summaryrefslogblamecommitdiff
path: root/drivers/mtd/spi-nor/cadence-quadspi.c
blob: 9f8102de1b16a1786c5fb06f7980acc872433dd5 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528















































































































































































































































































































































































































































































































































                                                                                

                                                                     


















































































                                                                                

                                                            























































































































































































































































































                                                                                
                   


















                                                           
                   




































































































































































                                                                                

                                                           



                                                                          
                                                 
                                      





















































































































































































































                                                                           
/*
 * Driver for Cadence QSPI Controller
 *
 * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/timer.h>

#define CQSPI_NAME			"cadence-qspi"
#define CQSPI_MAX_CHIPSELECT		16

struct cqspi_st;

struct cqspi_flash_pdata {
	struct spi_nor	nor;
	struct cqspi_st	*cqspi;
	u32		clk_rate;
	u32		read_delay;
	u32		tshsl_ns;
	u32		tsd2d_ns;
	u32		tchsh_ns;
	u32		tslch_ns;
	u8		inst_width;
	u8		addr_width;
	u8		data_width;
	u8		cs;
	bool		registered;
};

struct cqspi_st {
	struct platform_device	*pdev;

	struct clk		*clk;
	unsigned int		sclk;

	void __iomem		*iobase;
	void __iomem		*ahb_base;
	struct completion	transfer_complete;
	struct mutex		bus_mutex;

	int			current_cs;
	int			current_page_size;
	int			current_erase_size;
	int			current_addr_width;
	unsigned long		master_ref_clk_hz;
	bool			is_decoded_cs;
	u32			fifo_depth;
	u32			fifo_width;
	u32			trigger_address;
	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
};

/* Operation timeout value */
#define CQSPI_TIMEOUT_MS			500
#define CQSPI_READ_TIMEOUT_MS			10

/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE			0
#define CQSPI_INST_TYPE_DUAL			1
#define CQSPI_INST_TYPE_QUAD			2

#define CQSPI_DUMMY_CLKS_PER_BYTE		8
#define CQSPI_DUMMY_BYTES_MAX			4
#define CQSPI_DUMMY_CLKS_MAX			31

#define CQSPI_STIG_DATA_LEN_MAX			8

/* Register map */
#define CQSPI_REG_CONFIG			0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB		19
#define CQSPI_REG_CONFIG_IDLE_LSB		31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
#define CQSPI_REG_CONFIG_BAUD_MASK		0xF

#define CQSPI_REG_RD_INSTR			0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F

#define CQSPI_REG_WR_INSTR			0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16

#define CQSPI_REG_DELAY				0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB		0
#define CQSPI_REG_DELAY_TCHSH_LSB		8
#define CQSPI_REG_DELAY_TSD2D_LSB		16
#define CQSPI_REG_DELAY_TSHSL_LSB		24
#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF

#define CQSPI_REG_READCAPTURE			0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF

#define CQSPI_REG_SIZE				0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB		0
#define CQSPI_REG_SIZE_PAGE_LSB			4
#define CQSPI_REG_SIZE_BLOCK_LSB		16
#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F

#define CQSPI_REG_SRAMPARTITION			0x18
#define CQSPI_REG_INDIRECTTRIGGER		0x1C

#define CQSPI_REG_DMA				0x20
#define CQSPI_REG_DMA_SINGLE_LSB		0
#define CQSPI_REG_DMA_BURST_LSB			8
#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
#define CQSPI_REG_DMA_BURST_MASK		0xFF

#define CQSPI_REG_REMAP				0x24
#define CQSPI_REG_MODE_BIT			0x28

#define CQSPI_REG_SDRAMLEVEL			0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF

#define CQSPI_REG_IRQSTATUS			0x40
#define CQSPI_REG_IRQMASK			0x44

#define CQSPI_REG_INDIRECTRD			0x60
#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
#define CQSPI_REG_INDIRECTRDBYTES		0x6C

#define CQSPI_REG_CMDCTRL			0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7

#define CQSPI_REG_INDIRECTWR			0x70
#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)

#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
#define CQSPI_REG_INDIRECTWRBYTES		0x7C

