// SPDX-License-Identifier: GPL-2.0
/*
* Texas Instruments N-Port Ethernet Switch Address Lookup Engine
*
* Copyright (C) 2012 Texas Instruments
*
*/
#include <linux/bitmap.h>
#include <linux/if_vlan.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/stat.h>
#include <linux/sysfs.h>
#include <linux/etherdevice.h>
#include "cpsw_ale.h"
#define BITMASK(bits) (BIT(bits) - 1)
#define ALE_VERSION_MAJOR(rev, mask) (((rev) >> 8) & (mask))
#define ALE_VERSION_MINOR(rev) (rev & 0xff)
#define ALE_VERSION_1R3 0x0103
#define ALE_VERSION_1R4 0x0104
/* ALE Registers */
#define ALE_IDVER 0x00
#define ALE_STATUS 0x04
#define ALE_CONTROL 0x08
#define ALE_PRESCALE 0x10
#define ALE_AGING_TIMER 0x14
#define ALE_UNKNOWNVLAN 0x18
#define ALE_TABLE_CONTROL 0x20
#define ALE_TABLE 0x34
#define ALE_PORTCTL 0x40
/* ALE NetCP NU switch specific Registers */
#define ALE_UNKNOWNVLAN_MEMBER 0x90
#define ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD 0x94
#define ALE_UNKNOWNVLAN_REG_MCAST_FLOOD 0x98
#define ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS 0x9C
#define ALE_VLAN_MASK_MUX(reg) (0xc0 + (0x4 * (reg)))
#define ALE_POLICER_PORT_OUI 0x100
#define ALE_POLICER_DA_SA 0x104
#define ALE_POLICER_VLAN 0x108
#define ALE_POLICER_ETHERTYPE_IPSA 0x10c
#define ALE_POLICER_IPDA 0x110
#define ALE_POLICER_PIR 0x118
#define ALE_POLICER_CIR 0x11c
#define ALE_POLICER_TBL_CTL 0x120
#define ALE_POLICER_CTL 0x124
#define ALE_POLICER_TEST_CTL 0x128
#define ALE_POLICER_HIT_STATUS 0x12c
#define ALE_THREAD_DEF 0x134
#define ALE_THREAD_CTL 0x138
#define ALE_THREAD_VAL 0x13c
#define ALE_POLICER_TBL_WRITE_ENABLE BIT(31)
#define ALE_POLICER_TBL_INDEX_MASK GENMASK(4, 0)
#define AM65_CPSW_ALE_THREAD_DEF_REG 0x134
/* ALE_AGING_TIMER */
#define ALE_AGING_TIMER_MASK GENMASK(23, 0)
#define ALE_RATE_LIMIT_MIN_PPS 1000
/**
* struct ale_entry_fld - The ALE tbl entry field description
* @start_bit: field start bit
* @num_bits: field bit length
* @flags: field flags
*/
struct ale_entry_fld {
u8 start_bit;
u8 num_bits;
u8 flags;
};
enum {
CPSW_ALE_F_STATUS_REG = BIT(0), /* Status register present */
CPSW_ALE_F_HW_AUTOAGING = BIT(1), /* HW auto aging */
CPSW_ALE_F_COUNT
};
/**
* struct cpsw_ale_dev_id - The ALE version/SoC specific configuration
* @dev_id: ALE version/SoC id
* @features: features supported by ALE
* @tbl_entries: number of ALE entries
* @reg_fields: pointer to array of register field configuration
* @nu_switch_ale: NU Switch ALE
* @vlan_entry_tbl: ALE vlan entry fields description tbl
*/
struct cpsw_ale_dev_id {
const char *dev_id;
u32 features;
u32 tbl_entries;
const struct reg_field *reg_fields;
bool nu_switch_ale;
const struct ale_entry_fld *vlan_entry_tbl;
};
#define ALE_TABLE_WRITE BIT(31)
#define ALE_TYPE_FREE 0
#define ALE_TYPE_ADDR 1
#define ALE_TYPE_VLAN 2
#define ALE_TYPE_VLAN_ADDR 3
#define ALE_UCAST_PERSISTANT 0
#define ALE_UCAST_UNTOUCHED 1
#define ALE_UCAST_OUI 2
#define ALE_UCAST_TOUCHED 3
#define ALE_TABLE_SIZE_MULTIPLIER 1024
#define ALE_POLICER_SIZE_MULTIPLIER 8
static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
{
int idx, idx2;
u32 hi_val = 0;
idx = start / 32;
idx2 = (start + bits - 1) / 32;
/* Check if bits to be fetched exceed a word */
if (idx != idx2) {
idx2 = 2 - idx2; /* flip */
hi_val = ale_entry[idx2] << ((idx2 * 32) - start);
}
start -= idx * 32;
idx = 2 - idx; /* flip */
return (hi_val + (ale_entry[idx] >> start)) & BITMASK(bits);
}
static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
u32 value)
{
int idx, idx2;
value &= BITMASK(bits);
idx = start / 32;
idx2 = (start + bits - 1) / 32;
/* Check if bits to be set exceed a word */
if (idx != idx2) {
idx2 = 2 - idx2; /* flip */
ale_entry[idx2] &= ~(BITMASK(bits + start - (idx2 * 32)));
ale_entry[idx2] |= (value >> ((idx2 * 32) - start));
}
start -= idx * 32;
idx = 2 - idx; /* flip */
ale_entry[idx] &= ~(BITMASK(bits) << start);
ale_entry[idx] |= (value << start);
}
#define DEFINE_ALE_FIELD(name, start, bits) \
static inline int cpsw_ale_get_##name(u32 *ale_entry) \
{ \
return cpsw_ale_get_field(ale_entry, start, bits); \
} \
static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
{ \
cpsw_ale_set_field(ale_entry, start, bits, value); \
}
#define DEFINE_ALE_FIELD1(name, start) \
static inline int cpsw_ale_get_##name(u32 *ale_entry, u32 bits) \
{ \
return cpsw_ale_get_field(ale_entry, start, bits); \
} \
static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value, \
u32 bits) \
{ \
cpsw_ale_set_field(ale_entry, start, bits, value); \
}
enum {
ALE_ENT_VID_MEMBER_LIST = 0,
ALE_ENT_VID_UNREG_MCAST_MSK,
ALE_ENT_VID_REG_MCAST_MSK,
ALE_ENT_VID_FORCE_UNTAGGED_MSK,
ALE_ENT_VID_UNREG_MCAST_IDX,
ALE_ENT_VID_REG_MCAST_IDX,
ALE_ENT_VID_LAST,
};
#define ALE_FLD_ALLOWED BIT(0)
#define ALE_FLD_SIZE_PORT_MASK_BITS BIT(1)
#define ALE_FLD_SIZE_PORT_NUM_BITS BIT(2)
#define ALE_ENTRY_FLD(id, start, bits) \
[id] = { \
.start_bit = start, \
.num_bits = bits, \
.flags = ALE_FLD_ALLOWED, \
}
#define ALE_ENTRY_FLD_DYN_MSK_SIZE(id, start) \
[id] = { \
.start_bit = start, \
.num_bits = 0, \
.flags = ALE_FLD_ALLOWED | \
ALE_FLD_SIZE_PORT_MASK_BITS, \
}
/* dm814x, am3/am4/am5, k2hk */
static const struct ale_entry_fld vlan_entry_cpsw[ALE_ENT_VID_LAST] = {
ALE_ENTRY_FLD(ALE_ENT_VID_MEMBER_LIST, 0, 3),
ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_MSK, 8, 3),
ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_MSK, 16, 3),
