// SPDX-License-Identifier: GPL-2.0-only
/*
* Remote Processor Framework
*
* Copyright (C) 2011 Texas Instruments, Inc.
* Copyright (C) 2011 Google, Inc.
*
* Ohad Ben-Cohen <ohad@wizery.com>
* Brian Swetland <swetland@google.com>
* Mark Grosen <mgrosen@ti.com>
* Fernando Guzman Lugo <fernando.lugo@ti.com>
* Suman Anna <s-anna@ti.com>
* Robert Tivy <rtivy@ti.com>
* Armando Uribe De Leon <x0095078@ti.com>
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/devcoredump.h>
#include <linux/rculist.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
#include <linux/idr.h>
#include <linux/elf.h>
#include <linux/crc32.h>
#include <linux/of_reserved_mem.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
#include <asm/byteorder.h>
#include <linux/platform_device.h>
#include "remoteproc_internal.h"
#include "remoteproc_elf_helpers.h"
#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
static DEFINE_MUTEX(rproc_list_mutex);
static LIST_HEAD(rproc_list);
static struct notifier_block rproc_panic_nb;
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
void *, int offset, int avail);
static int rproc_alloc_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem);
static int rproc_release_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem);
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);
static const char * const rproc_crash_names[] = {
[RPROC_MMUFAULT] = "mmufault",
[RPROC_WATCHDOG] = "watchdog",
[RPROC_FATAL_ERROR] = "fatal error",
};
/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
if (type < ARRAY_SIZE(rproc_crash_names))
return rproc_crash_names[type];
return "unknown";
}
/*
* This is the IOMMU fault handler we register with the IOMMU API
* (when relevant; not all remote processors access memory through
* an IOMMU).
*
* IOMMU core will invoke this handler whenever the remote processor
* will try to access an unmapped device address.
*/
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
unsigned long iova, int flags, void *token)
{
struct rproc *rproc = token;
dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
rproc_report_crash(rproc, RPROC_MMUFAULT);
/*
* Let the iommu core know we're not really handling this fault;
* we just used it as a recovery trigger.
*/
return -ENOSYS;
}
static int rproc_enable_iommu(struct rproc *rproc)
{
struct iommu_domain *domain;
struct device *dev = rproc->dev.parent;
int ret;
if (!rproc->has_iommu) {
dev_dbg(dev, "iommu not present\n");
return 0;
}
domain = iommu_domain_alloc(dev->bus);
if (!domain) {
dev_err(dev, "can't alloc iommu domain\n");
return -ENOMEM;
}
iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
ret = iommu_attach_device(domain, dev);
if (ret) {
dev_err(dev, "can't attach iommu device: %d\n", ret);
goto free_domain;
}
rproc->domain = domain;
return 0;
free_domain:
iommu_domain_free(domain);
return ret;
}
static void rproc_disable_iommu(struct rproc *rproc)
{
struct iommu_domain *domain = rproc->domain;
struct device *dev = rproc->dev.parent;
if (!domain)
return;
iommu_detach_device(domain, dev);
iommu_domain_free(domain);
}
phys_addr_t rproc_va_to_pa(void *cpu_addr)
{
/*
* Return physical address according to virtual address location
* - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
* - in kernel: if region allocated in generic dma memory pool
*/
if (is_vmalloc_addr(cpu_addr)) {
return page_to_phys(vmalloc_to_page(cpu_addr)) +
offset_in_page(cpu_addr);
}
WARN_ON(!virt_addr_valid(cpu_addr));
return virt_to_phys(cpu_addr);
}
EXPORT_SYMBOL(rproc_va_to_pa);
/**
* rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
* @rproc: handle of a remote processor
* @da: remoteproc device address to translate
* @len: length of the memory region @da is pointing to
*
* Some remote processors will ask us to allocate them physically contiguous
* memory regions (which we call "carveouts"), and map them to specific
* device addresses (which are hardcoded in the firmware). They may also have
* dedicated memory regions internal to the processors, and use them either
* exclusively or alongside carveouts.
*
* They may then ask us to copy objects into specific device addresses (e.g.
* code/data sections) or expose us certain symbols in other device address
* (e.g. their trace buffer).
*
* This function is a helper function with which we can go over the allocated
* carveouts and translate specific device addresses to kernel virtual addresses
* so we can access the referenced memory. This function also allows to perform
* translations on the internal remoteproc memory regions through a platform
* implementation specific da_to_va ops, if present.
*
* The function returns a valid kernel address on success or NULL on failure.
*
* Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
* but only on kernel direct mapped RAM memory. Instead, we're just using
* here the output of the DMA API for the carveouts, which should be more
* correct.
*/
void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
{
struct rproc_mem_entry *carveout;
void *ptr = NULL;
if (rproc->ops->da_to_va) {
ptr = rproc->ops->da_to_va(rproc, da, len);
if (ptr)
goto out;
}
list_for_each_entry(carveout, &rproc->carveouts, node) {
int offset = da - carveout->da;
/* Verify that carveout is allocated */
if (!carveout->va)
continue;
/* try next carveout if da is too small */
if (offset < 0)
continue;
/* try next carveout if da is too large */
if (offset + len > carveout->len)
continue;
ptr = carveout->va + offset;
break;
}
out:
return ptr;
}
EXPORT_SYMBOL(rproc_da_to_va);
/**
* rproc_find_carveout_by_name() - lookup the carveout region by a name
* @rproc: handle of a remote processor
* @name: carveout name to find (format string)
* @...: optional parameters matching @name string
*
* Platform driver has the capability to register some pre-allacoted carveout
* (physically contiguous memory regions) before rproc firmware loading and
* associated resource table analysis. These regions may be dedicated memory
* regions internal to the coprocessor or specified DDR region with specific
* attributes
*
* This function is a helper function with which we can go over the
* allocated carveouts and return associated region characteristics like
* coprocessor address, length or processor virtual address.
*
* Return: a valid pointer on carveout entry on success or NULL on failure.
*/
struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
{
va_list args;
char _name[32];
struct rproc_mem_entry *carveout, *mem = NULL;
if (!name)
return NULL;
va_start(args, name);
vsnprintf(_name, sizeof(_name), name, args);
va_end(args);
list_for_each_entry(carveout, &rproc->carveouts, node) {
/* Compare carveout and requested names */
if (!strcmp(carveout->name, _name)) {
mem = carveout;
break;
}
}
return mem;
}
/**
* rproc_check_carveout_da() - Check specified carveout da configuration
* @rproc: handle of a remote processor
* @mem: pointer on carveout to check
* @da: area device address
* @len: associated area size
*
* This function is a helper function to verify requested device area (couple
* da, len) is part of specified carveout.
* If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
* checked.