#define CQSPI_REG_CMDADDRESS			0x94
#define CQSPI_REG_CMDREADDATALOWER		0xA0
#define CQSPI_REG_CMDREADDATAUPPER		0xA4
#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC

/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)

#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
					 CQSPI_REG_IRQ_IND_COMP)

#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
					 CQSPI_REG_IRQ_WATERMARK	| \
					 CQSPI_REG_IRQ_UNDERFLOW)

#define CQSPI_IRQ_STATUS_MASK		0x1FFFF

static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
{
	unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
	u32 val;

	while (1) {
		val = readl(reg);
		if (clear)
			val = ~val;
		val &= mask;

		if (val == mask)
			return 0;

		if (time_after(jiffies, end))
			return -ETIMEDOUT;
	}
}

static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);

	return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
}

static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);

	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}

static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
	struct cqspi_st *cqspi = dev;
	unsigned int irq_status;

	/* Read interrupt status */
	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);

	/* Clear interrupt */
	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);

	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;

	if (irq_status)
		complete(&cqspi->transfer_complete);

	return IRQ_HANDLED;
}

static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	u32 rdreg = 0;

	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;

	return rdreg;
}

static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
	const unsigned int poll_idle_retry = 3;
	unsigned int count = 0;
	unsigned long timeout;

	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
	while (1) {
		/*
		 * Read few times in succession to ensure the controller
		 * is indeed idle, that is, the bit does not transition
		 * low again.
		 */
		if (cqspi_is_idle(cqspi))
			count++;
		else
			count = 0;

		if (count >= poll_idle_retry)
			return 0;

		if (time_after(jiffies, timeout)) {
			/* Timeout, in busy mode. */
			dev_err(&cqspi->pdev->dev,
				"QSPI is still busy after %dms timeout.\n",
				CQSPI_TIMEOUT_MS);
			return -ETIMEDOUT;
		}

		cpu_relax();
	}
}

static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
	void __iomem *reg_base = cqspi->iobase;
	int ret;

	/* Write the CMDCTRL without start execution. */
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
	/* Start execute */
	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);

	/* Polling for completion. */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
	if (ret) {
		dev_err(&cqspi->pdev->dev,
			"Flash command execution timed out.\n");
		return ret;
	}

	/* Polling QSPI idle status. */
	return cqspi_wait_idle(cqspi);
}

static int cqspi_command_read(struct spi_nor *nor,
			      const u8 *txbuf, const unsigned n_tx,
			      u8 *rxbuf, const unsigned n_rx)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int rdreg;
	unsigned int reg;
	unsigned int read_len;
	int status;

	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
		dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
			n_rx, rxbuf);
		return -EINVAL;
	}

	reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;

	rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);

	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);

	/* 0 means 1 byte. */
	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
	status = cqspi_exec_flash_cmd(cqspi, reg);
	if (status)
		return status;

	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);

	/* Put the read value into rx_buf */
	read_len = (n_rx > 4) ? 4 : n_rx;
	memcpy(rxbuf, &reg, read_len);
	rxbuf += read_len;

	if (n_rx > 4) {
		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);

		read_len = n_rx - read_len;
		memcpy(rxbuf, &reg, read_len);
	}

	return 0;
}

static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
			       const u8 *txbuf, const unsigned n_tx)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;
	unsigned int data;
	int ret;

	if (n_tx > 4 || (n_tx && !txbuf)) {
		dev_err(nor->dev,
			"Invalid input argument, cmdlen %d txbuf 0x%p\n",
			n_tx, txbuf);
		return -EINVAL;
	}

	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
	if (n_tx) {
		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
		data = 0;
		memcpy(&data, txbuf, n_tx);
		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
	}

	ret = cqspi_exec_flash_cmd(cqspi, reg);
	return ret;
}

static int cqspi_command_write_addr(struct spi_nor *nor,
				    const u8 opcode, const unsigned int addr)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
	reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
	reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
		<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;

	writel(addr, reg_base + CQSPI_REG_CMDADDRESS);

	return cqspi_exec_flash_cmd(cqspi, reg);
}

static int cqspi_indirect_read_setup(struct spi_nor *nor,
				     const unsigned int from_addr)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int dummy_clk = 0;
	unsigned int reg;

