// SPDX-License-Identifier: GPL-2.0-only
/*
* TI K3 R5F (MCU) Remote Processor driver
*
* Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
* Suman Anna <s-anna@ti.com>
*/
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_reserved_mem.h>
#include <linux/of_platform.h>
#include <linux/omap-mailbox.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"
/* This address can either be for ATCM or BTCM with the other at address 0x0 */
#define K3_R5_TCM_DEV_ADDR 0x41010000
/* R5 TI-SCI Processor Configuration Flags */
#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
/* Available from J7200 SoCs onwards */
#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
/* Applicable to only AM64x SoCs */
#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
/* R5 TI-SCI Processor Control Flags */
#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
/* R5 TI-SCI Processor Status Flags */
#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
/* Applicable to only AM64x SoCs */
#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
/**
* struct k3_r5_mem - internal memory structure
* @cpu_addr: MPU virtual address of the memory region
* @bus_addr: Bus address used to access the memory region
* @dev_addr: Device address from remoteproc view
* @size: Size of the memory region
*/
struct k3_r5_mem {
void __iomem *cpu_addr;
phys_addr_t bus_addr;
u32 dev_addr;
size_t size;
};
/*
* All cluster mode values are not applicable on all SoCs. The following
* are the modes supported on various SoCs:
* Split mode : AM65x, J721E, J7200 and AM64x SoCs
* LockStep mode : AM65x, J721E and J7200 SoCs
* Single-CPU mode : AM64x SoCs only
* Single-Core mode : AM62x, AM62A SoCs
*/
enum cluster_mode {
CLUSTER_MODE_SPLIT = 0,
CLUSTER_MODE_LOCKSTEP,
CLUSTER_MODE_SINGLECPU,
CLUSTER_MODE_SINGLECORE
};
/**
* struct k3_r5_soc_data - match data to handle SoC variations
* @tcm_is_double: flag to denote the larger unified TCMs in certain modes
* @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
* @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
* @is_single_core: flag to denote if SoC/IP has only single core R5
*/
struct k3_r5_soc_data {
bool tcm_is_double;
bool tcm_ecc_autoinit;
bool single_cpu_mode;
bool is_single_core;
};
/**
* struct k3_r5_cluster - K3 R5F Cluster structure
* @dev: cached device pointer
* @mode: Mode to configure the Cluster - Split or LockStep
* @cores: list of R5 cores within the cluster
* @soc_data: SoC-specific feature data for a R5FSS
*/
struct k3_r5_cluster {
struct device *dev;
enum cluster_mode mode;
struct list_head cores;
const struct k3_r5_soc_data *soc_data;
};
/**
* struct k3_r5_core - K3 R5 core structure
* @elem: linked list item
* @dev: cached device pointer
* @rproc: rproc handle representing this core
* @mem: internal memory regions data
* @sram: on-chip SRAM memory regions data
* @num_mems: number of internal memory regions
* @num_sram: number of on-chip SRAM memory regions
* @reset: reset control handle
* @tsp: TI-SCI processor control handle
* @ti_sci: TI-SCI handle
* @ti_sci_id: TI-SCI device identifier
* @atcm_enable: flag to control ATCM enablement
* @btcm_enable: flag to control BTCM enablement
* @loczrama: flag to dictate which TCM is at device address 0x0
*/
struct k3_r5_core {
struct list_head elem;
struct device *dev;
struct rproc *rproc;
struct k3_r5_mem *mem;
struct k3_r5_mem *sram;
int num_mems;
int num_sram;
struct reset_control *reset;
struct ti_sci_proc *tsp;
const struct ti_sci_handle *ti_sci;
u32 ti_sci_id;
u32 atcm_enable;
u32 btcm_enable;
u32 loczrama;
};
/**
* struct k3_r5_rproc - K3 remote processor state
* @dev: cached device pointer
* @cluster: cached pointer to parent cluster structure
* @mbox: mailbox channel handle
* @client: mailbox client to request the mailbox channel
* @rproc: rproc handle
* @core: cached pointer to r5 core structure being used
* @rmem: reserved memory regions data
* @num_rmems: number of reserved memory regions
*/
struct k3_r5_rproc {
struct device *dev;
struct k3_r5_cluster *cluster;
struct mbox_chan *mbox;
struct mbox_client client;
struct rproc *rproc;
struct k3_r5_core *core;
struct k3_r5_mem *rmem;
int num_rmems;
};
/**
* k3_r5_rproc_mbox_callback() - inbound mailbox message handler
* @client: mailbox client pointer used for requesting the mailbox channel
* @data: mailbox payload
*
* This handler is invoked by the OMAP mailbox driver whenever a mailbox
* message is received. Usually, the mailbox payload simply contains
* the index of the virtqueue that is kicked by the remote processor,
* and we let remoteproc core handle it.
*
* In addition to virtqueue indices, we also have some out-of-band values
* that indicate different events. Those values are deliberately very
* large so they don't coincide with virtqueue indices.