ALE_ENTRY_FLD(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24, 3),
};
/* k2e/k2l, k3 am65/j721e cpsw2g */
static const struct ale_entry_fld vlan_entry_nu[ALE_ENT_VID_LAST] = {
ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_IDX, 20, 3),
ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_IDX, 44, 3),
};
/* K3 j721e/j7200 cpsw9g/5g, am64x cpsw3g */
static const struct ale_entry_fld vlan_entry_k3_cpswxg[] = {
ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_UNREG_MCAST_MSK, 12),
ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_REG_MCAST_MSK, 36),
};
DEFINE_ALE_FIELD(entry_type, 60, 2)
DEFINE_ALE_FIELD(vlan_id, 48, 12)
DEFINE_ALE_FIELD(mcast_state, 62, 2)
DEFINE_ALE_FIELD1(port_mask, 66)
DEFINE_ALE_FIELD(super, 65, 1)
DEFINE_ALE_FIELD(ucast_type, 62, 2)
DEFINE_ALE_FIELD1(port_num, 66)
DEFINE_ALE_FIELD(blocked, 65, 1)
DEFINE_ALE_FIELD(secure, 64, 1)
DEFINE_ALE_FIELD(mcast, 40, 1)
#define NU_VLAN_UNREG_MCAST_IDX 1
static int cpsw_ale_entry_get_fld(struct cpsw_ale *ale,
u32 *ale_entry,
const struct ale_entry_fld *entry_tbl,
int fld_id)
{
const struct ale_entry_fld *entry_fld;
u32 bits;
if (!ale || !ale_entry)
return -EINVAL;
entry_fld = &entry_tbl[fld_id];
if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
dev_err(ale->params.dev, "get: wrong ale fld id %d\n", fld_id);
return -ENOENT;
}
bits = entry_fld->num_bits;
if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
bits = ale->port_mask_bits;
return cpsw_ale_get_field(ale_entry, entry_fld->start_bit, bits);
}
static void cpsw_ale_entry_set_fld(struct cpsw_ale *ale,
u32 *ale_entry,
const struct ale_entry_fld *entry_tbl,
int fld_id,
u32 value)
{
const struct ale_entry_fld *entry_fld;
u32 bits;
if (!ale || !ale_entry)
return;
entry_fld = &entry_tbl[fld_id];
if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
dev_err(ale->params.dev, "set: wrong ale fld id %d\n", fld_id);
return;
}
bits = entry_fld->num_bits;
if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
bits = ale->port_mask_bits;
cpsw_ale_set_field(ale_entry, entry_fld->start_bit, bits, value);
}
static int cpsw_ale_vlan_get_fld(struct cpsw_ale *ale,
u32 *ale_entry,
int fld_id)
{
return cpsw_ale_entry_get_fld(ale, ale_entry,
ale->vlan_entry_tbl, fld_id);
}
static void cpsw_ale_vlan_set_fld(struct cpsw_ale *ale,
u32 *ale_entry,
int fld_id,
u32 value)
{
cpsw_ale_entry_set_fld(ale, ale_entry,
ale->vlan_entry_tbl, fld_id, value);
}
/* The MAC address field in the ALE entry cannot be macroized as above */
static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
}
static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
}
static int cpsw_ale_read(struct cpsw_ale *ale, int idx, u32 *ale_entry)
{
int i;
WARN_ON(idx > ale->params.ale_entries);
writel_relaxed(idx, ale->params.ale_regs + ALE_TABLE_CONTROL);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
ale_entry[i] = readl_relaxed(ale->params.ale_regs +
ALE_TABLE + 4 * i);
return idx;
}
static int cpsw_ale_write(struct cpsw_ale *ale, int idx, u32 *ale_entry)
{
int i;
WARN_ON(idx > ale->params.ale_entries);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
writel_relaxed(ale_entry[i], ale->params.ale_regs +
ALE_TABLE + 4 * i);
writel_relaxed(idx | ALE_TABLE_WRITE, ale->params.ale_regs +
ALE_TABLE_CONTROL);
return idx;
}
static int cpsw_ale_match_addr(struct cpsw_ale *ale, const u8 *addr, u16 vid)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->params.ale_entries; idx++) {
u8 entry_addr[6];
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_vlan_id(ale_entry) != vid)
continue;
cpsw_ale_get_addr(ale_entry, entry_addr);
if (ether_addr_equal(entry_addr, addr))
return idx;
}
return -ENOENT;
}
static int cpsw_ale_match_vlan(struct cpsw_ale *ale, u16 vid)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->params.ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_VLAN)
continue;
if (cpsw_ale_get_vlan_id(ale_entry) == vid)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_match_free(struct cpsw_ale *ale)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->params.ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type == ALE_TYPE_FREE)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_find_ageable(struct cpsw_ale *ale)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->params.ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_mcast(ale_entry))
continue;
type = cpsw_ale_get_ucast_type(ale_entry);
if (type != ALE_UCAST_PERSISTANT &&
type != ALE_UCAST_OUI)
return idx;
}
return -ENOENT;
}
static void cpsw_ale_flush_mcast(struct cpsw_ale *ale, u32 *ale_entry,
int port_mask)
{
int mask;
mask = cpsw_ale_get_port_mask(ale_entry,
ale->port_mask_bits);
if ((mask & port_mask) == 0)
return; /* ports dont intersect, not interested */
mask &= ~port_mask;
/* free if only remaining port is host port */
if (mask)
cpsw_ale_set_port_mask(ale_entry, mask,
ale->port_mask_bits);
else
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
}
int cpsw_ale_flush_multicast(struct cpsw_ale *ale, int port_mask, int vid)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int ret, idx;
for (idx = 0; idx < ale->params.ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
ret = cpsw_ale_get_entry_type(ale_entry);
if (ret != ALE_TYPE_ADDR && ret != ALE_TYPE_VLAN_ADDR)
continue;
/* if vid passed is -1 then remove all multicast entry from
* the table irrespective of vlan id, if a valid vlan id is
* passed then remove only multicast added to that vlan id.