	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);

	reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
	reg |= cqspi_calc_rdreg(nor, nor->read_opcode);

	/* Setup dummy clock cycles */
	dummy_clk = nor->read_dummy;
	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
		dummy_clk = CQSPI_DUMMY_CLKS_MAX;

	if (dummy_clk / 8) {
		reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
		/* Set mode bits high to ensure chip doesn't enter XIP */
		writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);

		/* Need to subtract the mode byte (8 clocks). */
		if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
			dummy_clk -= 8;

		if (dummy_clk)
			reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
			       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
	}

	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	/* Set address width */
	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
	reg |= (nor->addr_width - 1);
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

static int cqspi_indirect_read_execute(struct spi_nor *nor,
				       u8 *rxbuf, const unsigned n_rx)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	void __iomem *ahb_base = cqspi->ahb_base;
	unsigned int remaining = n_rx;
	unsigned int bytes_to_read = 0;
	int ret = 0;

	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTRD_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);

	while (remaining > 0) {
		ret = wait_for_completion_timeout(&cqspi->transfer_complete,
						  msecs_to_jiffies
						  (CQSPI_READ_TIMEOUT_MS));

		bytes_to_read = cqspi_get_rd_sram_level(cqspi);

		if (!ret && bytes_to_read == 0) {
			dev_err(nor->dev, "Indirect read timeout, no bytes\n");
			ret = -ETIMEDOUT;
			goto failrd;
		}

		while (bytes_to_read != 0) {
			bytes_to_read *= cqspi->fifo_width;
			bytes_to_read = bytes_to_read > remaining ?
					remaining : bytes_to_read;
			ioread32_rep(ahb_base, rxbuf,
				     DIV_ROUND_UP(bytes_to_read, 4));
			rxbuf += bytes_to_read;
			remaining -= bytes_to_read;
			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
		}

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
	if (ret) {
		dev_err(nor->dev,
			"Indirect read completion error (%i)\n", ret);
		goto failrd;
	}

	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);

	return 0;

failrd:
	/* Disable interrupt */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect read */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTRD);
	return ret;
}

static int cqspi_indirect_write_setup(struct spi_nor *nor,
				      const unsigned int to_addr)
{
	unsigned int reg;
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;

	/* Set opcode. */
	reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
	reg = cqspi_calc_rdreg(nor, nor->program_opcode);
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);

	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);

	reg = readl(reg_base + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
	reg |= (nor->addr_width - 1);
	writel(reg, reg_base + CQSPI_REG_SIZE);
	return 0;
}

static int cqspi_indirect_write_execute(struct spi_nor *nor,
					const u8 *txbuf, const unsigned n_tx)
{
	const unsigned int page_size = nor->page_size;
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int remaining = n_tx;
	unsigned int write_bytes;
	int ret;

	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);

	/* Clear all interrupts. */
	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);

	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);

	reinit_completion(&cqspi->transfer_complete);
	writel(CQSPI_REG_INDIRECTWR_START_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);

	while (remaining > 0) {
		write_bytes = remaining > page_size ? page_size : remaining;
		iowrite32_rep(cqspi->ahb_base, txbuf,
			      DIV_ROUND_UP(write_bytes, 4));

		ret = wait_for_completion_timeout(&cqspi->transfer_complete,
						  msecs_to_jiffies
						  (CQSPI_TIMEOUT_MS));
		if (!ret) {
			dev_err(nor->dev, "Indirect write timeout\n");
			ret = -ETIMEDOUT;
			goto failwr;
		}

		txbuf += write_bytes;
		remaining -= write_bytes;

		if (remaining > 0)
			reinit_completion(&cqspi->transfer_complete);
	}

	/* Check indirect done status */
	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
	if (ret) {
		dev_err(nor->dev,
			"Indirect write completion error (%i)\n", ret);
		goto failwr;
	}

	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);

	cqspi_wait_idle(cqspi);

	return 0;

failwr:
	/* Disable interrupt. */
	writel(0, reg_base + CQSPI_REG_IRQMASK);

	/* Cancel the indirect write */
	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
	       reg_base + CQSPI_REG_INDIRECTWR);
	return ret;
}

static void cqspi_chipselect(struct spi_nor *nor)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *reg_base = cqspi->iobase;
	unsigned int chip_select = f_pdata->cs;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	if (cqspi->is_decoded_cs) {
		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;