*/
static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
{
struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
client);
struct device *dev = kproc->rproc->dev.parent;
const char *name = kproc->rproc->name;
u32 msg = omap_mbox_message(data);
dev_dbg(dev, "mbox msg: 0x%x\n", msg);
switch (msg) {
case RP_MBOX_CRASH:
/*
* remoteproc detected an exception, but error recovery is not
* supported. So, just log this for now
*/
dev_err(dev, "K3 R5F rproc %s crashed\n", name);
break;
case RP_MBOX_ECHO_REPLY:
dev_info(dev, "received echo reply from %s\n", name);
break;
default:
/* silently handle all other valid messages */
if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
return;
if (msg > kproc->rproc->max_notifyid) {
dev_dbg(dev, "dropping unknown message 0x%x", msg);
return;
}
/* msg contains the index of the triggered vring */
if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
dev_dbg(dev, "no message was found in vqid %d\n", msg);
}
}
/* kick a virtqueue */
static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct device *dev = rproc->dev.parent;
mbox_msg_t msg = (mbox_msg_t)vqid;
int ret;
/* send the index of the triggered virtqueue in the mailbox payload */
ret = mbox_send_message(kproc->mbox, (void *)msg);
if (ret < 0)
dev_err(dev, "failed to send mailbox message, status = %d\n",
ret);
}
static int k3_r5_split_reset(struct k3_r5_core *core)
{
int ret;
ret = reset_control_assert(core->reset);
if (ret) {
dev_err(core->dev, "local-reset assert failed, ret = %d\n",
ret);
return ret;
}
ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
core->ti_sci_id);
if (ret) {
dev_err(core->dev, "module-reset assert failed, ret = %d\n",
ret);
if (reset_control_deassert(core->reset))
dev_warn(core->dev, "local-reset deassert back failed\n");
}
return ret;
}
static int k3_r5_split_release(struct k3_r5_core *core)
{
int ret;
ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
core->ti_sci_id);
if (ret) {
dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
ret);
return ret;
}
ret = reset_control_deassert(core->reset);
if (ret) {
dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
ret);
if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
core->ti_sci_id))
dev_warn(core->dev, "module-reset assert back failed\n");
}
return ret;
}
static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
{
struct k3_r5_core *core;
int ret;
/* assert local reset on all applicable cores */
list_for_each_entry(core, &cluster->cores, elem) {
ret = reset_control_assert(core->reset);
if (ret) {
dev_err(core->dev, "local-reset assert failed, ret = %d\n",
ret);
core = list_prev_entry(core, elem);
goto unroll_local_reset;
}
}
/* disable PSC modules on all applicable cores */
list_for_each_entry(core, &cluster->cores, elem) {
ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
core->ti_sci_id);
if (ret) {
dev_err(core->dev, "module-reset assert failed, ret = %d\n",
ret);
goto unroll_module_reset;
}
}
return 0;
unroll_module_reset:
list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
core->ti_sci_id))
dev_warn(core->dev, "module-reset assert back failed\n");
}
core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
unroll_local_reset:
list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
if (reset_control_deassert(core->reset))
dev_warn(core->dev, "local-reset deassert back failed\n");
}
return ret;
}
static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
{
struct k3_r5_core *core;
int ret;
/* enable PSC modules on all applicable cores */
list_for_each_entry_reverse(core, &cluster->cores, elem) {
ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
core->ti_sci_id);
if (ret) {
dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
ret);
core = list_next_entry(core, elem);
goto unroll_module_reset;
}
}
/* deassert local reset on all applicable cores */
list_for_each_entry_reverse(core, &cluster->cores, elem) {
ret = reset_control_deassert(core->reset);
if (ret) {
dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
ret);
goto unroll_local_reset;
}
}
return 0;
unroll_local_reset:
list_for_each_entry_continue(core, &cluster->cores, elem) {
if (reset_control_assert(core->reset))
dev_warn(core->dev, "local-reset assert back failed\n");
}
core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
unroll_module_reset:
list_for_each_entry_from(core, &cluster->cores, elem) {
if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
core->ti_sci_id))
dev_warn(core->dev, "module-reset assert back failed\n");
}
return ret;
}
static inline int k3_r5_core_halt(struct k3_r5_core *core)
{
return ti_sci_proc_set_control(core->tsp,
PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
}
static inline int k3_r5_core_run(struct k3_r5_core *core)
{
return ti_sci_proc_set_control(core->tsp,
0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
}
static int k3_r5_rproc_request_mbox(struct rproc *rproc)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct mbox_client *client = &kproc->client;
struct device *dev = kproc->dev;
int ret;
client->dev = dev;
client->tx_done = NULL;
client->rx_callback = k3_r5_rproc_mbox_callback;
client->tx_block = false;
client->knows_txdone = false;
kproc->mbox = mbox_request_channel(client, 0);
if (IS_ERR(kproc->mbox)) {
ret = -EBUSY;
dev_err(dev, "mbox_request_channel failed: %ld\n",
PTR_ERR(kproc->mbox));
return ret;
}
/*
* Ping the remote processor, this is only for sanity-sake for now;
* there is no functional effect whatsoever.
*
* Note that the reply will _not_ arrive immediately: this message
* will wait in the mailbox fifo until the remote processor is booted.
*/
ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
if (ret < 0) {
dev_err(dev, "mbox_send_message failed: %d\n", ret);
mbox_free_channel(kproc->mbox);
return ret;
}
return 0;
}
/*
* The R5F cores have controls for both a reset and a halt/run. The code
* execution from DDR requires the initial boot-strapping code to be run
* from the internal TCMs. This function is used to release the resets on
* applicable cores to allow loading into the TCMs. The .prepare() ops is
* invoked by remoteproc core before any firmware loading, and is followed
* by the .start() ops after loading to actually let the R5 cores run.
*
* The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
* execute code, but combines the TCMs from both cores. The resets for both
* cores need to be released to make this possible, as the TCMs are in general
* private to each core. Only Core0 needs to be unhalted for running the
* cluster in this mode. The function uses the same reset logic as LockStep
* mode for this (though the behavior is agnostic of the reset release order).
* This callback is invoked only in remoteproc mode.