* if vlan id doesn't match then move on to next entry.
*/
if (vid != -1 && cpsw_ale_get_vlan_id(ale_entry) != vid)
continue;
if (cpsw_ale_get_mcast(ale_entry)) {
u8 addr[6];
if (cpsw_ale_get_super(ale_entry))
continue;
cpsw_ale_get_addr(ale_entry, addr);
if (!is_broadcast_ether_addr(addr))
cpsw_ale_flush_mcast(ale, ale_entry, port_mask);
}
cpsw_ale_write(ale, idx, ale_entry);
}
return 0;
}
static inline void cpsw_ale_set_vlan_entry_type(u32 *ale_entry,
int flags, u16 vid)
{
if (flags & ALE_VLAN) {
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN_ADDR);
cpsw_ale_set_vlan_id(ale_entry, vid);
} else {
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
}
}
int cpsw_ale_add_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
int flags, u16 vid)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
cpsw_ale_set_port_num(ale_entry, port, ale->port_num_bits);
idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
if (idx < 0)
idx = cpsw_ale_match_free(ale);
if (idx < 0)
idx = cpsw_ale_find_ageable(ale);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_del_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
int flags, u16 vid)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
if (idx < 0)
return -ENOENT;
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_add_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
int flags, u16 vid, int mcast_state)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx, mask;
idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
if (idx >= 0)
cpsw_ale_read(ale, idx, ale_entry);
cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_super(ale_entry, (flags & ALE_SUPER) ? 1 : 0);
cpsw_ale_set_mcast_state(ale_entry, mcast_state);
mask = cpsw_ale_get_port_mask(ale_entry,
ale->port_mask_bits);
port_mask |= mask;
cpsw_ale_set_port_mask(ale_entry, port_mask,
ale->port_mask_bits);
if (idx < 0)
idx = cpsw_ale_match_free(ale);
if (idx < 0)
idx = cpsw_ale_find_ageable(ale);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_del_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
int flags, u16 vid)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int mcast_members = 0;
int idx;
idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
if (idx < 0)
return -ENOENT;
cpsw_ale_read(ale, idx, ale_entry);
if (port_mask) {
mcast_members = cpsw_ale_get_port_mask(ale_entry,
ale->port_mask_bits);
mcast_members &= ~port_mask;
}
if (mcast_members)
cpsw_ale_set_port_mask(ale_entry, mcast_members,
ale->port_mask_bits);
else
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
/* ALE NetCP NU switch specific vlan functions */
static void cpsw_ale_set_vlan_mcast(struct cpsw_ale *ale, u32 *ale_entry,
int reg_mcast, int unreg_mcast)
{
int idx;
/* Set VLAN registered multicast flood mask */
idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_REG_MCAST_IDX);
writel(reg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
/* Set VLAN unregistered multicast flood mask */
idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_IDX);
writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
}
static void cpsw_ale_set_vlan_untag(struct cpsw_ale *ale, u32 *ale_entry,
u16 vid, int untag_mask)
{
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_FORCE_UNTAGGED_MSK,
untag_mask);
if (untag_mask & ALE_PORT_HOST)
bitmap_set(ale->p0_untag_vid_mask, vid, 1);
else
bitmap_clear(ale->p0_untag_vid_mask, vid, 1);
}
int cpsw_ale_add_vlan(struct cpsw_ale *ale, u16 vid, int port_mask, int untag,
int reg_mcast, int unreg_mcast)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
idx = cpsw_ale_match_vlan(ale, vid);
if (idx >= 0)
cpsw_ale_read(ale, idx, ale_entry);
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN);
cpsw_ale_set_vlan_id(ale_entry, vid);
cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
if (!ale->params.nu_switch_ale) {
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
} else {
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_IDX,
NU_VLAN_UNREG_MCAST_IDX);
cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast, unreg_mcast);
}
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_MEMBER_LIST, port_mask);
if (idx < 0)
idx = cpsw_ale_match_free(ale);
if (idx < 0)
idx = cpsw_ale_find_ageable(ale);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
static void cpsw_ale_vlan_del_modify_int(struct cpsw_ale *ale, u32 *ale_entry,
u16 vid, int port_mask)
{
int reg_mcast, unreg_mcast;
int members, untag;
members = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_MEMBER_LIST);
members &= ~port_mask;
if (!members) {
cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
return;
}
untag = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_FORCE_UNTAGGED_MSK);
reg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_REG_MCAST_MSK);
unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK);
untag &= members;
reg_mcast &= members;
unreg_mcast &= members;
cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
if (!ale->params.nu_switch_ale) {
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
} else {
cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast,
unreg_mcast);
}
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_MEMBER_LIST, members);
}
int cpsw_ale_vlan_del_modify(struct cpsw_ale *ale, u16 vid, int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
idx = cpsw_ale_match_vlan(ale, vid);
if (idx < 0)
return -ENOENT;
cpsw_ale_read(ale, idx, ale_entry);
cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_del_vlan(struct cpsw_ale *ale, u16 vid, int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int members, idx;
idx = cpsw_ale_match_vlan(ale, vid);
if (idx < 0)
return -ENOENT;
cpsw_ale_read(ale, idx, ale_entry);
/* if !port_mask - force remove VLAN (legacy).
* Check if there are other VLAN members ports
* if no - remove VLAN.
* if yes it means same VLAN was added to >1 port in multi port mode, so
* remove port_mask ports from VLAN ALE entry excluding Host port.