		/* Convert CS if without decoder.
		 * CS0 to 4b'1110
		 * CS1 to 4b'1101
		 * CS2 to 4b'1011
		 * CS3 to 4b'0111
		 */
		chip_select = 0xF & ~(1 << chip_select);
	}

	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *iobase = cqspi->iobase;
	unsigned int reg;

	/* configure page size and block size. */
	reg = readl(iobase + CQSPI_REG_SIZE);
	reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
	reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
	reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
	reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
	reg |= (nor->addr_width - 1);
	writel(reg, iobase + CQSPI_REG_SIZE);

	/* configure the chip select */
	cqspi_chipselect(nor);

	/* Store the new configuration of the controller */
	cqspi->current_page_size = nor->page_size;
	cqspi->current_erase_size = nor->mtd.erasesize;
	cqspi->current_addr_width = nor->addr_width;
}

static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
					   const unsigned int ns_val)
{
	unsigned int ticks;

	ticks = ref_clk_hz / 1000;	/* kHz */
	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);

	return ticks;
}

static void cqspi_delay(struct spi_nor *nor)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	void __iomem *iobase = cqspi->iobase;
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	unsigned int tshsl, tchsh, tslch, tsd2d;
	unsigned int reg;
	unsigned int tsclk;

	/* calculate the number of ref ticks for one sclk tick */
	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);

	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
	/* this particular value must be at least one sclk */
	if (tshsl < tsclk)
		tshsl = tsclk;

	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);

	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
	       << CQSPI_REG_DELAY_TSHSL_LSB;
	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
		<< CQSPI_REG_DELAY_TCHSH_LSB;
	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
		<< CQSPI_REG_DELAY_TSLCH_LSB;
	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
		<< CQSPI_REG_DELAY_TSD2D_LSB;
	writel(reg, iobase + CQSPI_REG_DELAY);
}

static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
	void __iomem *reg_base = cqspi->iobase;
	u32 reg, div;

	/* Recalculate the baudrate divisor based on QSPI specification. */
	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static void cqspi_readdata_capture(struct cqspi_st *cqspi,
				   const unsigned int bypass,
				   const unsigned int delay)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_READCAPTURE);

	if (bypass)
		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
	else
		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);

	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
		 << CQSPI_REG_READCAPTURE_DELAY_LSB);

	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
		<< CQSPI_REG_READCAPTURE_DELAY_LSB;

	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}

static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
	void __iomem *reg_base = cqspi->iobase;
	unsigned int reg;

	reg = readl(reg_base + CQSPI_REG_CONFIG);

	if (enable)
		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
	else
		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;

	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

static void cqspi_configure(struct spi_nor *nor)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;
	const unsigned int sclk = f_pdata->clk_rate;
	int switch_cs = (cqspi->current_cs != f_pdata->cs);
	int switch_ck = (cqspi->sclk != sclk);

	if ((cqspi->current_page_size != nor->page_size) ||
	    (cqspi->current_erase_size != nor->mtd.erasesize) ||
	    (cqspi->current_addr_width != nor->addr_width))
		switch_cs = 1;

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 0);

	/* Switch chip select. */
	if (switch_cs) {
		cqspi->current_cs = f_pdata->cs;
		cqspi_configure_cs_and_sizes(nor);
	}

	/* Setup baudrate divisor and delays */
	if (switch_ck) {
		cqspi->sclk = sclk;
		cqspi_config_baudrate_div(cqspi);
		cqspi_delay(nor);
		cqspi_readdata_capture(cqspi, 1, f_pdata->read_delay);
	}

	if (switch_cs || switch_ck)
		cqspi_controller_enable(cqspi, 1);
}

static int cqspi_set_protocol(struct spi_nor *nor, const int read)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;