*
* Return: 0 if carveout matches request else error
*/
static int rproc_check_carveout_da(struct rproc *rproc,
struct rproc_mem_entry *mem, u32 da, u32 len)
{
struct device *dev = &rproc->dev;
int delta;
/* Check requested resource length */
if (len > mem->len) {
dev_err(dev, "Registered carveout doesn't fit len request\n");
return -EINVAL;
}
if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
/* Address doesn't match registered carveout configuration */
return -EINVAL;
} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
delta = da - mem->da;
/* Check requested resource belongs to registered carveout */
if (delta < 0) {
dev_err(dev,
"Registered carveout doesn't fit da request\n");
return -EINVAL;
}
if (delta + len > mem->len) {
dev_err(dev,
"Registered carveout doesn't fit len request\n");
return -EINVAL;
}
}
return 0;
}
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
{
struct rproc *rproc = rvdev->rproc;
struct device *dev = &rproc->dev;
struct rproc_vring *rvring = &rvdev->vring[i];
struct fw_rsc_vdev *rsc;
int ret, notifyid;
struct rproc_mem_entry *mem;
size_t size;
/* actual size of vring (in bytes) */
size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
/* Search for pre-registered carveout */
mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
i);
if (mem) {
if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
return -ENOMEM;
} else {
/* Register carveout in in list */
mem = rproc_mem_entry_init(dev, NULL, 0,
size, rsc->vring[i].da,
rproc_alloc_carveout,
rproc_release_carveout,
"vdev%dvring%d",
rvdev->index, i);
if (!mem) {
dev_err(dev, "Can't allocate memory entry structure\n");
return -ENOMEM;
}
rproc_add_carveout(rproc, mem);
}
/*
* Assign an rproc-wide unique index for this vring
* TODO: assign a notifyid for rvdev updates as well
* TODO: support predefined notifyids (via resource table)
*/
ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
if (ret < 0) {
dev_err(dev, "idr_alloc failed: %d\n", ret);
return ret;
}
notifyid = ret;
/* Potentially bump max_notifyid */
if (notifyid > rproc->max_notifyid)
rproc->max_notifyid = notifyid;
rvring->notifyid = notifyid;
/* Let the rproc know the notifyid of this vring.*/
rsc->vring[i].notifyid = notifyid;
return 0;
}
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
{
struct rproc *rproc = rvdev->rproc;
struct device *dev = &rproc->dev;
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
struct rproc_vring *rvring = &rvdev->vring[i];
dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
i, vring->da, vring->num, vring->align);
/* verify queue size and vring alignment are sane */
if (!vring->num || !vring->align) {
dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
vring->num, vring->align);
return -EINVAL;
}
rvring->len = vring->num;
rvring->align = vring->align;
rvring->rvdev = rvdev;
return 0;
}
void rproc_free_vring(struct rproc_vring *rvring)
{
struct rproc *rproc = rvring->rvdev->rproc;
int idx = rvring - rvring->rvdev->vring;
struct fw_rsc_vdev *rsc;
idr_remove(&rproc->notifyids, rvring->notifyid);
/* reset resource entry info */
rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
rsc->vring[idx].da = 0;
rsc->vring[idx].notifyid = -1;
}
static int rproc_vdev_do_start(struct rproc_subdev *subdev)
{
struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
return rproc_add_virtio_dev(rvdev, rvdev->id);
}
static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
{
struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
int ret;
ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
if (ret)
dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
}
/**
* rproc_rvdev_release() - release the existence of a rvdev
*
* @dev: the subdevice's dev
*/
static void rproc_rvdev_release(struct device *dev)
{
struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
of_reserved_mem_device_release(dev);
kfree(rvdev);
}
/**
* rproc_handle_vdev() - handle a vdev fw resource
* @rproc: the remote processor
* @rsc: the vring resource descriptor
* @offset: offset of the resource entry
* @avail: size of available data (for sanity checking the image)
*
* This resource entry requests the host to statically register a virtio
* device (vdev), and setup everything needed to support it. It contains
* everything needed to make it possible: the virtio device id, virtio
* device features, vrings information, virtio config space, etc...
*
* Before registering the vdev, the vrings are allocated from non-cacheable
* physically contiguous memory. Currently we only support two vrings per
* remote processor (temporary limitation). We might also want to consider
* doing the vring allocation only later when ->find_vqs() is invoked, and
* then release them upon ->del_vqs().
*
* Note: @da is currently not really handled correctly: we dynamically
* allocate it using the DMA API, ignoring requested hard coded addresses,
* and we don't take care of any required IOMMU programming. This is all
* going to be taken care of when the generic iommu-based DMA API will be
* merged. Meanwhile, statically-addressed iommu-based firmware images should
* use RSC_DEVMEM resource entries to map their required @da to the physical
* address of their base CMA region (ouch, hacky!).
*
* Returns 0 on success, or an appropriate error code otherwise
*/
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
int offset, int avail)
{
struct device *dev = &rproc->dev;
struct rproc_vdev *rvdev;
int i, ret;
char name[16];
/* make sure resource isn't truncated */
if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
avail) {
dev_err(dev, "vdev rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved[0] || rsc->reserved[1]) {
dev_err(dev, "vdev rsc has non zero reserved bytes\n");
return -EINVAL;
}
dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
/* we currently support only two vrings per rvdev */
if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
return -EINVAL;
}
rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
if (!rvdev)
return -ENOMEM;
kref_init(&rvdev->refcount);
rvdev->id = rsc->id;
rvdev->rproc = rproc;
rvdev->index = rproc->nb_vdev++;
/* Initialise vdev subdevice */
snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
rvdev->dev.parent = rproc->dev.parent;
rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
rvdev->dev.release = rproc_rvdev_release;
dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
dev_set_drvdata(&rvdev->dev, rvdev);
ret = device_register(&rvdev->dev);
if (ret) {
put_device(&rvdev->dev);
return ret;
}
/* Make device dma capable by inheriting from parent's capabilities */
set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
ret = dma_coerce_mask_and_coherent(&rvdev->dev,
dma_get_mask(rproc->dev.parent));
if (ret) {
dev_warn(dev,
"Failed to set DMA mask %llx. Trying to continue... %x\n",
dma_get_mask(rproc->dev.parent), ret);
}
/* parse the vrings */
for (i = 0; i < rsc->num_of_vrings; i++) {
ret = rproc_parse_vring(rvdev, rsc, i);
if (ret)
goto free_rvdev;
}
/* remember the resource offset*/
rvdev->rsc_offset = offset;
/* allocate the vring resources */
for (i = 0; i < rsc->num_of_vrings; i++) {
ret = rproc_alloc_vring(rvdev, i);
if (ret)
goto unwind_vring_allocations;
}
list_add_tail(&rvdev->node, &rproc->rvdevs);
rvdev->subdev.start = rproc_vdev_do_start;
rvdev->subdev.stop = rproc_vdev_do_stop;
rproc_add_subdev(rproc, &rvdev->subdev);
return 0;
unwind_vring_allocations:
for (i--; i >= 0; i--)
rproc_free_vring(&rvdev->vring[i]);
free_rvdev:
device_unregister(&rvdev->dev);
return ret;
}
void rproc_vdev_release(struct kref *ref)
{
struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
struct rproc_vring *rvring;
struct rproc *rproc = rvdev->rproc;
int id;
for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
rvring = &rvdev->vring[id];
rproc_free_vring(rvring);
}
rproc_remove_subdev(rproc, &rvdev->subdev);
list_del(&rvdev->node);
device_unregister(&rvdev->dev);
}
/**
* rproc_handle_trace() - handle a shared trace buffer resource
* @rproc: the remote processor
* @rsc: the trace resource descriptor
* @offset: offset of the resource entry
* @avail: size of available data (for sanity checking the image)
*
* In case the remote processor dumps trace logs into memory,
* export it via debugfs.
