI_SR2_SYNCBSY BIT(0)
#define QSPI_SR2_QSPIENS BIT(1)
#define QSPI_SR2_CSS BIT(2)
#define QSPI_SR2_RBUSY BIT(3)
#define QSPI_SR2_HIDLE BIT(4)
#define QSPI_SR2_DLOCK BIT(5)
#define QSPI_SR2_CALBSY BIT(6)
/* Bitfields in QSPI_IAR (Instruction Address Register) */
#define QSPI_IAR_ADDR GENMASK(31, 0)
/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_INST_MASK_SAMA7G5 GENMASK(15, 0)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_WIDTH_OCT_OUTPUT (7 << 0)
#define QSPI_IFR_WIDTH_OCT_IO (8 << 0)
#define QSPI_IFR_WIDTH_OCT_CMD (9 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_ADDRL_SAMA7G5 GENMASK(11, 10)
#define QSPI_IFR_TFRTYP_MEM BIT(12)
#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_DDREN BIT(15)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
#define QSPI_IFR_END BIT(22)
#define QSPI_IFR_SMRM BIT(23)
#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
#define QSPI_IFR_DQSEN BIT(25)
#define QSPI_IFR_DDRCMDEN BIT(26)
#define QSPI_IFR_HFWBEN BIT(27)
#define QSPI_IFR_PROTTYP GENMASK(29, 28)
#define QSPI_IFR_PROTTYP_STD_SPI 0
#define QSPI_IFR_PROTTYP_TWIN_QUAD 1
#define QSPI_IFR_PROTTYP_OCTAFLASH 2
#define QSPI_IFR_PROTTYP_HYPERFLASH 3
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
#define QSPI_SMR_SCRKL BIT(2)
/* Bitfields in QSPI_REFRESH (Refresh Register) */
#define QSPI_REFRESH_DELAY_COUNTER GENMASK(31, 0)
/* Bitfields in QSPI_WRACNT (Write Access Counter Register) */
#define QSPI_WRACNT_NBWRA GENMASK(31, 0)
/* Bitfields in QSPI_DLLCFG (DLL Configuration Register) */
#define QSPI_DLLCFG_RANGE BIT(0)
/* Bitfields in QSPI_PCALCFG (DLL Pad Calibration Configuration Register) */
#define QSPI_PCALCFG_AAON BIT(0)
#define QSPI_PCALCFG_DAPCAL BIT(1)
#define QSPI_PCALCFG_DIFFPM BIT(2)
#define QSPI_PCALCFG_CLKDIV GENMASK(6, 4)
#define QSPI_PCALCFG_CALCNT GENMASK(16, 8)
#define QSPI_PCALCFG_CALP GENMASK(27, 24)
#define QSPI_PCALCFG_CALN GENMASK(31, 28)
/* Bitfields in QSPI_PCALBP (DLL Pad Calibration Bypass Register) */
#define QSPI_PCALBP_BPEN BIT(0)
#define QSPI_PCALBP_CALPBP GENMASK(11, 8)
#define QSPI_PCALBP_CALNBP GENMASK(19, 16)
/* Bitfields in QSPI_TOUT (Timeout Register) */
#define QSPI_TOUT_TCNTM GENMASK(15, 0)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPITEN BIT(1)
#define QSPI_WPMR_WPCREN BIT(2)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
#define ATMEL_QSPI_TIMEOUT 1000 /* ms */
#define ATMEL_QSPI_SYNC_TIMEOUT 300 /* ms */
#define QSPI_DLLCFG_THRESHOLD_FREQ 90000000U
#define QSPI_CALIB_TIME 2000 /* 2 us */
/* Use PIO for small transfers. */
#define ATMEL_QSPI_DMA_MIN_BYTES 16
/**
* struct atmel_qspi_pcal - Pad Calibration Clock Division
* @pclk_rate: peripheral clock rate.
* @pclk_div: calibration clock division. The clock applied to the calibration
* cell is divided by pclk_div + 1.