	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;

	if (read) {
		switch (nor->flash_read) {
		case SPI_NOR_NORMAL:
		case SPI_NOR_FAST:
			f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
			break;
		case SPI_NOR_DUAL:
			f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
			break;
		case SPI_NOR_QUAD:
			f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
			break;
		default:
			return -EINVAL;
		}
	}

	cqspi_configure(nor);

	return 0;
}

static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
			   size_t len, const u_char *buf)
{
	int ret;

	ret = cqspi_set_protocol(nor, 0);
	if (ret)
		return ret;

	ret = cqspi_indirect_write_setup(nor, to);
	if (ret)
		return ret;

	ret = cqspi_indirect_write_execute(nor, buf, len);
	if (ret)
		return ret;

	return len;
}

static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
			  size_t len, u_char *buf)
{
	int ret;

	ret = cqspi_set_protocol(nor, 1);
	if (ret)
		return ret;

	ret = cqspi_indirect_read_setup(nor, from);
	if (ret)
		return ret;

	ret = cqspi_indirect_read_execute(nor, buf, len);
	if (ret)
		return ret;

	return len;
}

static int cqspi_erase(struct spi_nor *nor, loff_t offs)
{
	int ret;

	ret = cqspi_set_protocol(nor, 0);
	if (ret)
		return ret;

	/* Send write enable, then erase commands. */
	ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
	if (ret)
		return ret;

	/* Set up command buffer. */
	ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
	if (ret)
		return ret;

	return 0;
}

static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;

	mutex_lock(&cqspi->bus_mutex);

	return 0;
}

static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct cqspi_flash_pdata *f_pdata = nor->priv;
	struct cqspi_st *cqspi = f_pdata->cqspi;

	mutex_unlock(&cqspi->bus_mutex);
}

static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;

	ret = cqspi_set_protocol(nor, 0);
	if (!ret)
		ret = cqspi_command_read(nor, &opcode, 1, buf, len);

	return ret;
}

static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;

	ret = cqspi_set_protocol(nor, 0);
	if (!ret)
		ret = cqspi_command_write(nor, opcode, buf, len);

	return ret;
}

static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
				    struct cqspi_flash_pdata *f_pdata,
				    struct device_node *np)
{
	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
		dev_err(&pdev->dev, "couldn't determine read-delay\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
		return -ENXIO;
	}

	return 0;
}

static int cqspi_of_get_pdata(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct cqspi_st *cqspi = platform_get_drvdata(pdev);

	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");

	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
		dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
		dev_err(&pdev->dev, "couldn't determine fifo-width\n");
		return -ENXIO;
	}

	if (of_property_read_u32(np, "cdns,trigger-address",
				 &cqspi->trigger_address)) {
		dev_err(&pdev->dev, "couldn't determine trigger-address\n");
		return -ENXIO;
	}

	return 0;
}

static void cqspi_controller_init(struct cqspi_st *cqspi)
{
	cqspi_controller_enable(cqspi, 0);

	/* Configure the remap address register, no remap */
	writel(0, cqspi->iobase + CQSPI_REG_REMAP);

	/* Disable all interrupts. */
	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);

	/* Configure the SRAM split to 1:1 . */
	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);

	/* Load indirect trigger address. */
	writel(cqspi->trigger_address,
	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);

	/* Program read watermark -- 1/2 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
	/* Program write watermark -- 1/8 of the FIFO. */
	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);

	cqspi_controller_enable(cqspi, 1);
}

static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
{
	struct platform_device *pdev = cqspi->pdev;
	struct device *dev = &pdev->dev;
	struct cqspi_flash_pdata *f_pdata;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	unsigned int cs;
	int i, ret;

	/* Get flash device data */
	for_each_available_child_of_node(dev->of_node, np) {
		ret = of_property_read_u32(np, "reg", &cs);
		if (ret) {
			dev_err(dev, "Couldn't determine chip select.\n");
			goto err;
		}

		if (cs >= CQSPI_MAX_CHIPSELECT) {
			ret = -EINVAL;
			dev_err(dev, "Chip select %d out of range.\n", cs);
			goto err;
		}

		f_pdata = &cqspi->f_pdata[cs];
		f_pdata->cqspi = cqspi;
		f_pdata->cs = cs;