*
* Currently, the 'da' member of @rsc should contain the device address
* where the remote processor is dumping the traces. Later we could also
* support dynamically allocating this address using the generic
* DMA API (but currently there isn't a use case for that).
*
* Returns 0 on success, or an appropriate error code otherwise
*/
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
int offset, int avail)
{
struct rproc_debug_trace *trace;
struct device *dev = &rproc->dev;
char name[15];
if (sizeof(*rsc) > avail) {
dev_err(dev, "trace rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved) {
dev_err(dev, "trace rsc has non zero reserved bytes\n");
return -EINVAL;
}
trace = kzalloc(sizeof(*trace), GFP_KERNEL);
if (!trace)
return -ENOMEM;
/* set the trace buffer dma properties */
trace->trace_mem.len = rsc->len;
trace->trace_mem.da = rsc->da;
/* set pointer on rproc device */
trace->rproc = rproc;
/* make sure snprintf always null terminates, even if truncating */
snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
/* create the debugfs entry */
trace->tfile = rproc_create_trace_file(name, rproc, trace);
if (!trace->tfile) {
kfree(trace);
return -EINVAL;
}
list_add_tail(&trace->node, &rproc->traces);
rproc->num_traces++;
dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
name, rsc->da, rsc->len);
return 0;
}
/**
* rproc_handle_devmem() - handle devmem resource entry
* @rproc: remote processor handle
* @rsc: the devmem resource entry
* @offset: offset of the resource entry
* @avail: size of available data (for sanity checking the image)
*
* Remote processors commonly need to access certain on-chip peripherals.
*
* Some of these remote processors access memory via an iommu device,
* and might require us to configure their iommu before they can access
* the on-chip peripherals they need.
*
* This resource entry is a request to map such a peripheral device.
*
* These devmem entries will contain the physical address of the device in
* the 'pa' member. If a specific device address is expected, then 'da' will
* contain it (currently this is the only use case supported). 'len' will
* contain the size of the physical region we need to map.
*
* Currently we just "trust" those devmem entries to contain valid physical
* addresses, but this is going to change: we want the implementations to
* tell us ranges of physical addresses the firmware is allowed to request,
* and not allow firmwares to request access to physical addresses that
* are outside those ranges.
*/
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
int offset, int avail)
{
struct rproc_mem_entry *mapping;
struct device *dev = &rproc->dev;
int ret;
/* no point in handling this resource without a valid iommu domain */
if (!rproc->domain)
return -EINVAL;
if (sizeof(*rsc) > avail) {
dev_err(dev, "devmem rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved) {
dev_err(dev, "devmem rsc has non zero reserved bytes\n");
return -EINVAL;
}
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
if (ret) {
dev_err(dev, "failed to map devmem: %d\n", ret);
goto out;
}
/*
* We'll need this info later when we'll want to unmap everything
* (e.g. on shutdown).
*
* We can't trust the remote processor not to change the resource
* table, so we must maintain this info independently.
*/
mapping->da = rsc->da;
mapping->len = rsc->len;
list_add_tail(&mapping->node, &rproc->mappings);
dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
rsc->pa, rsc->da, rsc->len);
return 0;
out:
kfree(mapping);
return ret;
}
/**
* rproc_alloc_carveout() - allocated specified carveout
* @rproc: rproc handle
* @mem: the memory entry to allocate
*
* This function allocate specified memory entry @mem using
* dma_alloc_coherent() as default allocator
*/
static int rproc_alloc_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
struct rproc_mem_entry *mapping = NULL;
struct device *dev = &rproc->dev;
dma_addr_t dma;
void *va;
int ret;
va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
if (!va) {
dev_err(dev->parent,
"failed to allocate dma memory: len 0x%zx\n",
mem->len);
return -ENOMEM;
}
dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
va, &dma, mem->len);
if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
/*
* Check requested da is equal to dma address
* and print a warn message in case of missalignment.
* Don't stop rproc_start sequence as coprocessor may
* build pa to da translation on its side.
*/
if (mem->da != (u32)dma)
dev_warn(dev->parent,
"Allocated carveout doesn't fit device address request\n");
}
/*
* Ok, this is non-standard.
*
* Sometimes we can't rely on the generic iommu-based DMA API
* to dynamically allocate the device address and then set the IOMMU
* tables accordingly, because some remote processors might
* _require_ us to use hard coded device addresses that their
* firmware was compiled with.
*
* In this case, we must use the IOMMU API directly and map
* the memory to the device address as expected by the remote
* processor.
*
* Obviously such remote processor devices should not be configured
* to use the iommu-based DMA API: we expect 'dma' to contain the
* physical address in this case.
*/
if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping) {
ret = -ENOMEM;
goto dma_free;
}
ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
mem->flags);
if (ret) {
dev_err(dev, "iommu_map failed: %d\n", ret);
goto free_mapping;
}
/*
* We'll need this info later when we'll want to unmap
* everything (e.g. on shutdown).
*
* We can't trust the remote processor not to change the
* resource table, so we must maintain this info independently.
*/
mapping->da = mem->da;
mapping->len = mem->len;
list_add_tail(&mapping->node, &rproc->mappings);
dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
mem->da, &dma);
}
if (mem->da == FW_RSC_ADDR_ANY) {
/* Update device address as undefined by requester */
if ((u64)dma & HIGH_BITS_MASK)
dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
mem->da = (u32)dma;
}
mem->dma = dma;
mem->va = va;
return 0;
free_mapping:
kfree(mapping);
dma_free:
dma_free_coherent(dev->parent, mem->len, va, dma);
return ret;
}
/**
* rproc_release_carveout() - release acquired carveout
* @rproc: rproc handle
* @mem: the memory entry to release
*
* This function releases specified memory entry @mem allocated via
* rproc_alloc_carveout() function by @rproc.
*/
static int rproc_release_carveout(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
struct device *dev = &rproc->dev;
/* clean up carveout allocations */
dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
return 0;
}
/**
* rproc_handle_carveout() - handle phys contig memory allocation requests
* @rproc: rproc handle
* @rsc: the resource entry
* @offset: offset of the resource entry
* @avail: size of available data (for image validation)
*
* This function will handle firmware requests for allocation of physically
* contiguous memory regions.
*
* These request entries should come first in the firmware's resource table,
* as other firmware entries might request placing other data objects inside
* these memory regions (e.g. data/code segments, trace resource entries, ...).
*
* Allocating memory this way helps utilizing the reserved physical memory
* (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
* needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
* pressure is important; it may have a substantial impact on performance.