*/
struct atmel_qspi_pcal {
u32 pclk_rate;
u8 pclk_div;
};
#define ATMEL_QSPI_PCAL_ARRAY_SIZE 8
static const struct atmel_qspi_pcal pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE] = {
{25000000, 0},
{50000000, 1},
{75000000, 2},
{100000000, 3},
{125000000, 4},
{150000000, 5},
{175000000, 6},
{200000000, 7},
};
struct atmel_qspi_caps {
u32 max_speed_hz;
bool has_qspick;
bool has_gclk;
bool has_ricr;
bool octal;
bool has_dma;
};
struct atmel_qspi_ops;
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
struct clk *pclk;
struct clk *qspick;
struct clk *gclk;
struct platform_device *pdev;
const struct atmel_qspi_caps *caps;
const struct atmel_qspi_ops *ops;
resource_size_t mmap_size;
u32 pending;
u32 irq_mask;
u32 mr;
u32 scr;
u32 target_max_speed_hz;
struct completion cmd_completion;
struct completion dma_completion;
dma_addr_t mmap_phys_base;
struct dma_chan *rx_chan;
struct dma_chan *tx_chan;
};
struct atmel_qspi_ops {
int (*set_cfg)(struct atmel_qspi *aq, const struct spi_mem_op *op,
u32 *offset);
int (*transfer)(struct spi_mem *mem, const struct spi_mem_op *op,
u32 offset);
};
struct atmel_qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
static const struct atmel_qspi_mode atmel_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
static const struct atmel_qspi_mode atmel_qspi_sama7g5_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
{ 1, 1, 8, QSPI_IFR_WIDTH_OCT_OUTPUT },
{ 1, 8, 8, QSPI_IFR_WIDTH_OCT_IO },
{ 8, 8, 8, QSPI_IFR_WIDTH_OCT_CMD },
};
#ifdef VERBOSE_DEBUG
static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case QSPI_CR:
return "CR";
case QSPI_MR:
return "MR";
case QSPI_RD:
return "RD";
case QSPI_TD:
return "TD";
case QSPI_SR:
return "SR";
case QSPI_IER:
return "IER";
case QSPI_IDR:
return "IDR";
case QSPI_IMR:
return "IMR";
case QSPI_SCR:
return "SCR";
case QSPI_SR2:
return "SR2";
case QSPI_IAR:
return "IAR";
case QSPI_ICR:
return "ICR/WICR";
case QSPI_IFR:
return "IFR";
case QSPI_RICR:
return "RICR";
case QSPI_SMR:
return "SMR";
case QSPI_SKR:
return "SKR";
case QSPI_REFRESH:
return "REFRESH";
case QSPI_WRACNT:
return "WRACNT";
case QSPI_DLLCFG:
return "DLLCFG";
case QSPI_PCALCFG:
return "PCALCFG";
case QSPI_PCALBP:
return "PCALBP";
case QSPI_TOUT:
return "TOUT";
case QSPI_WPMR:
return "WPMR";
case QSPI_WPSR:
return "WPSR";
case QSPI_VERSION:
return "VERSION";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset)
{
u32 value = readl_relaxed(aq->regs + offset);
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "read 0x%08x from %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
return value;
}
static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset)
{
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "write 0x%08x into %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, aq->regs + offset);
}
static int atmel_qspi_reg_sync(struct atmel_qspi *aq)
{
u32 val;
int ret;
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_SYNCBSY), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
return ret;
}
static int atmel_qspi_update_config(struct atmel_qspi *aq)
{
int ret;
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_UPDCFG, aq, QSPI_CR);
return atmel_qspi_reg_sync(aq);
}
static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
const struct atmel_qspi_mode *mode)
{
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
static int atmel_qspi_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
return i;
return -EOPNOTSUPP;
}
static int atmel_qspi_sama7g5_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_sama7g5_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_sama7g5_modes[i]))
return i;
return -EOPNOTSUPP;
}
static bool atmel_qspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
if (!spi_mem_default_supports_op(mem, op))
return false;
if (aq->caps->octal) {
if (atmel_qspi_sama7g5_find_mode(op) < 0)
return false;
else
return true;
}
if (atmel_qspi_find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
static int atmel_qspi_set_serial_memory_mode(struct atmel_qspi *aq)
{
int ret = 0;
if (!(aq->mr & QSPI_MR_SMM)) {
aq->mr |= QSPI_MR_SMM;
atmel_qspi_write(aq->mr, aq, QSPI_MR);
if (aq->caps->has_gclk)
ret = atmel_qspi_update_config(aq);
}
return ret;
}
static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
u32 dummy_cycles = 0;
int mode;
iar = 0;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_modes[mode].config;
if (op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
/*
* The controller allows 24 and 32-bit addressing while NAND-flash
* requires 16-bit long. Handling 8-bit long addresses is done using
* the option field. For the 16-bit addresses, the workaround depends
* of the number of requested dummy bits. If there are 8 or more dummy
* cycles, the address is shifted and sent with the first dummy byte.