*/
members = cpsw_ale_vlan_get_fld(ale, ale_entry, ALE_ENT_VID_MEMBER_LIST);
members &= ~port_mask;
if (!port_mask || !members) {
/* last port or force remove - remove VLAN */
cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
} else {
port_mask &= ~ALE_PORT_HOST;
cpsw_ale_vlan_del_modify_int(ale, ale_entry, vid, port_mask);
}
cpsw_ale_write(ale, idx, ale_entry);
return 0;
}
int cpsw_ale_vlan_add_modify(struct cpsw_ale *ale, u16 vid, int port_mask,
int untag_mask, int reg_mask, int unreg_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int reg_mcast_members, unreg_mcast_members;
int vlan_members, untag_members;
int idx, ret = 0;
idx = cpsw_ale_match_vlan(ale, vid);
if (idx >= 0)
cpsw_ale_read(ale, idx, ale_entry);
vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_MEMBER_LIST);
reg_mcast_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_REG_MCAST_MSK);
unreg_mcast_members =
cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK);
untag_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_FORCE_UNTAGGED_MSK);
vlan_members |= port_mask;
untag_members = (untag_members & ~port_mask) | untag_mask;
reg_mcast_members = (reg_mcast_members & ~port_mask) | reg_mask;
unreg_mcast_members = (unreg_mcast_members & ~port_mask) | unreg_mask;
ret = cpsw_ale_add_vlan(ale, vid, vlan_members, untag_members,
reg_mcast_members, unreg_mcast_members);
if (ret) {
dev_err(ale->params.dev, "Unable to add vlan\n");
return ret;
}
dev_dbg(ale->params.dev, "port mask 0x%x untag 0x%x\n", vlan_members,
untag_mask);
return ret;
}
void cpsw_ale_set_unreg_mcast(struct cpsw_ale *ale, int unreg_mcast_mask,
bool add)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int unreg_members = 0;
int type, idx;
for (idx = 0; idx < ale->params.ale_entries; idx++) {
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_VLAN)
continue;
unreg_members =
cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK);
if (add)
unreg_members |= unreg_mcast_mask;
else
unreg_members &= ~unreg_mcast_mask;
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK,
unreg_members);
cpsw_ale_write(ale, idx, ale_entry);
}
}
static void cpsw_ale_vlan_set_unreg_mcast(struct cpsw_ale *ale, u32 *ale_entry,
int allmulti)
{
int unreg_mcast;
unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK);
if (allmulti)
unreg_mcast |= ALE_PORT_HOST;
else
unreg_mcast &= ~ALE_PORT_HOST;
cpsw_ale_vlan_set_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
}
static void
cpsw_ale_vlan_set_unreg_mcast_idx(struct cpsw_ale *ale, u32 *ale_entry,
int allmulti)
{
int unreg_mcast;
int idx;
idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_UNREG_MCAST_IDX);
unreg_mcast = readl(ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
if (allmulti)
unreg_mcast |= ALE_PORT_HOST;
else
unreg_mcast &= ~ALE_PORT_HOST;
writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
}
void cpsw_ale_set_allmulti(struct cpsw_ale *ale, int allmulti, int port)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < ale->params.ale_entries; idx++) {
int vlan_members;
cpsw_ale_read(ale, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_VLAN)
continue;
vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
ALE_ENT_VID_MEMBER_LIST);
if (port != -1 && !(vlan_members & BIT(port)))
continue;
if (!ale->params.nu_switch_ale)
cpsw_ale_vlan_set_unreg_mcast(ale, ale_entry, allmulti);
else
cpsw_ale_vlan_set_unreg_mcast_idx(ale, ale_entry,
allmulti);
cpsw_ale_write(ale, idx, ale_entry);
}
}
struct ale_control_info {
const char *name;
int offset, port_offset;
int shift, port_shift;
int bits;
};
static struct ale_control_info ale_controls[ALE_NUM_CONTROLS] = {
[ALE_ENABLE] = {
.name = "enable",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 31,
.port_shift = 0,
.bits = 1,
},
[ALE_CLEAR] = {
.name = "clear",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 30,
.port_shift = 0,
.bits = 1,
},
[ALE_AGEOUT] = {
.name = "ageout",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 29,
.port_shift = 0,
.bits = 1,
},
[ALE_P0_UNI_FLOOD] = {
.name = "port0_unicast_flood",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 8,
.port_shift = 0,
.bits = 1,
},
[ALE_VLAN_NOLEARN] = {
.name = "vlan_nolearn",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 7,
.port_shift = 0,
.bits = 1,
},
[ALE_NO_PORT_VLAN] = {
.name = "no_port_vlan",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 6,
.port_shift = 0,
.bits = 1,
},
[ALE_OUI_DENY] = {
.name = "oui_deny",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 5,
.port_shift = 0,
.bits = 1,
},
[ALE_BYPASS] = {
.name = "bypass",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 4,
.port_shift = 0,
.bits = 1,
},
[ALE_RATE_LIMIT_TX] = {
.name = "rate_limit_tx",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 3,
.port_shift = 0,
.bits = 1,
},
[ALE_VLAN_AWARE] = {
.name = "vlan_aware",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 2,
.port_shift = 0,
.bits = 1,
},
[ALE_AUTH_ENABLE] = {
.name = "auth_enable",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 1,
.port_shift = 0,
.bits = 1,
},
[ALE_RATE_LIMIT] = {
.name = "rate_limit",
.offset = ALE_CONTROL,
.port_offset = 0,
.shift = 0,
.port_shift = 0,
.bits = 1,
},
[ALE_PORT_STATE] = {
.name = "port_state",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 0,
.port_shift = 0,
.bits = 2,
},
[ALE_PORT_DROP_UNTAGGED] = {
.name = "drop_untagged",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 2,
.port_shift = 0,
.bits = 1,
},
[ALE_PORT_DROP_UNKNOWN_VLAN] = {
.name = "drop_unknown",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 3,
.port_shift = 0,
.bits = 1,
},
[ALE_PORT_NOLEARN] = {
.name = "nolearn",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 4,
.port_shift = 0,
.bits = 1,
},
[ALE_PORT_NO_SA_UPDATE] = {
.name = "no_source_update",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 5,
.port_shift = 0,
.bits = 1,
},
[ALE_PORT_MACONLY] = {
.name = "mac_only_port_mode",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 11,
.port_shift = 0,
.bits = 1,