*/
static int k3_r5_rproc_prepare(struct rproc *rproc)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct k3_r5_cluster *cluster = kproc->cluster;
struct k3_r5_core *core = kproc->core;
struct device *dev = kproc->dev;
u32 ctrl = 0, cfg = 0, stat = 0;
u64 boot_vec = 0;
bool mem_init_dis;
int ret;
ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
if (ret < 0)
return ret;
mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
/* Re-use LockStep-mode reset logic for Single-CPU mode */
ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
cluster->mode == CLUSTER_MODE_SINGLECPU) ?
k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
if (ret) {
dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
ret);
return ret;
}
/*
* Newer IP revisions like on J7200 SoCs support h/w auto-initialization
* of TCMs, so there is no need to perform the s/w memzero. This bit is
* configurable through System Firmware, the default value does perform
* auto-init, but account for it in case it is disabled
*/
if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
dev_dbg(dev, "leveraging h/w init for TCM memories\n");
return 0;
}
/*
* Zero out both TCMs unconditionally (access from v8 Arm core is not
* affected by ATCM & BTCM enable configuration values) so that ECC
* can be effective on all TCM addresses.
*/
dev_dbg(dev, "zeroing out ATCM memory\n");
memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
dev_dbg(dev, "zeroing out BTCM memory\n");
memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
return 0;
}
/*
* This function implements the .unprepare() ops and performs the complimentary
* operations to that of the .prepare() ops. The function is used to assert the
* resets on all applicable cores for the rproc device (depending on LockStep
* or Split mode). This completes the second portion of powering down the R5F
* cores. The cores themselves are only halted in the .stop() ops, and the
* .unprepare() ops is invoked by the remoteproc core after the remoteproc is
* stopped.
*
* The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
* both cores. The access is made possible only with releasing the resets for
* both cores, but with only Core0 unhalted. This function re-uses the same
* reset assert logic as LockStep mode for this mode (though the behavior is
* agnostic of the reset assert order). This callback is invoked only in
* remoteproc mode.
*/
static int k3_r5_rproc_unprepare(struct rproc *rproc)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct k3_r5_cluster *cluster = kproc->cluster;
struct k3_r5_core *core = kproc->core;
struct device *dev = kproc->dev;
int ret;
/* Re-use LockStep-mode reset logic for Single-CPU mode */
ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
cluster->mode == CLUSTER_MODE_SINGLECPU) ?
k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
if (ret)
dev_err(dev, "unable to disable cores, ret = %d\n", ret);
return ret;
}
/*
* The R5F start sequence includes two different operations
* 1. Configure the boot vector for R5F core(s)
* 2. Unhalt/Run the R5F core(s)
*
* The sequence is different between LockStep and Split modes. The LockStep
* mode requires the boot vector to be configured only for Core0, and then
* unhalt both the cores to start the execution - Core1 needs to be unhalted
* first followed by Core0. The Split-mode requires that Core0 to be maintained
* always in a higher power state that Core1 (implying Core1 needs to be started
* always only after Core0 is started).
*
* The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
* code, so only Core0 needs to be unhalted. The function uses the same logic
* flow as Split-mode for this. This callback is invoked only in remoteproc
* mode.
*/
static int k3_r5_rproc_start(struct rproc *rproc)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct k3_r5_cluster *cluster = kproc->cluster;
struct device *dev = kproc->dev;
struct k3_r5_core *core;
u32 boot_addr;
int ret;
ret = k3_r5_rproc_request_mbox(rproc);
if (ret)
return ret;
boot_addr = rproc->bootaddr;
/* TODO: add boot_addr sanity checking */
dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
/* boot vector need not be programmed for Core1 in LockStep mode */
core = kproc->core;
ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
if (ret)
goto put_mbox;
/* unhalt/run all applicable cores */
if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
list_for_each_entry_reverse(core, &cluster->cores, elem) {
ret = k3_r5_core_run(core);
if (ret)
goto unroll_core_run;
}
} else {
ret = k3_r5_core_run(core);
if (ret)
goto put_mbox;
}
return 0;
unroll_core_run:
list_for_each_entry_continue(core, &cluster->cores, elem) {
if (k3_r5_core_halt(core))
dev_warn(core->dev, "core halt back failed\n");
}
put_mbox:
mbox_free_channel(kproc->mbox);
return ret;
}
/*
* The R5F stop function includes the following operations
* 1. Halt R5F core(s)
*
* The sequence is different between LockStep and Split modes, and the order
* of cores the operations are performed are also in general reverse to that
* of the start function. The LockStep mode requires each operation to be
* performed first on Core0 followed by Core1. The Split-mode requires that
* Core0 to be maintained always in a higher power state that Core1 (implying
* Core1 needs to be stopped first before Core0).
*
* The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
* code, so only Core0 needs to be halted. The function uses the same logic
* flow as Split-mode for this.
*
* Note that the R5F halt operation in general is not effective when the R5F
* core is running, but is needed to make sure the core won't run after
* deasserting the reset the subsequent time. The asserting of reset can
* be done here, but is preferred to be done in the .unprepare() ops - this
* maintains the symmetric behavior between the .start(), .stop(), .prepare()
* and .unprepare() ops, and also balances them well between sysfs 'state'
* flow and device bind/unbind or module removal. This callback is invoked
* only in remoteproc mode.
*/
static int k3_r5_rproc_stop(struct rproc *rproc)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct k3_r5_cluster *cluster = kproc->cluster;
struct k3_r5_core *core = kproc->core;
int ret;
/* halt all applicable cores */
if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
list_for_each_entry(core, &cluster->cores, elem) {
ret = k3_r5_core_halt(core);
if (ret) {
core = list_prev_entry(core, elem);
goto unroll_core_halt;
}
}
} else {
ret = k3_r5_core_halt(core);
if (ret)
goto out;
}
mbox_free_channel(kproc->mbox);
return 0;
unroll_core_halt:
list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
if (k3_r5_core_run(core))
dev_warn(core->dev, "core run back failed\n");
}
out:
return ret;
}
/*
* Attach to a running R5F remote processor (IPC-only mode)
*
* The R5F attach callback only needs to request the mailbox, the remote
* processor is already booted, so there is no need to issue any TI-SCI
* commands to boot the R5F cores in IPC-only mode. This callback is invoked
* only in IPC-only mode.