* Otherwise opcode is disabled and the first byte of the address
* contains the command opcode (works only if the opcode and address
* use the same buswidth). The limitation is when the 16-bit address is
* used without enough dummy cycles and the opcode is using a different
* buswidth than the address.
*/
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case 1:
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
default:
return -ENOTSUPP;
}
}
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set number of dummy cycles */
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable and data transfer type. */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
mode = atmel_qspi_set_serial_memory_mode(aq);
if (mode < 0)
return mode;
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers. */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (aq->caps->has_ricr) {
if (op->data.dir == SPI_MEM_DATA_IN)
atmel_qspi_write(icr, aq, QSPI_RICR);
else
atmel_qspi_write(icr, aq, QSPI_WICR);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
atmel_qspi_write(icr, aq, QSPI_ICR);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return 0;
}
static int atmel_qspi_wait_for_completion(struct atmel_qspi *aq, u32 irq_mask)
{
int err = 0;
u32 sr;
/* Poll INSTRuction End status */
sr = atmel_qspi_read(aq, QSPI_SR);
if ((sr & irq_mask) == irq_mask)
return 0;
/* Wait for INSTRuction End interrupt */
reinit_completion(&aq->cmd_completion);
aq->pending = sr & irq_mask;
aq->irq_mask = irq_mask;
atmel_qspi_write(irq_mask, aq, QSPI_IER);
if (!wait_for_completion_timeout(&aq->cmd_completion,
msecs_to_jiffies(ATMEL_QSPI_TIMEOUT)))
err = -ETIMEDOUT;
atmel_qspi_write(irq_mask, aq, QSPI_IDR);
return err;
}
static int atmel_qspi_transfer(struct spi_mem *mem,
const struct spi_mem_op *op, u32 offset)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
/* Skip to the final steps if there is no data */
if (!op->data.nbytes)
return atmel_qspi_wait_for_completion(aq,
QSPI_SR_CMD_COMPLETED);
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)atmel_qspi_read(aq, QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN) {
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
/* Synchronize AHB and APB accesses again */
rmb();
} else {
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Synchronize AHB and APB accesses again */
wmb();
}
/* Release the chip-select */
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
return atmel_qspi_wait_for_completion(aq, QSPI_SR_CMD_COMPLETED);
}
static int atmel_qspi_sama7g5_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
int mode, ret;
iar = 0;
icr = FIELD_PREP(QSPI_ICR_INST_MASK_SAMA7G5, op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_sama7g5_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_sama7g5_modes[mode].config;
if (op->dummy.buswidth && op->dummy.nbytes) {
if (op->addr.dtr && op->dummy.dtr && op->data.dtr)
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
(2 * op->dummy.buswidth));
else
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
op->dummy.buswidth);
}
if (op->addr.buswidth && op->addr.nbytes) {
ifr |= FIELD_PREP(QSPI_IFR_ADDRL_SAMA7G5, op->addr.nbytes - 1) |
QSPI_IFR_ADDREN;
iar = FIELD_PREP(QSPI_IAR_ADDR, op->addr.val);
}
if (op->addr.dtr && op->dummy.dtr && op->data.dtr) {
ifr |= QSPI_IFR_DDREN;
if (op->cmd.dtr)
ifr |= QSPI_IFR_DDRCMDEN;
ifr |= QSPI_IFR_DQSEN;
}
if (op->cmd.buswidth == 8 || op->addr.buswidth == 8 ||
op->data.buswidth == 8)
ifr |= FIELD_PREP(QSPI_IFR_PROTTYP, QSPI_IFR_PROTTYP_OCTAFLASH);
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set data enable */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
ret = atmel_qspi_set_serial_memory_mode(aq);
if (ret < 0)
return ret;
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (op->data.dir == SPI_MEM_DATA_IN) {
atmel_qspi_write(icr, aq, QSPI_RICR);
} else {
atmel_qspi_write(icr, aq, QSPI_WICR);
if (op->data.nbytes)
atmel_qspi_write(FIELD_PREP(QSPI_WRACNT_NBWRA,
op->data.nbytes),
aq, QSPI_WRACNT);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return atmel_qspi_update_config(aq);
