// SPDX-License-Identifier: GPL-2.0
/*
* NVMe I/O command implementation.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/blkdev.h>
#include <linux/blk-integrity.h>
#include <linux/module.h>
#include "nvmet.h"
void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
{
const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
/* Number of logical blocks per physical block. */
const u32 lpp = ql->physical_block_size / ql->logical_block_size;
/* Logical blocks per physical block, 0's based. */
const __le16 lpp0b = to0based(lpp);
/*
* For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
* NAWUPF, and NACWU are defined for this namespace and should be
* used by the host for this namespace instead of the AWUN, AWUPF,
* and ACWU fields in the Identify Controller data structure. If
* any of these fields are zero that means that the corresponding
* field from the identify controller data structure should be used.
*/
id->nsfeat |= 1 << 1;
id->nawun = lpp0b;
id->nawupf = lpp0b;
id->nacwu = lpp0b;
/*
* Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
* NOWS are defined for this namespace and should be used by
* the host for I/O optimization.
*/
id->nsfeat |= 1 << 4;
/* NPWG = Namespace Preferred Write Granularity. 0's based */
id->npwg = lpp0b;
/* NPWA = Namespace Preferred Write Alignment. 0's based */
id->npwa = id->npwg;
/* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
/* NPDG = Namespace Preferred Deallocate Alignment */
id->npda = id->npdg;
/* NOWS = Namespace Optimal Write Size */
id->nows = to0based(ql->io_opt / ql->logical_block_size);
}
void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
{
if (ns->bdev) {
blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
ns->bdev = NULL;
}
}
static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
{
struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
if (bi) {
ns->metadata_size = bi->tuple_size;
if (bi->profile == &t10_pi_type1_crc)
ns->pi_type = NVME_NS_DPS_PI_TYPE1;
else if (bi->profile == &t10_pi_type3_crc)
ns->pi_type = NVME_NS_DPS_PI_TYPE3;
else
/* Unsupported metadata type */
ns->metadata_size = 0;
}
}
int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
{
int ret;
ns->bdev = blkdev_get_by_path(ns->device_path,
FMODE_READ | FMODE_WRITE, NULL);
if (IS_ERR(ns->bdev)) {
ret = PTR_ERR(ns->bdev);
if (ret != -ENOTBLK) {
pr_err("failed to open block device %s: (%ld)\n",
ns->device_path, PTR_ERR(ns->bdev));
}
ns->bdev = NULL;
return ret;
}
ns->size = bdev_nr_bytes(ns->bdev);
ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
ns->pi_type = 0;
ns->metadata_size = 0;
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
nvmet_bdev_ns_enable_integrity(ns);
if (bdev_is_zoned(ns->bdev)) {
if (!nvmet_bdev_zns_enable(ns)) {
nvmet_bdev_ns_disable(ns);
return -EINVAL;
}
ns->csi = NVME_CSI_ZNS;
}
return 0;
}
void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
{
ns->size = bdev_nr_bytes(ns->bdev);
}
u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
{
u16 status = NVME_SC_SUCCESS;
if (likely(blk_sts == BLK_STS_OK))
return status;
/*
* Right now there exists M : 1 mapping between block layer error
* to the NVMe status code (see nvme_error_status()). For consistency,
* when we reverse map we use most appropriate NVMe Status code from
* the group of the NVMe staus codes used in the nvme_error_status().
*/
switch (blk_sts) {
case BLK_STS_NOSPC:
status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
req->error_loc = offsetof(struct nvme_rw_command, length);
break;
case BLK_STS_TARGET:
status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
req->error_loc = offsetof(struct nvme_rw_command, slba);
break;
case BLK_STS_NOTSUPP:
req->error_loc = offsetof(struct nvme_common_command, opcode);
switch (req->cmd->common.opcode) {
case nvme_cmd_dsm:
case nvme_cmd_write_zeroes:
status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
break;
default:
status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
}
break;
case BLK_STS_MEDIUM:
status = NVME_SC_ACCESS_DENIED;
req->error_loc = offsetof(struct nvme_rw_command, nsid);
break;
case BLK_STS_IOERR:
default:
status = NVME_SC_INTERNAL | NVME_SC_DNR;
req->error_loc = offsetof(struct nvme_common_command, opcode);
}
switch (req->cmd->common.opcode) {
case nvme_cmd_read:
case nvme_cmd_write:
req->error_slba = le64_to_cpu(req->cmd->rw.slba);
break;
case nvme_cmd_write_zeroes:
req->error_slba =
le64_to_cpu(req->cmd->write_zeroes.slba);
break;
default:
req->error_slba = 0;
}
return status;
}
static void nvmet_bio_done(struct bio *bio)
{
struct nvmet_req *req = bio->bi_private;
nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
nvmet_req_bio_put(req, bio);
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
struct sg_mapping_iter *miter)
{
struct blk_integrity *bi;
struct bio_integrity_payload *bip;
int rc;
size_t resid, len;
bi = bdev_get_integrity(req->ns->bdev);
if (unlikely(!bi)) {
pr_err("Unable to locate bio_integrity\n");
return -ENODEV;
}
bip = bio_integrity_alloc(bio, GFP_NOIO,
bio_max_segs(req->metadata_sg_cnt));
if (IS_ERR(bip)) {
pr_err("Unable to allocate bio_integrity_payload\n");
return PTR_ERR(bip);
}
bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
/* virtual start sector must be in integrity interval units */
bip_set_seed(bip, bio->bi_iter.bi_sector >>