},
[ALE_PORT_MACONLY_CAF] = {
.name = "mac_only_port_caf",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 13,
.port_shift = 0,
.bits = 1,
},
[ALE_PORT_MCAST_LIMIT] = {
.name = "mcast_limit",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 16,
.port_shift = 0,
.bits = 8,
},
[ALE_PORT_BCAST_LIMIT] = {
.name = "bcast_limit",
.offset = ALE_PORTCTL,
.port_offset = 4,
.shift = 24,
.port_shift = 0,
.bits = 8,
},
[ALE_PORT_UNKNOWN_VLAN_MEMBER] = {
.name = "unknown_vlan_member",
.offset = ALE_UNKNOWNVLAN,
.port_offset = 0,
.shift = 0,
.port_shift = 0,
.bits = 6,
},
[ALE_PORT_UNKNOWN_MCAST_FLOOD] = {
.name = "unknown_mcast_flood",
.offset = ALE_UNKNOWNVLAN,
.port_offset = 0,
.shift = 8,
.port_shift = 0,
.bits = 6,
},
[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD] = {
.name = "unknown_reg_flood",
.offset = ALE_UNKNOWNVLAN,
.port_offset = 0,
.shift = 16,
.port_shift = 0,
.bits = 6,
},
[ALE_PORT_UNTAGGED_EGRESS] = {
.name = "untagged_egress",
.offset = ALE_UNKNOWNVLAN,
.port_offset = 0,
.shift = 24,
.port_shift = 0,
.bits = 6,
},
[ALE_DEFAULT_THREAD_ID] = {
.name = "default_thread_id",
.offset = AM65_CPSW_ALE_THREAD_DEF_REG,
.port_offset = 0,
.shift = 0,
.port_shift = 0,
.bits = 6,
},
[ALE_DEFAULT_THREAD_ENABLE] = {
.name = "default_thread_id_enable",
.offset = AM65_CPSW_ALE_THREAD_DEF_REG,
.port_offset = 0,
.shift = 15,
.port_shift = 0,
.bits = 1,
},
};
int cpsw_ale_control_set(struct cpsw_ale *ale, int port, int control,
int value)
{
const struct ale_control_info *info;
int offset, shift;
u32 tmp, mask;
if (control < 0 || control >= ARRAY_SIZE(ale_controls))
return -EINVAL;
info = &ale_controls[control];
if (info->port_offset == 0 && info->port_shift == 0)
port = 0; /* global, port is a dont care */
if (port < 0 || port >= ale->params.ale_ports)
return -EINVAL;
mask = BITMASK(info->bits);
if (value & ~mask)
return -EINVAL;
offset = info->offset + (port * info->port_offset);
shift = info->shift + (port * info->port_shift);
tmp = readl_relaxed(ale->params.ale_regs + offset);
tmp = (tmp & ~(mask << shift)) | (value << shift);
writel_relaxed(tmp, ale->params.ale_regs + offset);
return 0;
}
int cpsw_ale_control_get(struct cpsw_ale *ale, int port, int control)
{
const struct ale_control_info *info;
int offset, shift;
u32 tmp;
if (control < 0 || control >= ARRAY_SIZE(ale_controls))
return -EINVAL;
info = &ale_controls[control];
if (info->port_offset == 0 && info->port_shift == 0)
port = 0; /* global, port is a dont care */
if (port < 0 || port >= ale->params.ale_ports)
return -EINVAL;
offset = info->offset + (port * info->port_offset);
shift = info->shift + (port * info->port_shift);
tmp = readl_relaxed(ale->params.ale_regs + offset) >> shift;
return tmp & BITMASK(info->bits);
}
int cpsw_ale_rx_ratelimit_mc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
{
int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
if (ratelimit_pps && !val) {
dev_err(ale->params.dev, "ALE MC port:%d ratelimit min value 1000pps\n", port);
return -EINVAL;
}
if (remainder)
dev_info(ale->params.dev, "ALE port:%d MC ratelimit set to %dpps (requested %d)\n",
port, ratelimit_pps - remainder, ratelimit_pps);
cpsw_ale_control_set(ale, port, ALE_PORT_MCAST_LIMIT, val);
dev_dbg(ale->params.dev, "ALE port:%d MC ratelimit set %d\n",
port, val * ALE_RATE_LIMIT_MIN_PPS);
return 0;
}
int cpsw_ale_rx_ratelimit_bc(struct cpsw_ale *ale, int port, unsigned int ratelimit_pps)
{
int val = ratelimit_pps / ALE_RATE_LIMIT_MIN_PPS;
u32 remainder = ratelimit_pps % ALE_RATE_LIMIT_MIN_PPS;
if (ratelimit_pps && !val) {
dev_err(ale->params.dev, "ALE port:%d BC ratelimit min value 1000pps\n", port);
return -EINVAL;
}
if (remainder)
dev_info(ale->params.dev, "ALE port:%d BC ratelimit set to %dpps (requested %d)\n",
port, ratelimit_pps - remainder, ratelimit_pps);
cpsw_ale_control_set(ale, port, ALE_PORT_BCAST_LIMIT, val);
dev_dbg(ale->params.dev, "ALE port:%d BC ratelimit set %d\n",
port, val * ALE_RATE_LIMIT_MIN_PPS);
return 0;
}
static void cpsw_ale_timer(struct timer_list *t)
{
struct cpsw_ale *ale = from_timer(ale, t, timer);
cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
if (ale->ageout) {
ale->timer.expires = jiffies + ale->ageout;
add_timer(&ale->timer);
}
}
static void cpsw_ale_hw_aging_timer_start(struct cpsw_ale *ale)
{
u32 aging_timer;
aging_timer = ale->params.bus_freq / 1000000;
aging_timer *= ale->params.ale_ageout;
if (aging_timer & ~ALE_AGING_TIMER_MASK) {
aging_timer = ALE_AGING_TIMER_MASK;
dev_warn(ale->params.dev,
"ALE aging timer overflow, set to max\n");
}
writel(aging_timer, ale->params.ale_regs + ALE_AGING_TIMER);
}
static void cpsw_ale_hw_aging_timer_stop(struct cpsw_ale *ale)
{
writel(0, ale->params.ale_regs + ALE_AGING_TIMER);
}
static void cpsw_ale_aging_start(struct cpsw_ale *ale)
{
if (!ale->params.ale_ageout)
return;
if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
cpsw_ale_hw_aging_timer_start(ale);
return;
}
timer_setup(&ale->timer, cpsw_ale_timer, 0);
ale->timer.expires = jiffies + ale->ageout;
add_timer(&ale->timer);
}
static void cpsw_ale_aging_stop(struct cpsw_ale *ale)
{
if (!ale->params.ale_ageout)
return;
if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
cpsw_ale_hw_aging_timer_stop(ale);
return;
}
del_timer_sync(&ale->timer);
}
void cpsw_ale_start(struct cpsw_ale *ale)
{
unsigned long ale_prescale;
/* configure Broadcast and Multicast Rate Limit
* number_of_packets = (Fclk / ALE_PRESCALE) * port.BCAST/MCAST_LIMIT
* ALE_PRESCALE width is 19bit and min value 0x10
* port.BCAST/MCAST_LIMIT is 8bit
*
* For multi port configuration support the ALE_PRESCALE is configured to 1ms interval,
* which allows to configure port.BCAST/MCAST_LIMIT per port and achieve:
* min number_of_packets = 1000 when port.BCAST/MCAST_LIMIT = 1
* max number_of_packets = 1000 * 255 = 255000 when port.BCAST/MCAST_LIMIT = 0xFF
*/
ale_prescale = ale->params.bus_freq / ALE_RATE_LIMIT_MIN_PPS;
writel((u32)ale_prescale, ale->params.ale_regs + ALE_PRESCALE);
/* Allow MC/BC rate limiting globally.