}
static void atmel_qspi_dma_callback(void *param)
{
struct atmel_qspi *aq = param;
complete(&aq->dma_completion);
}
static int atmel_qspi_dma_xfer(struct atmel_qspi *aq, struct dma_chan *chan,
dma_addr_t dma_dst, dma_addr_t dma_src,
unsigned int len)
{
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
int ret;
tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx) {
dev_err(&aq->pdev->dev, "device_prep_dma_memcpy error\n");
return -EIO;
}
reinit_completion(&aq->dma_completion);
tx->callback = atmel_qspi_dma_callback;
tx->callback_param = aq;
cookie = tx->tx_submit(tx);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(&aq->pdev->dev, "dma_submit_error %d\n", cookie);
return ret;
}
dma_async_issue_pending(chan);
ret = wait_for_completion_timeout(&aq->dma_completion,
msecs_to_jiffies(20 * ATMEL_QSPI_TIMEOUT));
if (ret == 0) {
dmaengine_terminate_sync(chan);
dev_err(&aq->pdev->dev, "DMA wait_for_completion_timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int atmel_qspi_dma_rx_xfer(struct spi_mem *mem,
const struct spi_mem_op *op,
struct sg_table *sgt, loff_t loff)
{
struct atmel_qspi *aq =
spi_controller_get_devdata(mem->spi->controller);
struct scatterlist *sg;
dma_addr_t dma_src;
unsigned int i, len;
int ret;
dma_src = aq->mmap_phys_base + loff;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
len = sg_dma_len(sg);
ret = atmel_qspi_dma_xfer(aq, aq->rx_chan, sg_dma_address(sg),
dma_src, len);
if (ret)
return ret;
dma_src += len;
}
return 0;
}
static int atmel_qspi_dma_tx_xfer(struct spi_mem *mem,
const struct spi_mem_op *op,
struct sg_table *sgt, loff_t loff)
{
struct atmel_qspi *aq =
spi_controller_get_devdata(mem->spi->controller);
struct scatterlist *sg;
dma_addr_t dma_dst;
unsigned int i, len;
int ret;
dma_dst = aq->mmap_phys_base + loff;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
len = sg_dma_len(sg);
ret = atmel_qspi_dma_xfer(aq, aq->tx_chan, dma_dst,
sg_dma_address(sg), len);
if (ret)
return ret;
dma_dst += len;
}
return 0;
}
static int atmel_qspi_dma_transfer(struct spi_mem *mem,
const struct spi_mem_op *op, loff_t loff)
{
struct sg_table sgt;
int ret;
ret = spi_controller_dma_map_mem_op_data(mem->spi->controller, op,
&sgt);
if (ret)
return ret;
if (op->data.dir == SPI_MEM_DATA_IN)
ret = atmel_qspi_dma_rx_xfer(mem, op, &sgt, loff);
else
ret = atmel_qspi_dma_tx_xfer(mem, op, &sgt, loff);
spi_controller_dma_unmap_mem_op_data(mem->spi->controller, op, &sgt);
return ret;
}
static int atmel_qspi_sama7g5_transfer(struct spi_mem *mem,
const struct spi_mem_op *op, u32 offset)
{
struct atmel_qspi *aq =
spi_controller_get_devdata(mem->spi->controller);
u32 val;
int ret;
if (!op->data.nbytes) {
/* Start the transfer. */
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_STTFR, aq, QSPI_CR);
return atmel_qspi_wait_for_completion(aq, QSPI_SR_CSRA);
}
/* Send/Receive data. */
if (op->data.dir == SPI_MEM_DATA_IN) {
if (aq->rx_chan && op->addr.nbytes &&
op->data.nbytes > ATMEL_QSPI_DMA_MIN_BYTES) {
ret = atmel_qspi_dma_transfer(mem, op, offset);
if (ret)
return ret;
} else {
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
}
if (op->addr.nbytes) {
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_RBUSY), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
}
} else {
if (aq->tx_chan && op->addr.nbytes &&
op->data.nbytes > ATMEL_QSPI_DMA_MIN_BYTES) {
ret = atmel_qspi_dma_transfer(mem, op, offset);
if (ret)
return ret;
} else {
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
}
ret = atmel_qspi_wait_for_completion(aq, QSPI_SR_LWRA);
if (ret)
return ret;
}
/* Release the chip-select. */
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
return atmel_qspi_wait_for_completion(aq, QSPI_SR_CSRA);
}
static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
u32 offset;
int err;
/*
* Check if the address exceeds the MMIO window size. An improvement
* would be to add support for regular SPI mode and fall back to it
* when the flash memories overrun the controller's memory space.