*/
static int rproc_handle_carveout(struct rproc *rproc,
struct fw_rsc_carveout *rsc,
int offset, int avail)
{
struct rproc_mem_entry *carveout;
struct device *dev = &rproc->dev;
if (sizeof(*rsc) > avail) {
dev_err(dev, "carveout rsc is truncated\n");
return -EINVAL;
}
/* make sure reserved bytes are zeroes */
if (rsc->reserved) {
dev_err(dev, "carveout rsc has non zero reserved bytes\n");
return -EINVAL;
}
dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
/*
* Check carveout rsc already part of a registered carveout,
* Search by name, then check the da and length
*/
carveout = rproc_find_carveout_by_name(rproc, rsc->name);
if (carveout) {
if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
dev_err(dev,
"Carveout already associated to resource table\n");
return -ENOMEM;
}
if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
return -ENOMEM;
/* Update memory carveout with resource table info */
carveout->rsc_offset = offset;
carveout->flags = rsc->flags;
return 0;
}
/* Register carveout in in list */
carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
rproc_alloc_carveout,
rproc_release_carveout, rsc->name);
if (!carveout) {
dev_err(dev, "Can't allocate memory entry structure\n");
return -ENOMEM;
}
carveout->flags = rsc->flags;
carveout->rsc_offset = offset;
rproc_add_carveout(rproc, carveout);
return 0;
}
/**
* rproc_add_carveout() - register an allocated carveout region
* @rproc: rproc handle
* @mem: memory entry to register
*
* This function registers specified memory entry in @rproc carveouts list.
* Specified carveout should have been allocated before registering.
*/
void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
{
list_add_tail(&mem->node, &rproc->carveouts);
}
EXPORT_SYMBOL(rproc_add_carveout);
/**
* rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
* @dev: pointer on device struct
* @va: virtual address
* @dma: dma address
* @len: memory carveout length
* @da: device address
* @alloc: memory carveout allocation function
* @release: memory carveout release function
* @name: carveout name
*
* This function allocates a rproc_mem_entry struct and fill it with parameters
* provided by client.
*/
struct rproc_mem_entry *
rproc_mem_entry_init(struct device *dev,
void *va, dma_addr_t dma, size_t len, u32 da,
int (*alloc)(struct rproc *, struct rproc_mem_entry *),
int (*release)(struct rproc *, struct rproc_mem_entry *),
const char *name, ...)
{
struct rproc_mem_entry *mem;
va_list args;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return mem;
mem->va = va;
mem->dma = dma;
mem->da = da;
mem->len = len;
mem->alloc = alloc;
mem->release = release;
mem->rsc_offset = FW_RSC_ADDR_ANY;
mem->of_resm_idx = -1;
va_start(args, name);
vsnprintf(mem->name, sizeof(mem->name), name, args);
va_end(args);
return mem;
}
EXPORT_SYMBOL(rproc_mem_entry_init);
/**
* rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
* from a reserved memory phandle
* @dev: pointer on device struct
* @of_resm_idx: reserved memory phandle index in "memory-region"
* @len: memory carveout length
* @da: device address
* @name: carveout name
*
* This function allocates a rproc_mem_entry struct and fill it with parameters
* provided by client.
*/
struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
u32 da, const char *name, ...)
{
struct rproc_mem_entry *mem;
va_list args;
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return mem;
mem->da = da;
mem->len = len;
mem->rsc_offset = FW_RSC_ADDR_ANY;
mem->of_resm_idx = of_resm_idx;
va_start(args, name);
vsnprintf(mem->name, sizeof(mem->name), name, args);
va_end(args);
return mem;
}
EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
/*
* A lookup table for resource handlers. The indices are defined in
* enum fw_resource_type.
*/
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
};
/* handle firmware resource entries before booting the remote processor */
static int rproc_handle_resources(struct rproc *rproc,
rproc_handle_resource_t handlers[RSC_LAST])
{
struct device *dev = &rproc->dev;
rproc_handle_resource_t handler;
int ret = 0, i;
if (!rproc->table_ptr)
return 0;
for (i = 0; i < rproc->table_ptr->num; i++) {
int offset = rproc->table_ptr->offset[i];
struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
int avail = rproc->table_sz - offset - sizeof(*hdr);
void *rsc = (void *)hdr + sizeof(*hdr);
/* make sure table isn't truncated */
if (avail < 0) {
dev_err(dev, "rsc table is truncated\n");
return -EINVAL;
}
dev_dbg(dev, "rsc: type %d\n", hdr->type);
if (hdr->type >= RSC_VENDOR_START &&
hdr->type <= RSC_VENDOR_END) {
ret = rproc_handle_rsc(rproc, hdr->type, rsc,
offset + sizeof(*hdr), avail);
if (ret == RSC_HANDLED)
continue;
else if (ret < 0)
break;
dev_warn(dev, "unsupported vendor resource %d\n",
hdr->type);
continue;
}
if (hdr->type >= RSC_LAST) {
dev_warn(dev, "unsupported resource %d\n", hdr->type);
continue;
}
handler = handlers[hdr->type];
if (!handler)
continue;
ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
if (ret)
break;
}
return ret;
}
static int rproc_prepare_subdevices(struct rproc *rproc)
{
struct rproc_subdev *subdev;
int ret;
list_for_each_entry(subdev, &rproc->subdevs, node) {
if (subdev->prepare) {
ret = subdev->prepare(subdev);
if (ret)
goto unroll_preparation;
}
}
return 0;
unroll_preparation:
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
if (subdev->unprepare)
subdev->unprepare(subdev);
}
return ret;
}
static int rproc_start_subdevices(struct rproc *rproc)
{
struct rproc_subdev *subdev;
int ret;
list_for_each_entry(subdev, &rproc->subdevs, node) {
if (subdev->start) {
ret = subdev->start(subdev);
if (ret)
goto unroll_registration;
}
}
return 0;
unroll_registration:
list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
if (subdev->stop)
subdev->stop(subdev, true);
}
return ret;
}
static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
{
struct rproc_subdev *subdev;
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
if (subdev->stop)
subdev->stop(subdev, crashed);
}
}
static void rproc_unprepare_subdevices(struct rproc *rproc)
{
struct rproc_subdev *subdev;
list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
if (subdev->unprepare)
subdev->unprepare(subdev);
}
}
/**
* rproc_alloc_registered_carveouts() - allocate all carveouts registered
* in the list
* @rproc: the remote processor handle
*
* This function parses registered carveout list, performs allocation
* if alloc() ops registered and updates resource table information
* if rsc_offset set.
*
* Return: 0 on success
*/
static int rproc_alloc_registered_carveouts(struct rproc *rproc)
{
struct rproc_mem_entry *entry, *tmp;
struct fw_rsc_carveout *rsc;
struct device *dev = &rproc->dev;
u64 pa;
int ret;
list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
if (entry->alloc) {
ret = entry->alloc(rproc, entry);
if (ret) {
dev_err(dev, "Unable to allocate carveout %s: %d\n",
entry->name, ret);
return -ENOMEM;
}
}
if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
/* update resource table */
rsc = (void *)rproc->table_ptr + entry->rsc_offset;
/*
* Some remote processors might need to know the pa
* even though they are behind an IOMMU. E.g., OMAP4's
* remote M3 processor needs this so it can control
* on-chip hardware accelerators that are not behind
* the IOMMU, and therefor must know the pa.
