// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 SiFive
* Copyright (C) 2018 Christoph Hellwig
*/
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/irqchip.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/syscore_ops.h>
#include <asm/smp.h>
/*
* This driver implements a version of the RISC-V PLIC with the actual layout
* specified in chapter 8 of the SiFive U5 Coreplex Series Manual:
*
* https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
*
* The largest number supported by devices marked as 'sifive,plic-1.0.0', is
* 1024, of which device 0 is defined as non-existent by the RISC-V Privileged
* Spec.
*/
#define MAX_DEVICES 1024
#define MAX_CONTEXTS 15872
/*
* Each interrupt source has a priority register associated with it.
* We always hardwire it to one in Linux.
*/
#define PRIORITY_BASE 0
#define PRIORITY_PER_ID 4
/*
* Each hart context has a vector of interrupt enable bits associated with it.
* There's one bit for each interrupt source.
*/
#define CONTEXT_ENABLE_BASE 0x2000
#define CONTEXT_ENABLE_SIZE 0x80
/*
* Each hart context has a set of control registers associated with it. Right
* now there's only two: a source priority threshold over which the hart will
* take an interrupt, and a register to claim interrupts.
*/
#define CONTEXT_BASE 0x200000
#define CONTEXT_SIZE 0x1000
#define CONTEXT_THRESHOLD 0x00
#define CONTEXT_CLAIM 0x04
#define PLIC_DISABLE_THRESHOLD 0x7
#define PLIC_ENABLE_THRESHOLD 0
#define PLIC_QUIRK_EDGE_INTERRUPT 0
struct plic_priv {
struct device *dev;
struct cpumask lmask;
struct irq_domain *irqdomain;
void __iomem *regs;
unsigned long plic_quirks;
unsigned int nr_irqs;
unsigned long *prio_save;
};
struct plic_handler {
bool present;
void __iomem *hart_base;
/*
* Protect mask operations on the registers given that we can't
* assume atomic memory operations work on them.
*/
raw_spinlock_t enable_lock;
void __iomem *enable_base;
u32 *enable_save;
struct plic_priv *priv;
};
static int plic_parent_irq __ro_after_init;
static bool plic_cpuhp_setup_done __ro_after_init;
static DEFINE_PER_CPU(struct plic_handler, plic_handlers);
static int plic_irq_set_type(struct irq_data *d, unsigned int type);
static void __plic_toggle(void __iomem *enable_base, int hwirq, int enable)
{
u32 __iomem *reg = enable_base + (hwirq / 32) * sizeof(u32);
u32 hwirq_mask = 1 << (hwirq % 32);
if (enable)
writel(readl(reg) | hwirq_mask, reg);
else
writel(readl(reg) & ~hwirq_mask, reg);
}
static void plic_toggle(struct plic_handler *handler, int hwirq, int enable)
{
unsigned long flags;
raw_spin_lock_irqsave(&handler->enable_lock, flags);
__plic_toggle(handler->enable_base, hwirq, enable);
raw_spin_unlock_irqrestore(&handler->enable_lock, flags);
}
static inline void plic_irq_toggle(const struct cpumask *mask,
struct irq_data *d, int enable)
{
int cpu;
for_each_cpu(cpu, mask) {
struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
plic_toggle(handler, d->hwirq, enable);
}
}
static void plic_irq_enable(struct irq_data *d)
{
plic_irq_toggle(irq_data_get_effective_affinity_mask(d), d, 1);
}
static void plic_irq_disable(struct irq_data *d)
{
plic_irq_toggle(irq_data_get_effective_affinity_mask(d), d, 0);
}
static void plic_irq_unmask(struct irq_data *d)
{
struct plic_priv *priv = irq_data_get_irq_chip_data(d);
writel(1, priv->regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID);
}
static void plic_irq_mask(struct irq_data *d)
{
struct plic_priv *priv = irq_data_get_irq_chip_data(d);
writel(0, priv->regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID);
}
static void plic_irq_eoi(struct irq_data *d)
{
struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
if (unlikely(irqd_irq_disabled(d))) {
plic_toggle(handler, d->hwirq, 1);
writel(d->hwirq, handler->hart_base + CONTEXT_CLAIM);
plic_toggle(handler, d->hwirq, 0);
} else {
writel(d->hwirq, handler->hart_base + CONTEXT_CLAIM);
}
}
#ifdef CONFIG_SMP
static int plic_set_affinity(struct irq_data *d,
const struct cpumask *mask_val, bool force)
{
unsigned int cpu;
struct plic_priv *priv = irq_data_get_irq_chip_data(d);
if (force)
cpu = cpumask_first_and(&priv->lmask, mask_val);
else
cpu = cpumask_first_and_and(&priv->lmask, mask_val, cpu_online_mask);
if (cpu >= nr_cpu_ids)
return -EINVAL;
plic_irq_disable(d);
irq_data_update_effective_affinity(d, cpumask_of(cpu));