*/
if (op->addr.val + op->data.nbytes > aq->mmap_size)
return -EOPNOTSUPP;
if (op->addr.nbytes > 4)
return -EOPNOTSUPP;
err = pm_runtime_resume_and_get(&aq->pdev->dev);
if (err < 0)
return err;
err = aq->ops->set_cfg(aq, op, &offset);
if (err)
goto pm_runtime_put;
err = aq->ops->transfer(mem, op, offset);
pm_runtime_put:
pm_runtime_mark_last_busy(&aq->pdev->dev);
pm_runtime_put_autosuspend(&aq->pdev->dev);
return err;
}
static const char *atmel_qspi_get_name(struct spi_mem *spimem)
{
return dev_name(spimem->spi->dev.parent);
}
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
.get_name = atmel_qspi_get_name
};
static int atmel_qspi_set_pad_calibration(struct atmel_qspi *aq)
{
unsigned long pclk_rate;
u32 status, val;
int i, ret;
u8 pclk_div = 0;
pclk_rate = clk_get_rate(aq->pclk);
if (!pclk_rate)
return -EINVAL;
for (i = 0; i < ATMEL_QSPI_PCAL_ARRAY_SIZE; i++) {
if (pclk_rate <= pcal[i].pclk_rate) {
pclk_div = pcal[i].pclk_div;
break;
}
}
/*
* Use the biggest divider in case the peripheral clock exceeds
* 200MHZ.
*/
if (pclk_rate > pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_rate)
pclk_div = pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_div;
/* Disable QSPI while configuring the pad calibration. */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_QSPIENS) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
}
/*
* The analog circuitry is not shut down at the end of the calibration
* and the start-up time is only required for the first calibration
* sequence, thus increasing performance. Set the delay between the Pad
* calibration analog circuitry and the calibration request to 2us.
*/
atmel_qspi_write(QSPI_PCALCFG_AAON |
FIELD_PREP(QSPI_PCALCFG_CLKDIV, pclk_div) |
FIELD_PREP(QSPI_PCALCFG_CALCNT,
2 * (pclk_rate / 1000000)),
aq, QSPI_PCALCFG);
/* DLL On + start calibration. */
atmel_qspi_write(QSPI_CR_DLLON | QSPI_CR_STPCAL, aq, QSPI_CR);
/* Check synchronization status before updating configuration. */
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
(val & QSPI_SR2_DLOCK) &&
!(val & QSPI_SR2_CALBSY), 40,
ATMEL_QSPI_TIMEOUT);
/* Refresh analogic blocks every 1 ms.*/
atmel_qspi_write(FIELD_PREP(QSPI_REFRESH_DELAY_COUNTER,
aq->target_max_speed_hz / 1000),
aq, QSPI_REFRESH);
return ret;
}
static int atmel_qspi_set_gclk(struct atmel_qspi *aq)
{
u32 status, val;
int ret;
/* Disable DLL before setting GCLK */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_DLOCK) {
atmel_qspi_write(QSPI_CR_DLLOFF, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_DLOCK), 40,
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
}
if (aq->target_max_speed_hz > QSPI_DLLCFG_THRESHOLD_FREQ)
atmel_qspi_write(QSPI_DLLCFG_RANGE, aq, QSPI_DLLCFG);
else
atmel_qspi_write(0, aq, QSPI_DLLCFG);
ret = clk_set_rate(aq->gclk, aq->target_max_speed_hz);
if (ret) {
dev_err(&aq->pdev->dev, "Failed to set generic clock rate.\n");
return ret;
}
/* Enable the QSPI generic clock */
ret = clk_prepare_enable(aq->gclk);
if (ret)
dev_err(&aq->pdev->dev, "Failed to enable generic clock.\n");
return ret;
}
static int atmel_qspi_sama7g5_init(struct atmel_qspi *aq)
{
u32 val;
int ret;
ret = atmel_qspi_set_gclk(aq);
if (ret)
return ret;
if (aq->caps->octal) {
ret = atmel_qspi_set_pad_calibration(aq);
if (ret)
return ret;
} else {
atmel_qspi_write(QSPI_CR_DLLON, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
(val & QSPI_SR2_DLOCK), 40,
ATMEL_QSPI_TIMEOUT);
}
/* Set the QSPI controller by default in Serial Memory Mode */
aq->mr |= QSPI_MR_DQSDLYEN;
ret = atmel_qspi_set_serial_memory_mode(aq);
if (ret < 0)
return ret;
/* Enable the QSPI controller. */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
val & QSPI_SR2_QSPIENS, 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