*/
static int k3_r5_rproc_attach(struct rproc *rproc)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
ret = k3_r5_rproc_request_mbox(rproc);
if (ret)
return ret;
dev_info(dev, "R5F core initialized in IPC-only mode\n");
return 0;
}
/*
* Detach from a running R5F remote processor (IPC-only mode)
*
* The R5F detach callback performs the opposite operation to attach callback
* and only needs to release the mailbox, the R5F cores are not stopped and
* will be left in booted state in IPC-only mode. This callback is invoked
* only in IPC-only mode.
*/
static int k3_r5_rproc_detach(struct rproc *rproc)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
mbox_free_channel(kproc->mbox);
dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
return 0;
}
/*
* This function implements the .get_loaded_rsc_table() callback and is used
* to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
* firmwares follow a design-by-contract approach and are expected to have the
* resource table at the base of the DDR region reserved for firmware usage.
* This provides flexibility for the remote processor to be booted by different
* bootloaders that may or may not have the ability to publish the resource table
* address and size through a DT property. This callback is invoked only in
* IPC-only mode.
*/
static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
size_t *rsc_table_sz)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
if (!kproc->rmem[0].cpu_addr) {
dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
return ERR_PTR(-ENOMEM);
}
/*
* NOTE: The resource table size is currently hard-coded to a maximum
* of 256 bytes. The most common resource table usage for K3 firmwares
* is to only have the vdev resource entry and an optional trace entry.
* The exact size could be computed based on resource table address, but
* the hard-coded value suffices to support the IPC-only mode.
*/
*rsc_table_sz = 256;
return (struct resource_table *)kproc->rmem[0].cpu_addr;
}
/*
* Internal Memory translation helper
*
* Custom function implementing the rproc .da_to_va ops to provide address
* translation (device address to kernel virtual address) for internal RAMs
* present in a DSP or IPU device). The translated addresses can be used
* either by the remoteproc core for loading, or by any rpmsg bus drivers.
*/
static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct k3_r5_rproc *kproc = rproc->priv;
struct k3_r5_core *core = kproc->core;
void __iomem *va = NULL;
phys_addr_t bus_addr;
u32 dev_addr, offset;
size_t size;
int i;
if (len == 0)
return NULL;
/* handle both R5 and SoC views of ATCM and BTCM */
for (i = 0; i < core->num_mems; i++) {
bus_addr = core->mem[i].bus_addr;
dev_addr = core->mem[i].dev_addr;
size = core->mem[i].size;
/* handle R5-view addresses of TCMs */
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = core->mem[i].cpu_addr + offset;
return (__force void *)va;
}
/* handle SoC-view addresses of TCMs */
if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
offset = da - bus_addr;
va = core->mem[i].cpu_addr + offset;
return (__force void *)va;
}
}
/* handle any SRAM regions using SoC-view addresses */
for (i = 0; i < core->num_sram; i++) {
dev_addr = core->sram[i].dev_addr;
size = core->sram[i].size;
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = core->sram[i].cpu_addr + offset;
return (__force void *)va;
}
}
/* handle static DDR reserved memory regions */
for (i = 0; i < kproc->num_rmems; i++) {
dev_addr = kproc->rmem[i].dev_addr;
size = kproc->rmem[i].size;
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = kproc->rmem[i].cpu_addr + offset;
return (__force void *)va;
}
}
return NULL;
}
static const struct rproc_ops k3_r5_rproc_ops = {
.prepare = k3_r5_rproc_prepare,
.unprepare = k3_r5_rproc_unprepare,
.start = k3_r5_rproc_start,
.stop = k3_r5_rproc_stop,
.kick = k3_r5_rproc_kick,
.da_to_va = k3_r5_rproc_da_to_va,
};
/*
* Internal R5F Core configuration
*
* Each R5FSS has a cluster-level setting for configuring the processor
* subsystem either in a safety/fault-tolerant LockStep mode or a performance
* oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
* as an alternate for LockStep mode that exercises only a single R5F core
* called Single-CPU mode. Each R5F core has a number of settings to either
* enable/disable each of the TCMs, control which TCM appears at the R5F core's
* address 0x0. These settings need to be configured before the resets for the
* corresponding core are released. These settings are all protected and managed
* by the System Processor.
*
* This function is used to pre-configure these settings for each R5F core, and
* the configuration is all done through various ti_sci_proc functions that
* communicate with the System Processor. The function also ensures that both
* the cores are halted before the .prepare() step.
*
* The function is called from k3_r5_cluster_rproc_init() and is invoked either
* once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
* for LockStep-mode is dictated by an eFUSE register bit, and the config
* settings retrieved from DT are adjusted accordingly as per the permitted
* cluster mode. Another eFUSE register bit dictates if the R5F cluster only
* supports a Single-CPU mode. All cluster level settings like Cluster mode and
* TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
* and retrieved using Core0.
*
* The function behavior is different based on the cluster mode. The R5F cores
* are configured independently as per their individual settings in Split mode.
* They are identically configured in LockStep mode using the primary Core0
* settings. However, some individual settings cannot be set in LockStep mode.
* This is overcome by switching to Split-mode initially and then programming
* both the cores with the same settings, before reconfiguing again for
* LockStep mode.