* The actual Rate Limit cfg enabled per-port by port.BCAST/MCAST_LIMIT
*/
cpsw_ale_control_set(ale, 0, ALE_RATE_LIMIT, 1);
cpsw_ale_control_set(ale, 0, ALE_ENABLE, 1);
cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
cpsw_ale_aging_start(ale);
}
void cpsw_ale_stop(struct cpsw_ale *ale)
{
cpsw_ale_aging_stop(ale);
cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
cpsw_ale_control_set(ale, 0, ALE_ENABLE, 0);
}
static const struct reg_field ale_fields_cpsw[] = {
/* CPSW_ALE_IDVER_REG */
[MINOR_VER] = REG_FIELD(ALE_IDVER, 0, 7),
[MAJOR_VER] = REG_FIELD(ALE_IDVER, 8, 15),
};
static const struct reg_field ale_fields_cpsw_nu[] = {
/* CPSW_ALE_IDVER_REG */
[MINOR_VER] = REG_FIELD(ALE_IDVER, 0, 7),
[MAJOR_VER] = REG_FIELD(ALE_IDVER, 8, 10),
/* CPSW_ALE_STATUS_REG */
[ALE_ENTRIES] = REG_FIELD(ALE_STATUS, 0, 7),
[ALE_POLICERS] = REG_FIELD(ALE_STATUS, 8, 15),
/* CPSW_ALE_POLICER_PORT_OUI_REG */
[POL_PORT_MEN] = REG_FIELD(ALE_POLICER_PORT_OUI, 31, 31),
[POL_TRUNK_ID] = REG_FIELD(ALE_POLICER_PORT_OUI, 30, 30),
[POL_PORT_NUM] = REG_FIELD(ALE_POLICER_PORT_OUI, 25, 25),
[POL_PRI_MEN] = REG_FIELD(ALE_POLICER_PORT_OUI, 19, 19),
[POL_PRI_VAL] = REG_FIELD(ALE_POLICER_PORT_OUI, 16, 18),
[POL_OUI_MEN] = REG_FIELD(ALE_POLICER_PORT_OUI, 15, 15),
[POL_OUI_INDEX] = REG_FIELD(ALE_POLICER_PORT_OUI, 0, 5),
/* CPSW_ALE_POLICER_DA_SA_REG */
[POL_DST_MEN] = REG_FIELD(ALE_POLICER_DA_SA, 31, 31),
[POL_DST_INDEX] = REG_FIELD(ALE_POLICER_DA_SA, 16, 21),
[POL_SRC_MEN] = REG_FIELD(ALE_POLICER_DA_SA, 15, 15),
[POL_SRC_INDEX] = REG_FIELD(ALE_POLICER_DA_SA, 0, 5),
/* CPSW_ALE_POLICER_VLAN_REG */
[POL_OVLAN_MEN] = REG_FIELD(ALE_POLICER_VLAN, 31, 31),
[POL_OVLAN_INDEX] = REG_FIELD(ALE_POLICER_VLAN, 16, 21),
[POL_IVLAN_MEN] = REG_FIELD(ALE_POLICER_VLAN, 15, 15),
[POL_IVLAN_INDEX] = REG_FIELD(ALE_POLICER_VLAN, 0, 5),
/* CPSW_ALE_POLICER_ETHERTYPE_IPSA_REG */
[POL_ETHERTYPE_MEN] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 31, 31),
[POL_ETHERTYPE_INDEX] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 16, 21),
[POL_IPSRC_MEN] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 15, 15),
[POL_IPSRC_INDEX] = REG_FIELD(ALE_POLICER_ETHERTYPE_IPSA, 0, 5),
/* CPSW_ALE_POLICER_IPDA_REG */
[POL_IPDST_MEN] = REG_FIELD(ALE_POLICER_IPDA, 31, 31),
[POL_IPDST_INDEX] = REG_FIELD(ALE_POLICER_IPDA, 16, 21),
/* CPSW_ALE_POLICER_TBL_CTL_REG */
/**
* REG_FIELDS not defined for this as fields cannot be correctly
* used independently
*/
/* CPSW_ALE_POLICER_CTL_REG */
[POL_EN] = REG_FIELD(ALE_POLICER_CTL, 31, 31),
[POL_RED_DROP_EN] = REG_FIELD(ALE_POLICER_CTL, 29, 29),
[POL_YELLOW_DROP_EN] = REG_FIELD(ALE_POLICER_CTL, 28, 28),
[POL_YELLOW_THRESH] = REG_FIELD(ALE_POLICER_CTL, 24, 26),
[POL_POL_MATCH_MODE] = REG_FIELD(ALE_POLICER_CTL, 22, 23),
[POL_PRIORITY_THREAD_EN] = REG_FIELD(ALE_POLICER_CTL, 21, 21),
[POL_MAC_ONLY_DEF_DIS] = REG_FIELD(ALE_POLICER_CTL, 20, 20),
/* CPSW_ALE_POLICER_TEST_CTL_REG */
[POL_TEST_CLR] = REG_FIELD(ALE_POLICER_TEST_CTL, 31, 31),
[POL_TEST_CLR_RED] = REG_FIELD(ALE_POLICER_TEST_CTL, 30, 30),
[POL_TEST_CLR_YELLOW] = REG_FIELD(ALE_POLICER_TEST_CTL, 29, 29),
[POL_TEST_CLR_SELECTED] = REG_FIELD(ALE_POLICER_TEST_CTL, 28, 28),
[POL_TEST_ENTRY] = REG_FIELD(ALE_POLICER_TEST_CTL, 0, 4),
/* CPSW_ALE_POLICER_HIT_STATUS_REG */
[POL_STATUS_HIT] = REG_FIELD(ALE_POLICER_HIT_STATUS, 31, 31),
[POL_STATUS_HIT_RED] = REG_FIELD(ALE_POLICER_HIT_STATUS, 30, 30),
[POL_STATUS_HIT_YELLOW] = REG_FIELD(ALE_POLICER_HIT_STATUS, 29, 29),
/* CPSW_ALE_THREAD_DEF_REG */
[ALE_DEFAULT_THREAD_EN] = REG_FIELD(ALE_THREAD_DEF, 15, 15),
[ALE_DEFAULT_THREAD_VAL] = REG_FIELD(ALE_THREAD_DEF, 0, 5),
/* CPSW_ALE_THREAD_CTL_REG */
[ALE_THREAD_CLASS_INDEX] = REG_FIELD(ALE_THREAD_CTL, 0, 4),
/* CPSW_ALE_THREAD_VAL_REG */
[ALE_THREAD_ENABLE] = REG_FIELD(ALE_THREAD_VAL, 15, 15),
[ALE_THREAD_VALUE] = REG_FIELD(ALE_THREAD_VAL, 0, 5),
};
static const struct cpsw_ale_dev_id cpsw_ale_id_match[] = {
{
/* am3/4/5, dra7. dm814x, 66ak2hk-gbe */
.dev_id = "cpsw",
.tbl_entries = 1024,
.reg_fields = ale_fields_cpsw,
.vlan_entry_tbl = vlan_entry_cpsw,
},
{
/* 66ak2h_xgbe */
.dev_id = "66ak2h-xgbe",
.tbl_entries = 2048,
.reg_fields = ale_fields_cpsw,
.vlan_entry_tbl = vlan_entry_cpsw,
},
{
.dev_id = "66ak2el",
.features = CPSW_ALE_F_STATUS_REG,