if (aq->caps->octal) {
ret = readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_RFRSHD, 40,
ATMEL_QSPI_TIMEOUT);
}
atmel_qspi_write(QSPI_TOUT_TCNTM, aq, QSPI_TOUT);
return ret;
}
static int atmel_qspi_sama7g5_setup(struct spi_device *spi)
{
struct atmel_qspi *aq = spi_controller_get_devdata(spi->controller);
/* The controller can communicate with a single peripheral device (target). */
aq->target_max_speed_hz = spi->max_speed_hz;
return atmel_qspi_sama7g5_init(aq);
}
static int atmel_qspi_setup(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long src_rate;
u32 scbr;
int ret;
if (ctrl->busy)
return -EBUSY;
if (!spi->max_speed_hz)
return -EINVAL;
if (aq->caps->has_gclk)
return atmel_qspi_sama7g5_setup(spi);
src_rate = clk_get_rate(aq->pclk);
if (!src_rate)
return -EINVAL;
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(src_rate, spi->max_speed_hz);
if (scbr > 0)
scbr--;
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr &= ~QSPI_SCR_SCBR_MASK;
aq->scr |= QSPI_SCR_SCBR(scbr);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static int atmel_qspi_set_cs_timing(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long clk_rate;
u32 cs_inactive;
u32 cs_setup;
u32 cs_hold;
int delay;
int ret;
clk_rate = clk_get_rate(aq->pclk);
if (!clk_rate)
return -EINVAL;
/* hold */
delay = spi_delay_to_ns(&spi->cs_hold, NULL);
if (aq->mr & QSPI_MR_SMM) {
if (delay > 0)
dev_warn(&aq->pdev->dev,
"Ignoring cs_hold, must be 0 in Serial Memory Mode.\n");
cs_hold = 0;
} else {
delay = spi_delay_to_ns(&spi->cs_hold, NULL);
if (delay < 0)
return delay;
cs_hold = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)), 32000);
}
/* setup */
delay = spi_delay_to_ns(&spi->cs_setup, NULL);
if (delay < 0)
return delay;
cs_setup = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)),
1000);
/* inactive */
delay = spi_delay_to_ns(&spi->cs_inactive, NULL);
if (delay < 0)
return delay;
cs_inactive = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)), 1000);
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr &= ~QSPI_SCR_DLYBS_MASK;
aq->scr |= QSPI_SCR_DLYBS(cs_setup);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
aq->mr &= ~(QSPI_MR_DLYBCT_MASK | QSPI_MR_DLYCS_MASK);
aq->mr |= QSPI_MR_DLYBCT(cs_hold) | QSPI_MR_DLYCS(cs_inactive);
atmel_qspi_write(aq->mr, aq, QSPI_MR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static int atmel_qspi_init(struct atmel_qspi *aq)
{
int ret;
if (aq->caps->has_gclk) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
return 0;
}
/* Reset the QSPI controller */
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
/* Set the QSPI controller by default in Serial Memory Mode */
ret = atmel_qspi_set_serial_memory_mode(aq);
if (ret < 0)
return ret;
/* Enable the QSPI controller */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
return 0;
}
static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id)
{
struct atmel_qspi *aq = dev_id;
u32 status, mask, pending;
status = atmel_qspi_read(aq, QSPI_SR);
mask = atmel_qspi_read(aq, QSPI_IMR);
pending = status & mask;
if (!pending)
return IRQ_NONE;
aq->pending |= pending;
if ((aq->pending & aq->irq_mask) == aq->irq_mask)
complete(&aq->cmd_completion);
return IRQ_HANDLED;
}
static int atmel_qspi_dma_init(struct spi_controller *ctrl)
{
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
aq->rx_chan = dma_request_chan(&aq->pdev->dev, "rx");
if (IS_ERR(aq->rx_chan)) {
aq->rx_chan = NULL;
return dev_err_probe(&aq->pdev->dev, PTR_ERR(aq->rx_chan),
"RX DMA channel is not available\n");
}
aq->tx_chan = dma_request_chan(&aq->pdev->dev, "tx");
if (IS_ERR(aq->tx_chan)) {
ret = dev_err_probe(&aq->pdev->dev, PTR_ERR(aq->tx_chan),
"TX DMA channel is not available\n");
goto release_rx_chan;
}