*/
static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
{
struct k3_r5_cluster *cluster = kproc->cluster;
struct device *dev = kproc->dev;
struct k3_r5_core *core0, *core, *temp;
u32 ctrl = 0, cfg = 0, stat = 0;
u32 set_cfg = 0, clr_cfg = 0;
u64 boot_vec = 0;
bool lockstep_en;
bool single_cpu;
int ret;
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
cluster->mode == CLUSTER_MODE_SINGLECPU ||
cluster->mode == CLUSTER_MODE_SINGLECORE) {
core = core0;
} else {
core = kproc->core;
}
ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
&stat);
if (ret < 0)
return ret;
dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
boot_vec, cfg, ctrl, stat);
single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
/* Override to single CPU mode if set in status flag */
if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
cluster->mode = CLUSTER_MODE_SINGLECPU;
}
/* Override to split mode if lockstep enable bit is not set in status flag */
if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
cluster->mode = CLUSTER_MODE_SPLIT;
}
/* always enable ARM mode and set boot vector to 0 */
boot_vec = 0x0;
if (core == core0) {
clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
/*
* Single-CPU configuration bit can only be configured
* on Core0 and system firmware will NACK any requests
* with the bit configured, so program it only on
* permitted cores
*/
if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
cluster->mode == CLUSTER_MODE_SINGLECORE) {
set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
} else {
/*
* LockStep configuration bit is Read-only on Split-mode
* _only_ devices and system firmware will NACK any
* requests with the bit configured, so program it only
* on permitted devices
*/
if (lockstep_en)
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
}
}
if (core->atcm_enable)
set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
else
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
if (core->btcm_enable)
set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
else
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
if (core->loczrama)
set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
else
clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
/*
* work around system firmware limitations to make sure both
* cores are programmed symmetrically in LockStep. LockStep
* and TEINIT config is only allowed with Core0.
*/
list_for_each_entry(temp, &cluster->cores, elem) {
ret = k3_r5_core_halt(temp);
if (ret)
goto out;
if (temp != core) {
clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
}
ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
set_cfg, clr_cfg);
if (ret)
goto out;
}
set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
clr_cfg = 0;
ret = ti_sci_proc_set_config(core->tsp, boot_vec,
set_cfg, clr_cfg);
} else {
ret = k3_r5_core_halt(core);
if (ret)
goto out;
ret = ti_sci_proc_set_config(core->tsp, boot_vec,
set_cfg, clr_cfg);
}
out:
return ret;
}
static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
{
struct device *dev = kproc->dev;
struct device_node *np = dev_of_node(dev);
struct device_node *rmem_np;
struct reserved_mem *rmem;
int num_rmems;
int ret, i;
num_rmems = of_property_count_elems_of_size(np, "memory-region",
sizeof(phandle));
if (num_rmems <= 0) {
dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
num_rmems);
return -EINVAL;
}
if (num_rmems < 2) {
dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
num_rmems);
return -EINVAL;
}
/* use reserved memory region 0 for vring DMA allocations */
ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
if (ret) {
dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
ret);
return ret;
}
num_rmems--;
kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
if (!kproc->rmem) {
ret = -ENOMEM;
goto release_rmem;
}
/* use remaining reserved memory regions for static carveouts */
for (i = 0; i < num_rmems; i++) {
rmem_np = of_parse_phandle(np, "memory-region", i + 1);
if (!rmem_np) {
ret = -EINVAL;
goto unmap_rmem;
}
rmem = of_reserved_mem_lookup(rmem_np);
if (!rmem) {
of_node_put(rmem_np);
ret = -EINVAL;
goto unmap_rmem;
}
of_node_put(rmem_np);
kproc->rmem[i].bus_addr = rmem->base;
/*
* R5Fs do not have an MMU, but have a Region Address Translator
* (RAT) module that provides a fixed entry translation between
* the 32-bit processor addresses to 64-bit bus addresses. The
* RAT is programmable only by the R5F cores. Support for RAT
* is currently not supported, so 64-bit address regions are not
* supported. The absence of MMUs implies that the R5F device
* addresses/supported memory regions are restricted to 32-bit
* bus addresses, and are identical
*/
kproc->rmem[i].dev_addr = (u32)rmem->base;
kproc->rmem[i].size = rmem->size;
kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
if (!kproc->rmem[i].cpu_addr) {
dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
i + 1, &rmem->base, &rmem->size);
ret = -ENOMEM;
goto unmap_rmem;
}
dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
i + 1, &kproc->rmem[i].bus_addr,
kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
kproc->rmem[i].dev_addr);
}
kproc->num_rmems = num_rmems;
return 0;
unmap_rmem:
for (i--; i >= 0; i--)
iounmap(kproc->rmem[i].cpu_addr);
kfree(kproc->rmem);
release_rmem:
of_reserved_mem_device_release(dev);
return ret;
}
static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
{
int i;
for (i = 0; i < kproc->num_rmems; i++)
iounmap(kproc->rmem[i].cpu_addr);
kfree(kproc->rmem);
of_reserved_mem_device_release(kproc->dev);
}
/*
* Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
* split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
* cores are usable in Split-mode, but only the Core0 TCMs can be used in
* LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
* leveraging the Core1 TCMs as well in certain modes where they would have
* otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
* AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
* corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
* the Core0 TCMs, and the dts representation reflects this increased size on
* supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
* half the original size in Split mode.