*
* Generally we don't want to expose physical addresses
* if we don't have to (remote processors are generally
* _not_ trusted), so we might want to do this only for
* remote processor that _must_ have this (e.g. OMAP4's
* dual M3 subsystem).
*
* Non-IOMMU processors might also want to have this info.
* In this case, the device address and the physical address
* are the same.
*/
/* Use va if defined else dma to generate pa */
if (entry->va)
pa = (u64)rproc_va_to_pa(entry->va);
else
pa = (u64)entry->dma;
if (((u64)pa) & HIGH_BITS_MASK)
dev_warn(dev,
"Physical address cast in 32bit to fit resource table format\n");
rsc->pa = (u32)pa;
rsc->da = entry->da;
rsc->len = entry->len;
}
}
return 0;
}
/**
* rproc_coredump_cleanup() - clean up dump_segments list
* @rproc: the remote processor handle
*/
static void rproc_coredump_cleanup(struct rproc *rproc)
{
struct rproc_dump_segment *entry, *tmp;
list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
list_del(&entry->node);
kfree(entry);
}
}
/**
* rproc_resource_cleanup() - clean up and free all acquired resources
* @rproc: rproc handle
*
* This function will free all resources acquired for @rproc, and it
* is called whenever @rproc either shuts down or fails to boot.
*/
static void rproc_resource_cleanup(struct rproc *rproc)
{
struct rproc_mem_entry *entry, *tmp;
struct rproc_debug_trace *trace, *ttmp;
struct rproc_vdev *rvdev, *rvtmp;
struct device *dev = &rproc->dev;
/* clean up debugfs trace entries */
list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
rproc_remove_trace_file(trace->tfile);
rproc->num_traces--;
list_del(&trace->node);
kfree(trace);
}
/* clean up iommu mapping entries */
list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
size_t unmapped;
unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
if (unmapped != entry->len) {
/* nothing much to do besides complaining */
dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
unmapped);
}
list_del(&entry->node);
kfree(entry);
}
/* clean up carveout allocations */
list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
if (entry->release)
entry->release(rproc, entry);
list_del(&entry->node);
kfree(entry);
}
/* clean up remote vdev entries */
list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
kref_put(&rvdev->refcount, rproc_vdev_release);
rproc_coredump_cleanup(rproc);
}
static int rproc_start(struct rproc *rproc, const struct firmware *fw)
{
struct resource_table *loaded_table;
struct device *dev = &rproc->dev;
int ret;
/* load the ELF segments to memory */
ret = rproc_load_segments(rproc, fw);
if (ret) {
dev_err(dev, "Failed to load program segments: %d\n", ret);
return ret;
}
/*
* The starting device has been given the rproc->cached_table as the
* resource table. The address of the vring along with the other
* allocated resources (carveouts etc) is stored in cached_table.
* In order to pass this information to the remote device we must copy
* this information to device memory. We also update the table_ptr so
* that any subsequent changes will be applied to the loaded version.
*/
loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
if (loaded_table) {
memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
rproc->table_ptr = loaded_table;
}
ret = rproc_prepare_subdevices(rproc);
if (ret) {
dev_err(dev, "failed to prepare subdevices for %s: %d\n",
rproc->name, ret);
goto reset_table_ptr;
}
/* power up the remote processor */
ret = rproc->ops->start(rproc);
if (ret) {
dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
goto unprepare_subdevices;
}
/* Start any subdevices for the remote processor */
ret = rproc_start_subdevices(rproc);
if (ret) {
dev_err(dev, "failed to probe subdevices for %s: %d\n",
rproc->name, ret);
goto stop_rproc;
}
rproc->state = RPROC_RUNNING;
dev_info(dev, "remote processor %s is now up\n", rproc->name);
return 0;
stop_rproc:
rproc->ops->stop(rproc);
unprepare_subdevices:
rproc_unprepare_subdevices(rproc);
reset_table_ptr:
rproc->table_ptr = rproc->cached_table;
return ret;
}
/*
* take a firmware and boot a remote processor with it.
*/
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
struct device *dev = &rproc->dev;
const char *name = rproc->firmware;
int ret;
ret = rproc_fw_sanity_check(rproc, fw);
if (ret)
return ret;
dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
/*
* if enabling an IOMMU isn't relevant for this rproc, this is
* just a nop
*/
ret = rproc_enable_iommu(rproc);
if (ret) {
dev_err(dev, "can't enable iommu: %d\n", ret);
return ret;
}
rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
/* Load resource table, core dump segment list etc from the firmware */
ret = rproc_parse_fw(rproc, fw);
if (ret)
goto disable_iommu;
/* reset max_notifyid */
rproc->max_notifyid = -1;
/* reset handled vdev */
rproc->nb_vdev = 0;
/* handle fw resources which are required to boot rproc */
ret = rproc_handle_resources(rproc, rproc_loading_handlers);
if (ret) {
dev_err(dev, "Failed to process resources: %d\n", ret);
goto clean_up_resources;
}
/* Allocate carveout resources associated to rproc */
ret = rproc_alloc_registered_carveouts(rproc);
if (ret) {
dev_err(dev, "Failed to allocate associated carveouts: %d\n",
ret);
goto clean_up_resources;
}
ret = rproc_start(rproc, fw);
if (ret)
goto clean_up_resources;
return 0;
clean_up_resources:
rproc_resource_cleanup(rproc);
kfree(rproc->cached_table);
rproc->cached_table = NULL;
rproc->table_ptr = NULL;
disable_iommu:
rproc_disable_iommu(rproc);
return ret;
}
/*
* take a firmware and boot it up.
*
* Note: this function is called asynchronously upon registration of the
* remote processor (so we must wait until it completes before we try
* to unregister the device. one other option is just to use kref here,
* that might be cleaner).
*/
static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
{
struct rproc *rproc = context;
rproc_boot(rproc);
release_firmware(fw);
}
static int rproc_trigger_auto_boot(struct rproc *rproc)
{
int ret;
/*
* We're initiating an asynchronous firmware loading, so we can
* be built-in kernel code, without hanging the boot process.
*/
ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
rproc->firmware, &rproc->dev, GFP_KERNEL,
rproc, rproc_auto_boot_callback);
if (ret < 0)
dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
return ret;
}
static int rproc_stop(struct rproc *rproc, bool crashed)
{
struct device *dev = &rproc->dev;
int ret;
/* Stop any subdevices for the remote processor */
rproc_stop_subdevices(rproc, crashed);
/* the installed resource table is no longer accessible */
rproc->table_ptr = rproc->cached_table;
/* power off the remote processor */
ret = rproc->ops->stop(rproc);
if (ret) {
dev_err(dev, "can't stop rproc: %d\n", ret);
return ret;
}
rproc_unprepare_subdevices(rproc);
rproc->state = RPROC_OFFLINE;
dev_info(dev, "stopped remote processor %s\n", rproc->name);
return 0;
}
/**
* rproc_coredump_add_segment() - add segment of device memory to coredump
* @rproc: handle of a remote processor
* @da: device address
* @size: size of segment
*
* Add device memory to the list of segments to be included in a coredump for
* the remoteproc.