if (!irqd_irq_disabled(d))
plic_irq_enable(d);
return IRQ_SET_MASK_OK_DONE;
}
#endif
static struct irq_chip plic_edge_chip = {
.name = "SiFive PLIC",
.irq_enable = plic_irq_enable,
.irq_disable = plic_irq_disable,
.irq_ack = plic_irq_eoi,
.irq_mask = plic_irq_mask,
.irq_unmask = plic_irq_unmask,
#ifdef CONFIG_SMP
.irq_set_affinity = plic_set_affinity,
#endif
.irq_set_type = plic_irq_set_type,
.flags = IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_AFFINITY_PRE_STARTUP,
};
static struct irq_chip plic_chip = {
.name = "SiFive PLIC",
.irq_enable = plic_irq_enable,
.irq_disable = plic_irq_disable,
.irq_mask = plic_irq_mask,
.irq_unmask = plic_irq_unmask,
.irq_eoi = plic_irq_eoi,
#ifdef CONFIG_SMP
.irq_set_affinity = plic_set_affinity,
#endif
.irq_set_type = plic_irq_set_type,
.flags = IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_AFFINITY_PRE_STARTUP,
};
static int plic_irq_set_type(struct irq_data *d, unsigned int type)
{
struct plic_priv *priv = irq_data_get_irq_chip_data(d);
if (!test_bit(PLIC_QUIRK_EDGE_INTERRUPT, &priv->plic_quirks))
return IRQ_SET_MASK_OK_NOCOPY;
switch (type) {
case IRQ_TYPE_EDGE_RISING:
irq_set_chip_handler_name_locked(d, &plic_edge_chip,
handle_edge_irq, NULL);
break;
case IRQ_TYPE_LEVEL_HIGH:
irq_set_chip_handler_name_locked(d, &plic_chip,
handle_fasteoi_irq, NULL);
break;
default:
return -EINVAL;
}
return IRQ_SET_MASK_OK;
}
static int plic_irq_suspend(void)
{
unsigned int i, cpu;
unsigned long flags;
u32 __iomem *reg;
struct plic_priv *priv;
priv = per_cpu_ptr(&plic_handlers, smp_processor_id())->priv;
for (i = 0; i < priv->nr_irqs; i++)
if (readl(priv->regs + PRIORITY_BASE + i * PRIORITY_PER_ID))
__set_bit(i, priv->prio_save);
else
__clear_bit(i, priv->prio_save);
for_each_cpu(cpu, cpu_present_mask) {
struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
if (!handler->present)
continue;
raw_spin_lock_irqsave(&handler->enable_lock, flags);
for (i = 0; i < DIV_ROUND_UP(priv->nr_irqs, 32); i++) {
reg = handler->enable_base + i * sizeof(u32);
handler->enable_save[i] = readl(reg);
}
raw_spin_unlock_irqrestore(&handler->enable_lock, flags);
}
return 0;
}
static void plic_irq_resume(void)
{
unsigned int i, index, cpu;
unsigned long flags;
u32 __iomem *reg;
struct plic_priv *priv;
priv = per_cpu_ptr(&plic_handlers, smp_processor_id())->priv;
for (i = 0; i < priv->nr_irqs; i++) {
index = BIT_WORD(i);
writel((priv->prio_save[index] & BIT_MASK(i)) ? 1 : 0,
priv->regs + PRIORITY_BASE + i * PRIORITY_PER_ID);
}
for_each_cpu(cpu, cpu_present_mask) {
struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);
if (!handler->present)
continue;
raw_spin_lock_irqsave(&handler->enable_lock, flags);
for (i = 0; i < DIV_ROUND_UP(priv->nr_irqs, 32); i++) {
reg = handler->enable_base + i * sizeof(u32);
writel(handler->enable_save[i], reg);
}
raw_spin_unlock_irqrestore(&handler->enable_lock, flags);
}
}
static struct syscore_ops plic_irq_syscore_ops = {
.suspend = plic_irq_suspend,
.resume = plic_irq_resume,
};
static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
struct plic_priv *priv = d->host_data;
irq_domain_set_info(d, irq, hwirq, &plic_chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
irq_set_noprobe(irq);
irq_set_affinity(irq, &priv->lmask);
return 0;
}
static int plic_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
struct plic_priv *priv = d->host_data;
if (test_bit(PLIC_QUIRK_EDGE_INTERRUPT, &priv->plic_quirks))
return irq_domain_translate_twocell(d, fwspec, hwirq, type);
return irq_domain_translate_onecell(d, fwspec, hwirq, type);
}
static int plic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
int i, ret;
irq_hw_number_t hwirq;
unsigned int type;
struct irq_fwspec *fwspec = arg;
ret = plic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = plic_irqdomain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static const struct irq_domain_ops plic_irqdomain_ops = {
.translate = plic_irq_domain_translate,
.alloc = plic_irq_domain_alloc,
.free = irq_domain_free_irqs_top,
};
/*
* Handling an interrupt is a two-step process: first you claim the interrupt
* by reading the claim register, then you complete the interrupt by writing
* that source ID back to the same claim register. This automatically enables
* and disables the interrupt, so there's nothing else to do.