*/
static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
{
struct k3_r5_cluster *cluster = kproc->cluster;
struct k3_r5_core *core = kproc->core;
struct device *cdev = core->dev;
struct k3_r5_core *core0;
if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
cluster->mode == CLUSTER_MODE_SINGLECPU ||
cluster->mode == CLUSTER_MODE_SINGLECORE ||
!cluster->soc_data->tcm_is_double)
return;
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
if (core == core0) {
WARN_ON(core->mem[0].size != SZ_64K);
WARN_ON(core->mem[1].size != SZ_64K);
core->mem[0].size /= 2;
core->mem[1].size /= 2;
dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
core->mem[0].size, core->mem[1].size);
}
}
/*
* This function checks and configures a R5F core for IPC-only or remoteproc
* mode. The driver is configured to be in IPC-only mode for a R5F core when
* the core has been loaded and started by a bootloader. The IPC-only mode is
* detected by querying the System Firmware for reset, power on and halt status
* and ensuring that the core is running. Any incomplete steps at bootloader
* are validated and errored out.
*
* In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
* and cluster mode parsed originally from kernel DT are updated to reflect the
* actual values configured by bootloader. The driver internal device memory
* addresses for TCMs are also updated.
*/
static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
{
struct k3_r5_cluster *cluster = kproc->cluster;
struct k3_r5_core *core = kproc->core;
struct device *cdev = core->dev;
bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
u64 boot_vec = 0;
u32 atcm_enable, btcm_enable, loczrama;
struct k3_r5_core *core0;
enum cluster_mode mode = cluster->mode;
int ret;
core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
&r_state, &c_state);
if (ret) {
dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
ret);
return ret;
}
if (r_state != c_state) {
dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
r_state, c_state);
}
ret = reset_control_status(core->reset);
if (ret < 0) {
dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
ret);
return ret;
}
ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
&stat);
if (ret < 0) {
dev_err(cdev, "failed to get initial processor status, ret = %d\n",
ret);
return ret;
}
atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0;
btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0;
loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0;
single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
mode = CLUSTER_MODE_SINGLECPU;
if (lockstep_en)
mode = CLUSTER_MODE_LOCKSTEP;
halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
/*
* IPC-only mode detection requires both local and module resets to
* be deasserted and R5F core to be unhalted. Local reset status is
* irrelevant if module reset is asserted (POR value has local reset
* deasserted), and is deemed as remoteproc mode
*/
if (c_state && !ret && !halted) {
dev_info(cdev, "configured R5F for IPC-only mode\n");
kproc->rproc->state = RPROC_DETACHED;
ret = 1;
/* override rproc ops with only required IPC-only mode ops */
kproc->rproc->ops->prepare = NULL;
kproc->rproc->ops->unprepare = NULL;
kproc->rproc->ops->start = NULL;
kproc->rproc->ops->stop = NULL;
kproc->rproc->ops->attach = k3_r5_rproc_attach;
kproc->rproc->ops->detach = k3_r5_rproc_detach;
kproc->rproc->ops->get_loaded_rsc_table =
k3_r5_get_loaded_rsc_table;
} else if (!c_state) {
dev_info(cdev, "configured R5F for remoteproc mode\n");
ret = 0;
} else {
dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
!ret ? "deasserted" : "asserted",
c_state ? "deasserted" : "asserted",
halted ? "halted" : "unhalted");
ret = -EINVAL;
}
/* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
if (ret > 0) {
if (core == core0)
cluster->mode = mode;
core->atcm_enable = atcm_enable;
core->btcm_enable = btcm_enable;
core->loczrama = loczrama;
core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
}
return ret;
}
static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
{
struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
struct k3_r5_rproc *kproc;
struct k3_r5_core *core, *core1;
struct device *cdev;
const char *fw_name;
struct rproc *rproc;
int ret, ret1;
core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
list_for_each_entry(core, &cluster->cores, elem) {
cdev = core->dev;
ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
if (ret) {
dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
ret);
goto out;
}
rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
fw_name, sizeof(*kproc));
if (!rproc) {
ret = -ENOMEM;
goto out;
}
/* K3 R5s have a Region Address Translator (RAT) but no MMU */
rproc->has_iommu = false;
/* error recovery is not supported at present */
rproc->recovery_disabled = true;
kproc = rproc->priv;
kproc->cluster = cluster;
kproc->core = core;
kproc->dev = cdev;
kproc->rproc = rproc;
core->rproc = rproc;
ret = k3_r5_rproc_configure_mode(kproc);
if (ret < 0)
goto err_config;
if (ret)
goto init_rmem;
ret = k3_r5_rproc_configure(kproc);
if (ret) {
dev_err(dev, "initial configure failed, ret = %d\n",
ret);
goto err_config;
}
init_rmem:
k3_r5_adjust_tcm_sizes(kproc);
ret = k3_r5_reserved_mem_init(kproc);
if (ret) {
dev_err(dev, "reserved memory init failed, ret = %d\n",
ret);
goto err_config;
}
ret = rproc_add(rproc);
if (ret) {
dev_err(dev, "rproc_add failed, ret = %d\n", ret);
goto err_add;
}
/* create only one rproc in lockstep, single-cpu or
* single core mode
*/
if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
cluster->mode == CLUSTER_MODE_SINGLECPU ||
cluster->mode == CLUSTER_MODE_SINGLECORE)
break;
}
return 0;
err_split:
if (rproc->state == RPROC_ATTACHED) {
ret1 = rproc_detach(rproc);
if (ret1) {
dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
ret1);
return ret1;
}
}
rproc_del(rproc);
err_add:
k3_r5_reserved_mem_exit(kproc);
err_config:
rproc_free(rproc);
core->rproc = NULL;
out:
/* undo core0 upon any failures on core1 in split-mode */
if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
core = list_prev_entry(core, elem);
rproc = core->rproc;
kproc = rproc->priv;
goto err_split;
}
return ret;
}
static void k3_r5_cluster_rproc_exit(void *data)
{
struct k3_r5_cluster *cluster = platform_get_drvdata(data);
struct k3_r5_rproc *kproc;
struct k3_r5_core *core;
struct rproc *rproc;
int ret;
/*
* lockstep mode and single-cpu modes have only one rproc associated
* with first core, whereas split-mode has two rprocs associated with
* each core, and requires that core1 be powered down first
*/
core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
cluster->mode == CLUSTER_MODE_SINGLECPU) ?