*
* Return: 0 on success, negative errno on error.
*/
int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
{
struct rproc_dump_segment *segment;
segment = kzalloc(sizeof(*segment), GFP_KERNEL);
if (!segment)
return -ENOMEM;
segment->da = da;
segment->size = size;
list_add_tail(&segment->node, &rproc->dump_segments);
return 0;
}
EXPORT_SYMBOL(rproc_coredump_add_segment);
/**
* rproc_coredump_add_custom_segment() - add custom coredump segment
* @rproc: handle of a remote processor
* @da: device address
* @size: size of segment
* @dumpfn: custom dump function called for each segment during coredump
* @priv: private data
*
* Add device memory to the list of segments to be included in the coredump
* and associate the segment with the given custom dump function and private
* data.
*
* Return: 0 on success, negative errno on error.
*/
int rproc_coredump_add_custom_segment(struct rproc *rproc,
dma_addr_t da, size_t size,
void (*dumpfn)(struct rproc *rproc,
struct rproc_dump_segment *segment,
void *dest),
void *priv)
{
struct rproc_dump_segment *segment;
segment = kzalloc(sizeof(*segment), GFP_KERNEL);
if (!segment)
return -ENOMEM;
segment->da = da;
segment->size = size;
segment->priv = priv;
segment->dump = dumpfn;
list_add_tail(&segment->node, &rproc->dump_segments);
return 0;
}
EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
/**
* rproc_coredump() - perform coredump
* @rproc: rproc handle
*
* This function will generate an ELF header for the registered segments
* and create a devcoredump device associated with rproc.
*/
static void rproc_coredump(struct rproc *rproc)
{
struct rproc_dump_segment *segment;
void *phdr;
void *ehdr;
size_t data_size;
size_t offset;
void *data;
void *ptr;
u8 class = rproc->elf_class;
int phnum = 0;
if (list_empty(&rproc->dump_segments))
return;
data_size = elf_size_of_hdr(class);
list_for_each_entry(segment, &rproc->dump_segments, node) {
data_size += elf_size_of_phdr(class) + segment->size;
phnum++;
}
data = vmalloc(data_size);
if (!data)
return;
ehdr = data;
memset(ehdr, 0, elf_size_of_hdr(class));
/* e_ident field is common for both elf32 and elf64 */
elf_hdr_init_ident(ehdr, class);
elf_hdr_set_e_type(class, ehdr, ET_CORE);
elf_hdr_set_e_machine(class, ehdr, EM_NONE);
elf_hdr_set_e_version(class, ehdr, EV_CURRENT);
elf_hdr_set_e_entry(class, ehdr, rproc->bootaddr);
elf_hdr_set_e_phoff(class, ehdr, elf_size_of_hdr(class));
elf_hdr_set_e_ehsize(class, ehdr, elf_size_of_hdr(class));
elf_hdr_set_e_phentsize(class, ehdr, elf_size_of_phdr(class));
elf_hdr_set_e_phnum(class, ehdr, phnum);
phdr = data + elf_hdr_get_e_phoff(class, ehdr);
offset = elf_hdr_get_e_phoff(class, ehdr);
offset += elf_size_of_phdr(class) * elf_hdr_get_e_phnum(class, ehdr);
list_for_each_entry(segment, &rproc->dump_segments, node) {
memset(phdr, 0, elf_size_of_phdr(class));
elf_phdr_set_p_type(class, phdr, PT_LOAD);
elf_phdr_set_p_offset(class, phdr, offset);
elf_phdr_set_p_vaddr(class, phdr, segment->da);
elf_phdr_set_p_paddr(class, phdr, segment->da);
elf_phdr_set_p_filesz(class, phdr, segment->size);
elf_phdr_set_p_memsz(class, phdr, segment->size);
elf_phdr_set_p_flags(class, phdr, PF_R | PF_W | PF_X);
elf_phdr_set_p_align(class, phdr, 0);
if (segment->dump) {
segment->dump(rproc, segment, data + offset);
} else {
ptr = rproc_da_to_va(rproc, segment->da, segment->size);
if (!ptr) {
dev_err(&rproc->dev,
"invalid coredump segment (%pad, %zu)\n",
&segment->da, segment->size);
memset(data + offset, 0xff, segment->size);
} else {
memcpy(data + offset, ptr, segment->size);
}
}
offset += elf_phdr_get_p_filesz(class, phdr);
phdr += elf_size_of_phdr(class);
}
dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
}
/**
* rproc_trigger_recovery() - recover a remoteproc
* @rproc: the remote processor
*
* The recovery is done by resetting all the virtio devices, that way all the
* rpmsg drivers will be reseted along with the remote processor making the
* remoteproc functional again.
*
* This function can sleep, so it cannot be called from atomic context.
*/
int rproc_trigger_recovery(struct rproc *rproc)
{
const struct firmware *firmware_p;
struct device *dev = &rproc->dev;
int ret;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret)
return ret;
/* State could have changed before we got the mutex */
if (rproc->state != RPROC_CRASHED)
goto unlock_mutex;
dev_err(dev, "recovering %s\n", rproc->name);
ret = rproc_stop(rproc, true);
if (ret)
goto unlock_mutex;
/* generate coredump */
rproc_coredump(rproc);
/* load firmware */
ret = request_firmware(&firmware_p, rproc->firmware, dev);
if (ret < 0) {
dev_err(dev, "request_firmware failed: %d\n", ret);
goto unlock_mutex;
}
/* boot the remote processor up again */
ret = rproc_start(rproc, firmware_p);
release_firmware(firmware_p);
unlock_mutex:
mutex_unlock(&rproc->lock);
return ret;
}
/**
* rproc_crash_handler_work() - handle a crash
* @work: work treating the crash
*
* This function needs to handle everything related to a crash, like cpu
* registers and stack dump, information to help to debug the fatal error, etc.
*/
static void rproc_crash_handler_work(struct work_struct *work)
{
struct rproc *rproc = container_of(work, struct rproc, crash_handler);
struct device *dev = &rproc->dev;
dev_dbg(dev, "enter %s\n", __func__);
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
/* handle only the first crash detected */
mutex_unlock(&rproc->lock);
return;
}
rproc->state = RPROC_CRASHED;
dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
rproc->name);
mutex_unlock(&rproc->lock);
if (!rproc->recovery_disabled)
rproc_trigger_recovery(rproc);
}
/**
* rproc_boot() - boot a remote processor
* @rproc: handle of a remote processor
*
* Boot a remote processor (i.e. load its firmware, power it on, ...).