.reg_fields = ale_fields_cpsw_nu,
.nu_switch_ale = true,
.vlan_entry_tbl = vlan_entry_nu,
},
{
.dev_id = "66ak2g",
.features = CPSW_ALE_F_STATUS_REG,
.tbl_entries = 64,
.reg_fields = ale_fields_cpsw_nu,
.nu_switch_ale = true,
.vlan_entry_tbl = vlan_entry_nu,
},
{
.dev_id = "am65x-cpsw2g",
.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
.tbl_entries = 64,
.reg_fields = ale_fields_cpsw_nu,
.nu_switch_ale = true,
.vlan_entry_tbl = vlan_entry_nu,
},
{
.dev_id = "j721e-cpswxg",
.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
.reg_fields = ale_fields_cpsw_nu,
.vlan_entry_tbl = vlan_entry_k3_cpswxg,
},
{
.dev_id = "am64-cpswxg",
.features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
.reg_fields = ale_fields_cpsw_nu,
.vlan_entry_tbl = vlan_entry_k3_cpswxg,
.tbl_entries = 512,
},
{ },
};
static const struct
cpsw_ale_dev_id *cpsw_ale_match_id(const struct cpsw_ale_dev_id *id,
const char *dev_id)
{
if (!dev_id)
return NULL;
while (id->dev_id) {
if (strcmp(dev_id, id->dev_id) == 0)
return id;
id++;
}
return NULL;
}
static const struct regmap_config ale_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.name = "cpsw-ale",
};
static int cpsw_ale_regfield_init(struct cpsw_ale *ale)
{
const struct reg_field *reg_fields = ale->params.reg_fields;
struct device *dev = ale->params.dev;
struct regmap *regmap = ale->regmap;
int i;
for (i = 0; i < ALE_FIELDS_MAX; i++) {
ale->fields[i] = devm_regmap_field_alloc(dev, regmap,
reg_fields[i]);
if (IS_ERR(ale->fields[i])) {
dev_err(dev, "Unable to allocate regmap field %d\n", i);
return PTR_ERR(ale->fields[i]);
}
}
return 0;
}
struct cpsw_ale *cpsw_ale_create(struct cpsw_ale_params *params)
{
u32 ale_entries, rev_major, rev_minor, policers;
const struct cpsw_ale_dev_id *ale_dev_id;
struct cpsw_ale *ale;
int ret;
ale_dev_id = cpsw_ale_match_id(cpsw_ale_id_match, params->dev_id);
if (!ale_dev_id)
return ERR_PTR(-EINVAL);
params->ale_entries = ale_dev_id->tbl_entries;
params->nu_switch_ale = ale_dev_id->nu_switch_ale;
params->reg_fields = ale_dev_id->reg_fields;
ale = devm_kzalloc(params->dev, sizeof(*ale), GFP_KERNEL);
if (!ale)
return ERR_PTR(-ENOMEM);
ale->regmap = devm_regmap_init_mmio(params->dev, params->ale_regs,
&ale_regmap_cfg);
if (IS_ERR(ale->regmap)) {
dev_err(params->dev, "Couldn't create CPSW ALE regmap\n");
return ERR_PTR(-ENOMEM);
}
ale->params = *params;
ret = cpsw_ale_regfield_init(ale);
if (ret)
return ERR_PTR(ret);
ale->p0_untag_vid_mask = devm_bitmap_zalloc(params->dev, VLAN_N_VID,
GFP_KERNEL);
if (!ale->p0_untag_vid_mask)
return ERR_PTR(-ENOMEM);
ale->ageout = ale->params.ale_ageout * HZ;
ale->features = ale_dev_id->features;
ale->vlan_entry_tbl = ale_dev_id->vlan_entry_tbl;
regmap_field_read(ale->fields[MINOR_VER], &rev_minor);
regmap_field_read(ale->fields[MAJOR_VER], &rev_major);
ale->version = rev_major << 8 | rev_minor;
dev_info(ale->params.dev, "initialized cpsw ale version %d.%d\n",
rev_major, rev_minor);
if (ale->features & CPSW_ALE_F_STATUS_REG &&
!ale->params.ale_entries) {
regmap_field_read(ale->fields[ALE_ENTRIES], &ale_entries);
/* ALE available on newer NetCP switches has introduced
* a register, ALE_STATUS, to indicate the size of ALE
* table which shows the size as a multiple of 1024 entries.
* For these, params.ale_entries will be set to zero. So
* read the register and update the value of ale_entries.
* return error if ale_entries is zero in ALE_STATUS.
*/
if (!ale_entries)
return ERR_PTR(-EINVAL);
ale_entries *= ALE_TABLE_SIZE_MULTIPLIER;
ale->params.ale_entries = ale_entries;
}
if (ale->features & CPSW_ALE_F_STATUS_REG &&
!ale->params.num_policers) {
regmap_field_read(ale->fields[ALE_POLICERS], &policers);
if (!policers)
return ERR_PTR(-EINVAL);
policers *= ALE_POLICER_SIZE_MULTIPLIER;
ale->params.num_policers = policers;
}
dev_info(ale->params.dev,
"ALE Table size %ld, Policers %ld\n", ale->params.ale_entries,
ale->params.num_policers);
/* set default bits for existing h/w */
ale->port_mask_bits = ale->params.ale_ports;
ale->port_num_bits = order_base_2(ale->params.ale_ports);
ale->vlan_field_bits = ale->params.ale_ports;
/* Set defaults override for ALE on NetCP NU switch and for version
* 1R3
*/
if (ale->params.nu_switch_ale) {
/* Separate registers for unknown vlan configuration.