list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
list_last_entry(&cluster->cores, struct k3_r5_core, elem);
list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
rproc = core->rproc;
kproc = rproc->priv;
if (rproc->state == RPROC_ATTACHED) {
ret = rproc_detach(rproc);
if (ret) {
dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
return;
}
}
rproc_del(rproc);
k3_r5_reserved_mem_exit(kproc);
rproc_free(rproc);
core->rproc = NULL;
}
}
static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
struct k3_r5_core *core)
{
static const char * const mem_names[] = {"atcm", "btcm"};
struct device *dev = &pdev->dev;
struct resource *res;
int num_mems;
int i;
num_mems = ARRAY_SIZE(mem_names);
core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
if (!core->mem)
return -ENOMEM;
for (i = 0; i < num_mems; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
mem_names[i]);
if (!res) {
dev_err(dev, "found no memory resource for %s\n",
mem_names[i]);
return -EINVAL;
}
if (!devm_request_mem_region(dev, res->start,
resource_size(res),
dev_name(dev))) {
dev_err(dev, "could not request %s region for resource\n",
mem_names[i]);
return -EBUSY;
}
/*
* TCMs are designed in general to support RAM-like backing
* memories. So, map these as Normal Non-Cached memories. This
* also avoids/fixes any potential alignment faults due to
* unaligned data accesses when using memcpy() or memset()
* functions (normally seen with device type memory).
*/
core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
resource_size(res));
if (!core->mem[i].cpu_addr) {
dev_err(dev, "failed to map %s memory\n", mem_names[i]);
return -ENOMEM;
}
core->mem[i].bus_addr = res->start;
/*
* TODO:
* The R5F cores can place ATCM & BTCM anywhere in its address
* based on the corresponding Region Registers in the System
* Control coprocessor. For now, place ATCM and BTCM at
* addresses 0 and 0x41010000 (same as the bus address on AM65x
* SoCs) based on loczrama setting
*/
if (!strcmp(mem_names[i], "atcm")) {
core->mem[i].dev_addr = core->loczrama ?
0 : K3_R5_TCM_DEV_ADDR;
} else {
core->mem[i].dev_addr = core->loczrama ?
K3_R5_TCM_DEV_ADDR : 0;
}
core->mem[i].size = resource_size(res);
dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
mem_names[i], &core->mem[i].bus_addr,
core->mem[i].size, core->mem[i].cpu_addr,
core->mem[i].dev_addr);
}
core->num_mems = num_mems;
return 0;
}
static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
struct k3_r5_core *core)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct device_node *sram_np;
struct resource res;
int num_sram;
int i, ret;
num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
if (num_sram <= 0) {
dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
num_sram);
return 0;
}
core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
if (!core->sram)
return -ENOMEM;
for (i = 0; i < num_sram; i++) {
sram_np = of_parse_phandle(np, "sram", i);
if (!sram_np)
return -EINVAL;
if (!of_device_is_available(sram_np)) {
of_node_put(sram_np);
return -EINVAL;
}
ret = of_address_to_resource(sram_np, 0, &res);
of_node_put(sram_np);
if (ret)
return -EINVAL;
core->sram[i].bus_addr = res.start;
core->sram[i].dev_addr = res.start;
core->sram[i].size = resource_size(&res);
core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
resource_size(&res));
if (!core->sram[i].cpu_addr) {
dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
i, &res.start);
return -ENOMEM;
}
dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
i, &core->sram[i].bus_addr,
core->sram[i].size, core->sram[i].cpu_addr,
core->sram[i].dev_addr);
}
core->num_sram = num_sram;
return 0;
}
static
struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
const struct ti_sci_handle *sci)
{
struct ti_sci_proc *tsp;
u32 temp[2];
int ret;
ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
temp, 2);
if (ret < 0)
return ERR_PTR(ret);
tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
if (!tsp)
return ERR_PTR(-ENOMEM);
tsp->dev = dev;
tsp->sci = sci;
tsp->ops = &sci->ops.proc_ops;
tsp->proc_id = temp[0];
tsp->host_id = temp[1];
return tsp;
}
static int k3_r5_core_of_init(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev_of_node(dev);
struct k3_r5_core *core;
int ret;
if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
return -ENOMEM;
core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
if (!core) {
ret = -ENOMEM;
goto err;
}
core->dev = dev;
/*
* Use SoC Power-on-Reset values as default if no DT properties are
* used to dictate the TCM configurations
*/
core->atcm_enable = 0;
core->btcm_enable = 1;
core->loczrama = 1;
ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
if (ret < 0 && ret != -EINVAL) {
dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
ret);
goto err;
}
ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
if (ret < 0 && ret != -EINVAL) {
dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
ret);
goto err;
}
ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
if (ret < 0 && ret != -EINVAL) {
dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
goto err;
}
core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
if (IS_ERR(core->ti_sci)) {
ret = PTR_ERR(core->ti_sci);
if (ret != -EPROBE_DEFER) {
dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
ret);
}
core->ti_sci = NULL;
goto err;
}
ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
if (ret) {
dev_err(dev, "missing 'ti,sci-dev-id' property\n");
goto err;
}
core->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR_OR_NULL(core->reset)) {
ret = PTR_ERR_OR_ZERO(core->reset);
if (!ret)
ret = -ENODEV;
if (ret != -EPROBE_DEFER) {