ctrl->dma_rx = aq->rx_chan;
ctrl->dma_tx = aq->tx_chan;
init_completion(&aq->dma_completion);
dev_info(&aq->pdev->dev, "Using %s (tx) and %s (rx) for DMA transfers\n",
dma_chan_name(aq->tx_chan), dma_chan_name(aq->rx_chan));
return 0;
release_rx_chan:
dma_release_channel(aq->rx_chan);
aq->rx_chan = NULL;
aq->tx_chan = NULL;
return ret;
}
static void atmel_qspi_dma_release(struct atmel_qspi *aq)
{
if (aq->rx_chan)
dma_release_channel(aq->rx_chan);
if (aq->tx_chan)
dma_release_channel(aq->tx_chan);
}
static const struct atmel_qspi_ops atmel_qspi_ops = {
.set_cfg = atmel_qspi_set_cfg,
.transfer = atmel_qspi_transfer,
};
static const struct atmel_qspi_ops atmel_qspi_sama7g5_ops = {
.set_cfg = atmel_qspi_sama7g5_set_cfg,
.transfer = atmel_qspi_sama7g5_transfer,
};
static int atmel_qspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct atmel_qspi *aq;
struct resource *res;
int irq, err = 0;
ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(*aq));
if (!ctrl)
return -ENOMEM;
aq = spi_controller_get_devdata(ctrl);
aq->caps = of_device_get_match_data(&pdev->dev);
if (!aq->caps) {
dev_err(&pdev->dev, "Could not retrieve QSPI caps\n");
return -EINVAL;
}
init_completion(&aq->cmd_completion);
aq->pdev = pdev;
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
if (aq->caps->octal)
ctrl->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
if (aq->caps->has_gclk)
aq->ops = &atmel_qspi_sama7g5_ops;
else
aq->ops = &atmel_qspi_ops;
ctrl->max_speed_hz = aq->caps->max_speed_hz;
ctrl->setup = atmel_qspi_setup;
ctrl->set_cs_timing = atmel_qspi_set_cs_timing;
ctrl->bus_num = -1;
ctrl->mem_ops = &atmel_qspi_mem_ops;
ctrl->num_chipselect = 1;
ctrl->dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, ctrl);
/* Map the registers */
aq->regs = devm_platform_ioremap_resource_byname(pdev, "qspi_base");
if (IS_ERR(aq->regs))
return dev_err_probe(&pdev->dev, PTR_ERR(aq->regs),
"missing registers\n");
/* Map the AHB memory */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap");
aq->mem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->mem))
return dev_err_probe(&pdev->dev, PTR_ERR(aq->mem),
"missing AHB memory\n");
aq->mmap_size = resource_size(res);
aq->mmap_phys_base = (dma_addr_t)res->start;
/* Get the peripheral clock */
aq->pclk = devm_clk_get_enabled(&pdev->dev, "pclk");
if (IS_ERR(aq->pclk))
aq->pclk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(aq->pclk))
return dev_err_probe(&pdev->dev, PTR_ERR(aq->pclk),
"missing peripheral clock\n");
if (aq->caps->has_qspick) {
/* Get the QSPI system clock */
aq->qspick = devm_clk_get_enabled(&pdev->dev, "qspick");
if (IS_ERR(aq->qspick)) {
dev_err(&pdev->dev, "missing system clock\n");
err = PTR_ERR(aq->qspick);
return err;
}
} else if (aq->caps->has_gclk) {
/* Get the QSPI generic clock */
aq->gclk = devm_clk_get(&pdev->dev, "gclk");
if (IS_ERR(aq->gclk)) {
dev_err(&pdev->dev, "missing Generic clock\n");
err = PTR_ERR(aq->gclk);
return err;
}
}
if (aq->caps->has_dma) {
err = atmel_qspi_dma_init(ctrl);
if (err == -EPROBE_DEFER)
return err;
}
/* Request the IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto dma_release;
}
err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt,
0, dev_name(&pdev->dev), aq);
if (err)
goto dma_release;
pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
err = atmel_qspi_init(aq);
if (err)
goto dma_release;
err = spi_register_controller(ctrl);
if (err) {
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
goto dma_release;
}
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
dma_release:
if (aq->caps->has_dma)
atmel_qspi_dma_release(aq);
return err;
}
static int atmel_qspi_sama7g5_suspend(struct atmel_qspi *aq)
{
int ret;
u32 val;
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_RBUSY) &&