*/
static void plic_handle_irq(struct irq_desc *desc)
{
struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
struct irq_chip *chip = irq_desc_get_chip(desc);
void __iomem *claim = handler->hart_base + CONTEXT_CLAIM;
irq_hw_number_t hwirq;
WARN_ON_ONCE(!handler->present);
chained_irq_enter(chip, desc);
while ((hwirq = readl(claim))) {
int err = generic_handle_domain_irq(handler->priv->irqdomain,
hwirq);
if (unlikely(err)) {
dev_warn_ratelimited(handler->priv->dev,
"can't find mapping for hwirq %lu\n", hwirq);
}
}
chained_irq_exit(chip, desc);
}
static void plic_set_threshold(struct plic_handler *handler, u32 threshold)
{
/* priority must be > threshold to trigger an interrupt */
writel(threshold, handler->hart_base + CONTEXT_THRESHOLD);
}
static int plic_dying_cpu(unsigned int cpu)
{
if (plic_parent_irq)
disable_percpu_irq(plic_parent_irq);
return 0;
}
static int plic_starting_cpu(unsigned int cpu)
{
struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
if (plic_parent_irq)
enable_percpu_irq(plic_parent_irq,
irq_get_trigger_type(plic_parent_irq));
else
dev_warn(handler->priv->dev, "cpu%d: parent irq not available\n", cpu);
plic_set_threshold(handler, PLIC_ENABLE_THRESHOLD);
return 0;
}
static const struct of_device_id plic_match[] = {
{ .compatible = "sifive,plic-1.0.0" },
{ .compatible = "riscv,plic0" },
{ .compatible = "andestech,nceplic100",
.data = (const void *)BIT(PLIC_QUIRK_EDGE_INTERRUPT) },
{ .compatible = "thead,c900-plic",
.data = (const void *)BIT(PLIC_QUIRK_EDGE_INTERRUPT) },
{}
};
static int plic_parse_nr_irqs_and_contexts(struct platform_device *pdev,
u32 *nr_irqs, u32 *nr_contexts)
{
struct device *dev = &pdev->dev;
int rc;
/*
* Currently, only OF fwnode is supported so extend this
* function for ACPI support.
*/
if (!is_of_node(dev->fwnode))
return -EINVAL;
rc = of_property_read_u32(to_of_node(dev->fwnode), "riscv,ndev", nr_irqs);
if (rc) {
dev_err(dev, "riscv,ndev property not available\n");
return rc;
}
*nr_contexts = of_irq_count(to_of_node(dev->fwnode));
if (WARN_ON(!(*nr_contexts))) {
dev_err(dev, "no PLIC context available\n");
return -EINVAL;
}
return 0;
}
static int plic_parse_context_parent(struct platform_device *pdev, u32 context,
u32 *parent_hwirq, int *parent_cpu)
{
struct device *dev = &pdev->dev;
struct of_phandle_args parent;
unsigned long hartid;
int rc;
/*
* Currently, only OF fwnode is supported so extend this
* function for ACPI support.
*/
if (!is_of_node(dev->fwnode))
return -EINVAL;
rc = of_irq_parse_one(to_of_node(dev->fwnode), context, &parent);
if (rc)
return rc;
rc = riscv_of_parent_hartid(parent.np, &hartid);
if (rc)
return rc;
*parent_hwirq = parent.args[0];
*parent_cpu = riscv_hartid_to_cpuid(hartid);
return 0;
}
static int plic_probe(struct platform_device *pdev)
{
int error = 0, nr_contexts, nr_handlers = 0, cpu, i;
struct device *dev = &pdev->dev;
unsigned long plic_quirks = 0;
struct plic_handler *handler;
u32 nr_irqs, parent_hwirq;
struct irq_domain *domain;
struct plic_priv *priv;
irq_hw_number_t hwirq;
bool cpuhp_setup;
if (is_of_node(dev->fwnode)) {
const struct of_device_id *id;
id = of_match_node(plic_match, to_of_node(dev->fwnode));
if (id)
plic_quirks = (unsigned long)id->data;
}
error = plic_parse_nr_irqs_and_contexts(pdev, &nr_irqs, &nr_contexts);
if (error)
return error;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->plic_quirks = plic_quirks;
priv->nr_irqs = nr_irqs;
priv->regs = devm_platform_ioremap_resource(pdev, 0);
if (WARN_ON(!priv->regs))
return -EIO;
priv->prio_save = devm_bitmap_zalloc(dev, nr_irqs, GFP_KERNEL);
if (!priv->prio_save)
return -ENOMEM;
for (i = 0; i < nr_contexts; i++) {
error = plic_parse_context_parent(pdev, i, &parent_hwirq, &cpu);
if (error) {
dev_warn(dev, "hwirq for context%d not found\n", i);
continue;
}
/*
* Skip contexts other than external interrupts for our
* privilege level.