dev_err(dev, "failed to get reset handle, ret = %d\n",
ret);
}
goto err;
}
core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
if (IS_ERR(core->tsp)) {
ret = PTR_ERR(core->tsp);
dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
ret);
goto err;
}
ret = k3_r5_core_of_get_internal_memories(pdev, core);
if (ret) {
dev_err(dev, "failed to get internal memories, ret = %d\n",
ret);
goto err;
}
ret = k3_r5_core_of_get_sram_memories(pdev, core);
if (ret) {
dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
goto err;
}
ret = ti_sci_proc_request(core->tsp);
if (ret < 0) {
dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
goto err;
}
platform_set_drvdata(pdev, core);
devres_close_group(dev, k3_r5_core_of_init);
return 0;
err:
devres_release_group(dev, k3_r5_core_of_init);
return ret;
}
/*
* free the resources explicitly since driver model is not being used
* for the child R5F devices
*/
static void k3_r5_core_of_exit(struct platform_device *pdev)
{
struct k3_r5_core *core = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
int ret;
ret = ti_sci_proc_release(core->tsp);
if (ret)
dev_err(dev, "failed to release proc, ret = %d\n", ret);
platform_set_drvdata(pdev, NULL);
devres_release_group(dev, k3_r5_core_of_init);
}
static void k3_r5_cluster_of_exit(void *data)
{
struct k3_r5_cluster *cluster = platform_get_drvdata(data);
struct platform_device *cpdev;
struct k3_r5_core *core, *temp;
list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
list_del(&core->elem);
cpdev = to_platform_device(core->dev);
k3_r5_core_of_exit(cpdev);
}
}
static int k3_r5_cluster_of_init(struct platform_device *pdev)
{
struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
struct device_node *np = dev_of_node(dev);
struct platform_device *cpdev;
struct device_node *child;
struct k3_r5_core *core;
int ret;
for_each_available_child_of_node(np, child) {
cpdev = of_find_device_by_node(child);
if (!cpdev) {
ret = -ENODEV;
dev_err(dev, "could not get R5 core platform device\n");
of_node_put(child);
goto fail;
}
ret = k3_r5_core_of_init(cpdev);
if (ret) {
dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
ret);
put_device(&cpdev->dev);
of_node_put(child);
goto fail;
}
core = platform_get_drvdata(cpdev);
put_device(&cpdev->dev);
list_add_tail(&core->elem, &cluster->cores);
}
return 0;
fail:
k3_r5_cluster_of_exit(pdev);
return ret;
}
static int k3_r5_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev_of_node(dev);
struct k3_r5_cluster *cluster;
const struct k3_r5_soc_data *data;
int ret;
int num_cores;
data = of_device_get_match_data(&pdev->dev);
if (!data) {
dev_err(dev, "SoC-specific data is not defined\n");
return -ENODEV;
}
cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
if (!cluster)
return -ENOMEM;
cluster->dev = dev;
cluster->soc_data = data;
INIT_LIST_HEAD(&cluster->cores);
ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
if (ret < 0 && ret != -EINVAL) {
dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
ret);
return ret;
}
if (ret == -EINVAL) {
/*
* default to most common efuse configurations - Split-mode on AM64x
* and LockStep-mode on all others
* default to most common efuse configurations -
* Split-mode on AM64x
* Single core on AM62x
* LockStep-mode on all others
*/
if (!data->is_single_core)
cluster->mode = data->single_cpu_mode ?
CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
else
cluster->mode = CLUSTER_MODE_SINGLECORE;
}
if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
(cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
return -EINVAL;
}
num_cores = of_get_available_child_count(np);
if (num_cores != 2 && !data->is_single_core) {
dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
num_cores);
return -ENODEV;
}
if (num_cores != 1 && data->is_single_core) {
dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
num_cores);
return -ENODEV;
}
platform_set_drvdata(pdev, cluster);
ret = devm_of_platform_populate(dev);
if (ret) {
dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
ret);
return ret;
}
ret = k3_r5_cluster_of_init(pdev);
if (ret) {
dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
return ret;
}
ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
if (ret)
return ret;
ret = k3_r5_cluster_rproc_init(pdev);
if (ret) {
dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
ret);
return ret;
}
ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
if (ret)
return ret;
return 0;
}
static const struct k3_r5_soc_data am65_j721e_soc_data = {
.tcm_is_double = false,
.tcm_ecc_autoinit = false,
.single_cpu_mode = false,
.is_single_core = false,
};
static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
.tcm_is_double = true,
.tcm_ecc_autoinit = true,
.single_cpu_mode = false,
.is_single_core = false,
};
static const struct k3_r5_soc_data am64_soc_data = {
.tcm_is_double = true,
.tcm_ecc_autoinit = true,
.single_cpu_mode = true,
.is_single_core = false,
};
static const struct k3_r5_soc_data am62_soc_data = {
.tcm_is_double = false,
.tcm_ecc_autoinit = true,
.single_cpu_mode = false,
.is_single_core = true,
};
static const struct of_device_id k3_r5_of_match[] = {
{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
{ .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
{ .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
{ .compatible = "ti,am62-r5fss", .data = &am62_soc_data, },
{ .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, k3_r5_of_match);
static struct platform_driver k3_r5_rproc_driver = {
.probe = k3_r5_probe,
.driver = {
.name = "k3_r5_rproc",
.of_match_table = k3_r5_of_match,
},
};
module_platform_driver(k3_r5_rproc_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");