*
* If the remote processor is already powered on, this function immediately
* returns (successfully).
*
* Returns 0 on success, and an appropriate error value otherwise.
*/
int rproc_boot(struct rproc *rproc)
{
const struct firmware *firmware_p;
struct device *dev;
int ret;
if (!rproc) {
pr_err("invalid rproc handle\n");
return -EINVAL;
}
dev = &rproc->dev;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
return ret;
}
if (rproc->state == RPROC_DELETED) {
ret = -ENODEV;
dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
goto unlock_mutex;
}
/* skip the boot process if rproc is already powered up */
if (atomic_inc_return(&rproc->power) > 1) {
ret = 0;
goto unlock_mutex;
}
dev_info(dev, "powering up %s\n", rproc->name);
/* load firmware */
ret = request_firmware(&firmware_p, rproc->firmware, dev);
if (ret < 0) {
dev_err(dev, "request_firmware failed: %d\n", ret);
goto downref_rproc;
}
ret = rproc_fw_boot(rproc, firmware_p);
release_firmware(firmware_p);
downref_rproc:
if (ret)
atomic_dec(&rproc->power);
unlock_mutex:
mutex_unlock(&rproc->lock);
return ret;
}
EXPORT_SYMBOL(rproc_boot);
/**
* rproc_shutdown() - power off the remote processor
* @rproc: the remote processor
*
* Power off a remote processor (previously booted with rproc_boot()).
*
* In case @rproc is still being used by an additional user(s), then
* this function will just decrement the power refcount and exit,
* without really powering off the device.
*
* Every call to rproc_boot() must (eventually) be accompanied by a call
* to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
*
* Notes:
* - we're not decrementing the rproc's refcount, only the power refcount.
* which means that the @rproc handle stays valid even after rproc_shutdown()
* returns, and users can still use it with a subsequent rproc_boot(), if
* needed.
*/
void rproc_shutdown(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
ret = mutex_lock_interruptible(&rproc->lock);
if (ret) {
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
return;
}
/* if the remote proc is still needed, bail out */
if (!atomic_dec_and_test(&rproc->power))
goto out;
ret = rproc_stop(rproc, false);
if (ret) {
atomic_inc(&rproc->power);
goto out;
}
/* clean up all acquired resources */
rproc_resource_cleanup(rproc);
rproc_disable_iommu(rproc);
/* Free the copy of the resource table */
kfree(rproc->cached_table);
rproc->cached_table = NULL;
rproc->table_ptr = NULL;
out:
mutex_unlock(&rproc->lock);
}
EXPORT_SYMBOL(rproc_shutdown);
/**
* rproc_get_by_phandle() - find a remote processor by phandle
* @phandle: phandle to the rproc
*
* Finds an rproc handle using the remote processor's phandle, and then
* return a handle to the rproc.
*
* This function increments the remote processor's refcount, so always
* use rproc_put() to decrement it back once rproc isn't needed anymore.
*
* Returns the rproc handle on success, and NULL on failure.
*/
#ifdef CONFIG_OF
struct rproc *rproc_get_by_phandle(phandle phandle)
{
struct rproc *rproc = NULL, *r;
struct device_node *np;
np = of_find_node_by_phandle(phandle);
if (!np)
return NULL;
rcu_read_lock();
list_for_each_entry_rcu(r, &rproc_list, node) {
if (r->dev.parent && r->dev.parent->of_node == np) {
/* prevent underlying implementation from being removed */
if (!try_module_get(r->dev.parent->driver->owner)) {
dev_err(&r->dev, "can't get owner\n");
break;
}
rproc = r;
get_device(&rproc->dev);
break;
}
}
rcu_read_unlock();
of_node_put(np);
return rproc;
}
#else
struct rproc *rproc_get_by_phandle(phandle phandle)
{
return NULL;
}
#endif
EXPORT_SYMBOL(rproc_get_by_phandle);
/**
* rproc_add() - register a remote processor
* @rproc: the remote processor handle to register
*
* Registers @rproc with the remoteproc framework, after it has been
* allocated with rproc_alloc().
*
* This is called by the platform-specific rproc implementation, whenever
* a new remote processor device is probed.
*
* Returns 0 on success and an appropriate error code otherwise.
*
* Note: this function initiates an asynchronous firmware loading
* context, which will look for virtio devices supported by the rproc's
* firmware.
*
* If found, those virtio devices will be created and added, so as a result
* of registering this remote processor, additional virtio drivers might be
* probed.
*/
int rproc_add(struct rproc *rproc)
{
struct device *dev = &rproc->dev;
int ret;
ret = device_add(dev);
if (ret < 0)
return ret;
dev_info(dev, "%s is available\n", rproc->name);
/* create debugfs entries */
rproc_create_debug_dir(rproc);
/* if rproc is marked always-on, request it to boot */
if (rproc->auto_boot) {
ret = rproc_trigger_auto_boot(rproc);
if (ret < 0)
return ret;
}
/* expose to rproc_get_by_phandle users */
mutex_lock(&rproc_list_mutex);
list_add_rcu(&rproc->node, &rproc_list);
mutex_unlock(&rproc_list_mutex);
return 0;
}
EXPORT_SYMBOL(rproc_add);
/**
* rproc_type_release() - release a remote processor instance
* @dev: the rproc's device
*
* This function should _never_ be called directly.
*
* It will be called by the driver core when no one holds a valid pointer
* to @dev anymore.
*/
static void rproc_type_release(struct device *dev)
{
struct rproc *rproc = container_of(dev, struct rproc, dev);
dev_info(&rproc->dev, "releasing %s\n", rproc->name);
idr_destroy(&rproc->notifyids);
if (rproc->index >= 0)
ida_simple_remove(&rproc_dev_index, rproc->index);
kfree(rproc->firmware);
kfree(rproc->ops);
kfree(rproc);
}
static const struct device_type rproc_type = {
.name = "remoteproc",
.release = rproc_type_release,
};
/**
* rproc_alloc() - allocate a remote processor handle
* @dev: the underlying device
* @name: name of this remote processor
* @ops: platform-specific handlers (mainly start/stop)
* @firmware: name of firmware file to load, can be NULL
* @len: length of private data needed by the rproc driver (in bytes)
*
* Allocates a new remote processor handle, but does not register
* it yet. if @firmware is NULL, a default name is used.
*
* This function should be used by rproc implementations during initialization
* of the remote processor.
*
* After creating an rproc handle using this function, and when ready,
* implementations should then call rproc_add() to complete
* the registration of the remote processor.
*
* On success the new rproc is returned, and on failure, NULL.
*
* Note: _never_ directly deallocate @rproc, even if it was not registered
* yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
*/
struct rproc *rproc_alloc(struct device *dev, const char *name,
const struct rproc_ops *ops,
const char *firmware, int len)
{
struct rproc *rproc;
char *p, *template = "rproc-%s-fw";
int name_len;
if (!dev || !name || !ops)
return NULL;
if (!firmware) {
/*
* If the caller didn't pass in a firmware name then
* construct a default name.