*/
if (parent_hwirq != RV_IRQ_EXT) {
/* Disable S-mode enable bits if running in M-mode. */
if (IS_ENABLED(CONFIG_RISCV_M_MODE)) {
void __iomem *enable_base = priv->regs +
CONTEXT_ENABLE_BASE +
i * CONTEXT_ENABLE_SIZE;
for (hwirq = 1; hwirq <= nr_irqs; hwirq++)
__plic_toggle(enable_base, hwirq, 0);
}
continue;
}
if (cpu < 0) {
dev_warn(dev, "Invalid cpuid for context %d\n", i);
continue;
}
/* Find parent domain and register chained handler */
domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(), DOMAIN_BUS_ANY);
if (!plic_parent_irq && domain) {
plic_parent_irq = irq_create_mapping(domain, RV_IRQ_EXT);
if (plic_parent_irq)
irq_set_chained_handler(plic_parent_irq, plic_handle_irq);
}
/*
* When running in M-mode we need to ignore the S-mode handler.
* Here we assume it always comes later, but that might be a
* little fragile.
*/
handler = per_cpu_ptr(&plic_handlers, cpu);
if (handler->present) {
dev_warn(dev, "handler already present for context %d.\n", i);
plic_set_threshold(handler, PLIC_DISABLE_THRESHOLD);
goto done;
}
cpumask_set_cpu(cpu, &priv->lmask);
handler->present = true;
handler->hart_base = priv->regs + CONTEXT_BASE +
i * CONTEXT_SIZE;
raw_spin_lock_init(&handler->enable_lock);
handler->enable_base = priv->regs + CONTEXT_ENABLE_BASE +
i * CONTEXT_ENABLE_SIZE;
handler->priv = priv;
handler->enable_save = devm_kcalloc(dev, DIV_ROUND_UP(nr_irqs, 32),
sizeof(*handler->enable_save), GFP_KERNEL);
if (!handler->enable_save)
goto fail_cleanup_contexts;
done:
for (hwirq = 1; hwirq <= nr_irqs; hwirq++) {
plic_toggle(handler, hwirq, 0);
writel(1, priv->regs + PRIORITY_BASE +
hwirq * PRIORITY_PER_ID);
}
nr_handlers++;
}
priv->irqdomain = irq_domain_add_linear(to_of_node(dev->fwnode), nr_irqs + 1,
&plic_irqdomain_ops, priv);
if (WARN_ON(!priv->irqdomain))
goto fail_cleanup_contexts;
/*
* We can have multiple PLIC instances so setup cpuhp state
* and register syscore operations only once after context
* handlers of all online CPUs are initialized.
*/
if (!plic_cpuhp_setup_done) {
cpuhp_setup = true;
for_each_online_cpu(cpu) {
handler = per_cpu_ptr(&plic_handlers, cpu);
if (!handler->present) {
cpuhp_setup = false;
break;
}
}
if (cpuhp_setup) {
cpuhp_setup_state(CPUHP_AP_IRQ_SIFIVE_PLIC_STARTING,
"irqchip/sifive/plic:starting",
plic_starting_cpu, plic_dying_cpu);
register_syscore_ops(&plic_irq_syscore_ops);
plic_cpuhp_setup_done = true;
}
}
dev_info(dev, "mapped %d interrupts with %d handlers for %d contexts.\n",
nr_irqs, nr_handlers, nr_contexts);
return 0;
fail_cleanup_contexts:
for (i = 0; i < nr_contexts; i++) {
if (plic_parse_context_parent(pdev, i, &parent_hwirq, &cpu))
continue;
if (parent_hwirq != RV_IRQ_EXT || cpu < 0)
continue;
handler = per_cpu_ptr(&plic_handlers, cpu);
handler->present = false;
handler->hart_base = NULL;
handler->enable_base = NULL;
handler->enable_save = NULL;
handler->priv = NULL;
}
return -ENOMEM;
}
static struct platform_driver plic_driver = {
.driver = {
.name = "riscv-plic",
.of_match_table = plic_match,
},
.probe = plic_probe,
};
builtin_platform_driver(plic_driver);