(bi->interval_exp - SECTOR_SHIFT));
resid = bip->bip_iter.bi_size;
while (resid > 0 && sg_miter_next(miter)) {
len = min_t(size_t, miter->length, resid);
rc = bio_integrity_add_page(bio, miter->page, len,
offset_in_page(miter->addr));
if (unlikely(rc != len)) {
pr_err("bio_integrity_add_page() failed; %d\n", rc);
sg_miter_stop(miter);
return -ENOMEM;
}
resid -= len;
if (len < miter->length)
miter->consumed -= miter->length - len;
}
sg_miter_stop(miter);
return 0;
}
#else
static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
struct sg_mapping_iter *miter)
{
return -EINVAL;
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
static void nvmet_bdev_execute_rw(struct nvmet_req *req)
{
unsigned int sg_cnt = req->sg_cnt;
struct bio *bio;
struct scatterlist *sg;
struct blk_plug plug;
sector_t sector;
int op, i, rc;
struct sg_mapping_iter prot_miter;
unsigned int iter_flags;
unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
if (!nvmet_check_transfer_len(req, total_len))
return;
if (!req->sg_cnt) {
nvmet_req_complete(req, 0);
return;
}
if (req->cmd->rw.opcode == nvme_cmd_write) {
op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
op |= REQ_FUA;
iter_flags = SG_MITER_TO_SG;
} else {
op = REQ_OP_READ;
iter_flags = SG_MITER_FROM_SG;
}
if (is_pci_p2pdma_page(sg_page(req->sg)))
op |= REQ_NOMERGE;
sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
if (nvmet_use_inline_bvec(req)) {
bio = &req->b.inline_bio;
bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
bio_set_dev(bio, req->ns->bdev);
bio->bi_opf = op;
} else {
bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), op,
GFP_KERNEL);
}
bio->bi_iter.bi_sector = sector;
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
blk_start_plug(&plug);
if (req->metadata_len)
sg_miter_start(&prot_miter, req->metadata_sg,
req->metadata_sg_cnt, iter_flags);
for_each_sg(req->sg, sg, req->sg_cnt, i) {
while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
!= sg->length) {
struct bio *prev = bio;
if (req->metadata_len) {
rc = nvmet_bdev_alloc_bip(req, bio,
&prot_miter);
if (unlikely(rc)) {
bio_io_error(bio);
return;
}
}
bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
op, GFP_KERNEL);
bio->bi_iter.bi_sector = sector;
bio_chain(bio, prev);
submit_bio(prev);
}
sector += sg->length >> 9;
sg_cnt--;
}
if (req->metadata_len) {
rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
if (unlikely(rc)) {
bio_io_error(bio);
return;
}
}
submit_bio(bio);
blk_finish_plug(&plug);
}
static void nvmet_bdev_execute_flush(struct nvmet_req *req)
{
struct bio *bio = &req->b.inline_bio;
if (!nvmet_check_transfer_len(req, 0))
return;
bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
bio_set_dev(bio, req->ns->bdev);
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
submit_bio(bio);
}
u16 nvmet_bdev_flush(struct nvmet_req *req)
{
if (blkdev_issue_flush(req->ns->bdev))
return NVME_SC_INTERNAL | NVME_SC_DNR;
return 0;
}
static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
struct nvme_dsm_range *range, struct bio **bio)
{
struct nvmet_ns *ns = req->ns;
int ret;
ret = __blkdev_issue_discard(ns->bdev,
nvmet_lba_to_sect(ns, range->slba),
le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
GFP_KERNEL, 0, bio);
if (ret && ret != -EOPNOTSUPP) {
req->error_slba = le64_to_cpu(range->slba);
return errno_to_nvme_status(req, ret);
}
return NVME_SC_SUCCESS;
}
static void nvmet_bdev_execute_discard(struct nvmet_req *req)
{
struct nvme_dsm_range range;
struct bio *bio = NULL;
int i;
u16 status;
for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
sizeof(range));
if (status)
break;
status = nvmet_bdev_discard_range(req, &range, &bio);
if (status)
break;
}
if (bio) {
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
if (status)
bio_io_error(bio);
else
submit_bio(bio);
} else {
nvmet_req_complete(req, status);
}
}
static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
{
if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
return;
switch (le32_to_cpu(req->cmd->dsm.attributes)) {
case NVME_DSMGMT_AD:
nvmet_bdev_execute_discard(req);
return;
case NVME_DSMGMT_IDR:
case NVME_DSMGMT_IDW:
default:
/* Not supported yet */
nvmet_req_complete(req, 0);
return;
}
}
static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
{
struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
struct bio *bio = NULL;
sector_t sector;
sector_t nr_sector;
int ret;
if (!nvmet_check_transfer_len(req, 0))
return;
sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
(req->ns->blksize_shift - 9));
ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
GFP_KERNEL, &bio, 0);
if (bio) {
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
submit_bio(bio);
} else {
nvmet_req_complete(req, errno_to_nvme_status(req, ret));
}
}
u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
{
switch (req->cmd->common.opcode) {
case nvme_cmd_read:
case nvme_cmd_write:
req->execute = nvmet_bdev_execute_rw;
if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
req->metadata_len = nvmet_rw_metadata_len(req);
return 0;
case nvme_cmd_flush:
req->execute = nvmet_bdev_execute_flush;
return 0;
case nvme_cmd_dsm:
req->execute = nvmet_bdev_execute_dsm;
return 0;
case nvme_cmd_write_zeroes:
req->execute = nvmet_bdev_execute_write_zeroes;
return 0;
default:
return nvmet_report_invalid_opcode(req);
}
}