		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
		if (ret)
			goto err;

		nor = &f_pdata->nor;
		mtd = &nor->mtd;

		mtd->priv = nor;

		nor->dev = dev;
		spi_nor_set_flash_node(nor, np);
		nor->priv = f_pdata;

		nor->read_reg = cqspi_read_reg;
		nor->write_reg = cqspi_write_reg;
		nor->read = cqspi_read;
		nor->write = cqspi_write;
		nor->erase = cqspi_erase;
		nor->prepare = cqspi_prep;
		nor->unprepare = cqspi_unprep;

		mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
					   dev_name(dev), cs);
		if (!mtd->name) {
			ret = -ENOMEM;
			goto err;
		}

		ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
		if (ret)
			goto err;

		ret = mtd_device_register(mtd, NULL, 0);
		if (ret)
			goto err;

		f_pdata->registered = true;
	}

	return 0;

err:
	for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
		if (cqspi->f_pdata[i].registered)
			mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
	return ret;
}

static int cqspi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct cqspi_st *cqspi;
	struct resource *res;
	struct resource *res_ahb;
	int ret;
	int irq;

	cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
	if (!cqspi)
		return -ENOMEM;

	mutex_init(&cqspi->bus_mutex);
	cqspi->pdev = pdev;
	platform_set_drvdata(pdev, cqspi);

	/* Obtain configuration from OF. */
	ret = cqspi_of_get_pdata(pdev);
	if (ret) {
		dev_err(dev, "Cannot get mandatory OF data.\n");
		return -ENODEV;
	}

	/* Obtain QSPI clock. */
	cqspi->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(cqspi->clk)) {
		dev_err(dev, "Cannot claim QSPI clock.\n");
		return PTR_ERR(cqspi->clk);
	}

	/* Obtain and remap controller address. */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	cqspi->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(cqspi->iobase)) {
		dev_err(dev, "Cannot remap controller address.\n");
		return PTR_ERR(cqspi->iobase);
	}

	/* Obtain and remap AHB address. */
	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
	if (IS_ERR(cqspi->ahb_base)) {
		dev_err(dev, "Cannot remap AHB address.\n");
		return PTR_ERR(cqspi->ahb_base);
	}

	init_completion(&cqspi->transfer_complete);

	/* Obtain IRQ line. */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(dev, "Cannot obtain IRQ.\n");
		return -ENXIO;
	}

	ret = clk_prepare_enable(cqspi->clk);
	if (ret) {
		dev_err(dev, "Cannot enable QSPI clock.\n");
		return ret;
	}

	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);

	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
			       pdev->name, cqspi);
	if (ret) {
		dev_err(dev, "Cannot request IRQ.\n");
		goto probe_irq_failed;
	}

	cqspi_wait_idle(cqspi);
	cqspi_controller_init(cqspi);
	cqspi->current_cs = -1;
	cqspi->sclk = 0;

	ret = cqspi_setup_flash(cqspi, np);
	if (ret) {
		dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
		goto probe_setup_failed;
	}

	return ret;
probe_irq_failed:
	cqspi_controller_enable(cqspi, 0);
probe_setup_failed:
	clk_disable_unprepare(cqspi->clk);
	return ret;
}

static int cqspi_remove(struct platform_device *pdev)
{
	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
	int i;

	for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
		if (cqspi->f_pdata[i].registered)
			mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);

	cqspi_controller_enable(cqspi, 0);

	clk_disable_unprepare(cqspi->clk);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 0);
	return 0;
}

static int cqspi_resume(struct device *dev)
{
	struct cqspi_st *cqspi = dev_get_drvdata(dev);

	cqspi_controller_enable(cqspi, 1);
	return 0;
}

static const struct dev_pm_ops cqspi__dev_pm_ops = {
	.suspend = cqspi_suspend,
	.resume = cqspi_resume,
};

#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS	NULL
#endif

static struct of_device_id const cqspi_dt_ids[] = {
	{.compatible = "cdns,qspi-nor",},
	{ /* end of table */ }
};

MODULE_DEVICE_TABLE(of, cqspi_dt_ids);

static struct platform_driver cqspi_platform_driver = {
	.probe = cqspi_probe,
	.remove = cqspi_remove,
	.driver = {
		.name = CQSPI_NAME,
		.pm = CQSPI_DEV_PM_OPS,
		.of_match_table = cqspi_dt_ids,
	},
};

module_platform_driver(cqspi_platform_driver);

MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");