*/
name_len = strlen(name) + strlen(template) - 2 + 1;
p = kmalloc(name_len, GFP_KERNEL);
if (!p)
return NULL;
snprintf(p, name_len, template, name);
} else {
p = kstrdup(firmware, GFP_KERNEL);
if (!p)
return NULL;
}
rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
if (!rproc) {
kfree(p);
return NULL;
}
rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
if (!rproc->ops) {
kfree(p);
kfree(rproc);
return NULL;
}
rproc->firmware = p;
rproc->name = name;
rproc->priv = &rproc[1];
rproc->auto_boot = true;
rproc->elf_class = ELFCLASS32;
device_initialize(&rproc->dev);
rproc->dev.parent = dev;
rproc->dev.type = &rproc_type;
rproc->dev.class = &rproc_class;
rproc->dev.driver_data = rproc;
/* Assign a unique device index and name */
rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
if (rproc->index < 0) {
dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
put_device(&rproc->dev);
return NULL;
}
dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
atomic_set(&rproc->power, 0);
/* Default to ELF loader if no load function is specified */
if (!rproc->ops->load) {
rproc->ops->load = rproc_elf_load_segments;
rproc->ops->parse_fw = rproc_elf_load_rsc_table;
rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
if (!rproc->ops->sanity_check)
rproc->ops->sanity_check = rproc_elf32_sanity_check;
rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
}
mutex_init(&rproc->lock);
idr_init(&rproc->notifyids);
INIT_LIST_HEAD(&rproc->carveouts);
INIT_LIST_HEAD(&rproc->mappings);
INIT_LIST_HEAD(&rproc->traces);
INIT_LIST_HEAD(&rproc->rvdevs);
INIT_LIST_HEAD(&rproc->subdevs);
INIT_LIST_HEAD(&rproc->dump_segments);
INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
rproc->state = RPROC_OFFLINE;
return rproc;
}
EXPORT_SYMBOL(rproc_alloc);
/**
* rproc_free() - unroll rproc_alloc()
* @rproc: the remote processor handle
*
* This function decrements the rproc dev refcount.
*
* If no one holds any reference to rproc anymore, then its refcount would
* now drop to zero, and it would be freed.
*/
void rproc_free(struct rproc *rproc)
{
put_device(&rproc->dev);
}
EXPORT_SYMBOL(rproc_free);
/**
* rproc_put() - release rproc reference
* @rproc: the remote processor handle
*
* This function decrements the rproc dev refcount.
*
* If no one holds any reference to rproc anymore, then its refcount would
* now drop to zero, and it would be freed.
*/
void rproc_put(struct rproc *rproc)
{
module_put(rproc->dev.parent->driver->owner);
put_device(&rproc->dev);
}
EXPORT_SYMBOL(rproc_put);
/**
* rproc_del() - unregister a remote processor
* @rproc: rproc handle to unregister
*
* This function should be called when the platform specific rproc
* implementation decides to remove the rproc device. it should
* _only_ be called if a previous invocation of rproc_add()
* has completed successfully.
*
* After rproc_del() returns, @rproc isn't freed yet, because
* of the outstanding reference created by rproc_alloc. To decrement that
* one last refcount, one still needs to call rproc_free().
*
* Returns 0 on success and -EINVAL if @rproc isn't valid.
*/
int rproc_del(struct rproc *rproc)
{
if (!rproc)
return -EINVAL;
/* if rproc is marked always-on, rproc_add() booted it */
/* TODO: make sure this works with rproc->power > 1 */
if (rproc->auto_boot)
rproc_shutdown(rproc);
mutex_lock(&rproc->lock);
rproc->state = RPROC_DELETED;
mutex_unlock(&rproc->lock);
rproc_delete_debug_dir(rproc);
/* the rproc is downref'ed as soon as it's removed from the klist */
mutex_lock(&rproc_list_mutex);
list_del_rcu(&rproc->node);
mutex_unlock(&rproc_list_mutex);
/* Ensure that no readers of rproc_list are still active */
synchronize_rcu();
device_del(&rproc->dev);
return 0;
}
EXPORT_SYMBOL(rproc_del);
/**
* rproc_add_subdev() - add a subdevice to a remoteproc
* @rproc: rproc handle to add the subdevice to
* @subdev: subdev handle to register
*
* Caller is responsible for populating optional subdevice function pointers.
*/
void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
{
list_add_tail(&subdev->node, &rproc->subdevs);
}
EXPORT_SYMBOL(rproc_add_subdev);
/**
* rproc_remove_subdev() - remove a subdevice from a remoteproc
* @rproc: rproc handle to remove the subdevice from
* @subdev: subdev handle, previously registered with rproc_add_subdev()
*/
void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
{
list_del(&subdev->node);
}
EXPORT_SYMBOL(rproc_remove_subdev);
/**
* rproc_get_by_child() - acquire rproc handle of @dev's ancestor
* @dev: child device to find ancestor of
*
* Returns the ancestor rproc instance, or NULL if not found.
*/
struct rproc *rproc_get_by_child(struct device *dev)
{
for (dev = dev->parent; dev; dev = dev->parent) {
if (dev->type == &rproc_type)
return dev->driver_data;
}
return NULL;
}
EXPORT_SYMBOL(rproc_get_by_child);
/**
* rproc_report_crash() - rproc crash reporter function
* @rproc: remote processor
* @type: crash type
*
* This function must be called every time a crash is detected by the low-level
* drivers implementing a specific remoteproc. This should not be called from a
* non-remoteproc driver.
*
* This function can be called from atomic/interrupt context.
*/
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
if (!rproc) {
pr_err("NULL rproc pointer\n");
return;
}
dev_err(&rproc->dev, "crash detected in %s: type %s\n",
rproc->name, rproc_crash_to_string(type));
/* create a new task to handle the error */
schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);
static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
void *ptr)
{
unsigned int longest = 0;
struct rproc *rproc;
unsigned int d;
rcu_read_lock();
list_for_each_entry_rcu(rproc, &rproc_list, node) {
if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
continue;
d = rproc->ops->panic(rproc);
longest = max(longest, d);
}
rcu_read_unlock();
/*
* Delay for the longest requested duration before returning. This can
* be used by the remoteproc drivers to give the remote processor time
* to perform any requested operations (such as flush caches), when
* it's not possible to signal the Linux side due to the panic.
*/
mdelay(longest);
return NOTIFY_DONE;
}
static void __init rproc_init_panic(void)
{
rproc_panic_nb.notifier_call = rproc_panic_handler;
atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
}
static void __exit rproc_exit_panic(void)
{
atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
}
static int __init remoteproc_init(void)
{
rproc_init_sysfs();
rproc_init_debugfs();
rproc_init_panic();
return 0;
}
subsys_initcall(remoteproc_init);
static void __exit remoteproc_exit(void)
{
ida_destroy(&rproc_dev_index);
rproc_exit_panic();
rproc_exit_debugfs();
rproc_exit_sysfs();
}
module_exit(remoteproc_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");