* Also there are N bits, where N is number of ale
* ports and shift value should be 0
*/
ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].bits =
ale->params.ale_ports;
ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].offset =
ALE_UNKNOWNVLAN_MEMBER;
ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].bits =
ale->params.ale_ports;
ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].shift = 0;
ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].offset =
ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD;
ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].bits =
ale->params.ale_ports;
ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].shift = 0;
ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].offset =
ALE_UNKNOWNVLAN_REG_MCAST_FLOOD;
ale_controls[ALE_PORT_UNTAGGED_EGRESS].bits =
ale->params.ale_ports;
ale_controls[ALE_PORT_UNTAGGED_EGRESS].shift = 0;
ale_controls[ALE_PORT_UNTAGGED_EGRESS].offset =
ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS;
}
cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
return ale;
}
void cpsw_ale_dump(struct cpsw_ale *ale, u32 *data)
{
int i;
for (i = 0; i < ale->params.ale_entries; i++) {
cpsw_ale_read(ale, i, data);
data += ALE_ENTRY_WORDS;
}
}
void cpsw_ale_restore(struct cpsw_ale *ale, u32 *data)
{
int i;
for (i = 0; i < ale->params.ale_entries; i++) {
cpsw_ale_write(ale, i, data);
data += ALE_ENTRY_WORDS;
}
}
u32 cpsw_ale_get_num_entries(struct cpsw_ale *ale)
{
return ale ? ale->params.ale_entries : 0;
}
/* Reads the specified policer index into ALE POLICER registers */
static void cpsw_ale_policer_read_idx(struct cpsw_ale *ale, u32 idx)
{
idx &= ALE_POLICER_TBL_INDEX_MASK;
writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
}
/* Writes the ALE POLICER registers into the specified policer index */
static void cpsw_ale_policer_write_idx(struct cpsw_ale *ale, u32 idx)
{
idx &= ALE_POLICER_TBL_INDEX_MASK;
idx |= ALE_POLICER_TBL_WRITE_ENABLE;
writel_relaxed(idx, ale->params.ale_regs + ALE_POLICER_TBL_CTL);
}
/* enables/disables the custom thread value for the specified policer index */
static void cpsw_ale_policer_thread_idx_enable(struct cpsw_ale *ale, u32 idx,
u32 thread_id, bool enable)
{
regmap_field_write(ale->fields[ALE_THREAD_CLASS_INDEX], idx);
regmap_field_write(ale->fields[ALE_THREAD_VALUE], thread_id);
regmap_field_write(ale->fields[ALE_THREAD_ENABLE], enable ? 1 : 0);
}
/* Disable all policer entries and thread mappings */
static void cpsw_ale_policer_reset(struct cpsw_ale *ale)
{
int i;
for (i = 0; i < ale->params.num_policers ; i++) {
cpsw_ale_policer_read_idx(ale, i);
regmap_field_write(ale->fields[POL_PORT_MEN], 0);
regmap_field_write(ale->fields[POL_PRI_MEN], 0);
regmap_field_write(ale->fields[POL_OUI_MEN], 0);
regmap_field_write(ale->fields[POL_DST_MEN], 0);
regmap_field_write(ale->fields[POL_SRC_MEN], 0);
regmap_field_write(ale->fields[POL_OVLAN_MEN], 0);
regmap_field_write(ale->fields[POL_IVLAN_MEN], 0);
regmap_field_write(ale->fields[POL_ETHERTYPE_MEN], 0);
regmap_field_write(ale->fields[POL_IPSRC_MEN], 0);
regmap_field_write(ale->fields[POL_IPDST_MEN], 0);
regmap_field_write(ale->fields[POL_EN], 0);
regmap_field_write(ale->fields[POL_RED_DROP_EN], 0);
regmap_field_write(ale->fields[POL_YELLOW_DROP_EN], 0);
regmap_field_write(ale->fields[POL_PRIORITY_THREAD_EN], 0);
cpsw_ale_policer_thread_idx_enable(ale, i, 0, 0);
}
}
/* Default classifier is to map 8 user priorities to N receive channels */
void cpsw_ale_classifier_setup_default(struct cpsw_ale *ale, int num_rx_ch)
{
int pri, idx;
/* IEEE802.1D-2004, Standard for Local and metropolitan area networks
* Table G-2 - Traffic type acronyms
* Table G-3 - Defining traffic types
* User priority values 1 and 2 effectively communicate a lower
* priority than 0. In the below table 0 is assigned to higher priority
* thread than 1 and 2 wherever possible.
* The below table maps which thread the user priority needs to be
* sent to for a given number of threads (RX channels). Upper threads
* have higher priority.
* e.g. if number of threads is 8 then user priority 0 will map to
* pri_thread_map[8-1][0] i.e. thread 2
*/
int pri_thread_map[8][8] = { { 0, 0, 0, 0, 0, 0, 0, 0, },
{ 0, 0, 0, 0, 1, 1, 1, 1, },
{ 0, 0, 0, 0, 1, 1, 2, 2, },
{ 1, 0, 0, 1, 2, 2, 3, 3, },
{ 1, 0, 0, 1, 2, 3, 4, 4, },
{ 1, 0, 0, 2, 3, 4, 5, 5, },
{ 1, 0, 0, 2, 3, 4, 5, 6, },
{ 2, 0, 1, 3, 4, 5, 6, 7, } };
cpsw_ale_policer_reset(ale);
/* use first 8 classifiers to map 8 (DSCP/PCP) priorities to channels */
for (pri = 0; pri < 8; pri++) {
idx = pri;
/* Classifier 'idx' match on priority 'pri' */
cpsw_ale_policer_read_idx(ale, idx);
regmap_field_write(ale->fields[POL_PRI_VAL], pri);
regmap_field_write(ale->fields[POL_PRI_MEN], 1);
cpsw_ale_policer_write_idx(ale, idx);
/* Map Classifier 'idx' to thread provided by the map */
cpsw_ale_policer_thread_idx_enable(ale, idx,
pri_thread_map[num_rx_ch - 1][pri],
1);
}
}