(val & QSPI_SR2_HIDLE), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_QSPIENS), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
clk_disable_unprepare(aq->gclk);
atmel_qspi_write(QSPI_CR_DLLOFF, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_DLOCK), 40,
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_CALBSY), 40,
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
return 0;
}
static void atmel_qspi_remove(struct platform_device *pdev)
{
struct spi_controller *ctrl = platform_get_drvdata(pdev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
spi_unregister_controller(ctrl);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret >= 0) {
if (aq->caps->has_dma)
atmel_qspi_dma_release(aq);
if (aq->caps->has_gclk) {
ret = atmel_qspi_sama7g5_suspend(aq);
if (ret)
dev_warn(&pdev->dev, "Failed to de-init device on remove: %d\n", ret);
return;
}
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
} else {
/*
* atmel_qspi_runtime_{suspend,resume} just disable and enable
* the two clks respectively. So after resume failed these are
* off, and we skip hardware access and disabling these clks again.
*/
dev_warn(&pdev->dev, "Failed to resume device on remove\n");
}
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
}
static int __maybe_unused atmel_qspi_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
if (aq->caps->has_gclk) {
ret = atmel_qspi_sama7g5_suspend(aq);
clk_disable_unprepare(aq->pclk);
return ret;
}
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
pm_runtime_mark_last_busy(dev);
pm_runtime_force_suspend(dev);
clk_unprepare(aq->qspick);
clk_unprepare(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = clk_prepare(aq->pclk);
if (ret)
return ret;
ret = clk_prepare(aq->qspick);
if (ret) {
clk_unprepare(aq->pclk);
return ret;
}
if (aq->caps->has_gclk)
return atmel_qspi_sama7g5_init(aq);
ret = pm_runtime_force_resume(dev);
if (ret < 0)
return ret;
atmel_qspi_init(aq);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
clk_disable(aq->qspick);
clk_disable(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = clk_enable(aq->pclk);
if (ret)
return ret;
ret = clk_enable(aq->qspick);
if (ret)
clk_disable(aq->pclk);
return ret;
}
static const struct dev_pm_ops __maybe_unused atmel_qspi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(atmel_qspi_suspend, atmel_qspi_resume)
SET_RUNTIME_PM_OPS(atmel_qspi_runtime_suspend,
atmel_qspi_runtime_resume, NULL)
};
static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
.has_qspick = true,
.has_ricr = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_ospi_caps = {
.max_speed_hz = SAMA7G5_QSPI0_MAX_SPEED_HZ,
.has_gclk = true,
.octal = true,
.has_dma = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_qspi_caps = {
.max_speed_hz = SAMA7G5_QSPI1_SDR_MAX_SPEED_HZ,
.has_gclk = true,
.has_dma = true,
};
static const struct of_device_id atmel_qspi_dt_ids[] = {
{
.compatible = "atmel,sama5d2-qspi",
.data = &atmel_sama5d2_qspi_caps,
},
{
.compatible = "microchip,sam9x60-qspi",
.data = &atmel_sam9x60_qspi_caps,
},
{
.compatible = "microchip,sama7g5-ospi",
.data = &atmel_sama7g5_ospi_caps,
},
{
.compatible = "microchip,sama7g5-qspi",
.data = &atmel_sama7g5_qspi_caps,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids);
static struct platform_driver atmel_qspi_driver = {
.driver = {
.name = "atmel_qspi",
.of_match_table = atmel_qspi_dt_ids,
.pm = pm_ptr(&atmel_qspi_pm_ops),
},
.probe = atmel_qspi_probe,
.remove = atmel_qspi_remove,
};
module_platform_driver(atmel_qspi_driver);
MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>");
MODULE_AUTHOR("Piotr Bugalski <bugalski.piotr@gmail.com");
MODULE_DESCRIPTION("Atmel QSPI Controller driver");
MODULE_LICENSE("GPL v2");