/*
* Broadcom NetXtreme-E RoCE driver.
*
* Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
* Broadcom refers to Broadcom Limited and/or its subsidiaries.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Description: Main component of the bnxt_re driver
*/
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/rculist.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <net/dcbnl.h>
#include <net/ipv6.h>
#include <net/addrconf.h>
#include <linux/if_ether.h>
#include <linux/auxiliary_bus.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_user_verbs.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_addr.h>
#include <linux/hashtable.h>
#include "bnxt_ulp.h"
#include "roce_hsi.h"
#include "qplib_res.h"
#include "qplib_sp.h"
#include "qplib_fp.h"
#include "qplib_rcfw.h"
#include "bnxt_re.h"
#include "ib_verbs.h"
#include <rdma/bnxt_re-abi.h>
#include "bnxt.h"
#include "hw_counters.h"
static char version[] =
BNXT_RE_DESC "\n";
MODULE_AUTHOR("Eddie Wai <eddie.wai@broadcom.com>");
MODULE_DESCRIPTION(BNXT_RE_DESC);
MODULE_LICENSE("Dual BSD/GPL");
/* globals */
static DEFINE_MUTEX(bnxt_re_mutex);
static void bnxt_re_stop_irq(void *handle);
static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev);
static int bnxt_re_netdev_event(struct notifier_block *notifier,
unsigned long event, void *ptr);
static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev);
static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev);
static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev);
static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
u32 *offset);
static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_en_dev *en_dev;
struct bnxt_qplib_res *res;
u32 l2db_len = 0;
u32 offset = 0;
u32 barlen;
int rc;
res = &rdev->qplib_res;
en_dev = rdev->en_dev;
cctx = rdev->chip_ctx;
/* Issue qcfg */
rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset);
if (rc)
dev_info(rdev_to_dev(rdev),
"Couldn't get DB bar size, Low latency framework is disabled\n");
/* set register offsets for both UC and WC */
if (bnxt_qplib_is_chip_gen_p7(cctx)) {
res->dpi_tbl.ucreg.offset = offset;
res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
} else {
res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET :
BNXT_QPLIB_DBR_PF_DB_OFFSET;
res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset;
}
/* If WC mapping is disabled by L2 driver then en_dev->l2_db_size
* is equal to the DB-Bar actual size. This indicates that L2
* is mapping entire bar as UC-. RoCE driver can't enable WC mapping
* in such cases and DB-push will be disabled.
*/
barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION);
if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) {
res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
dev_info(rdev_to_dev(rdev), "Low latency framework is enabled\n");
}
}
static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev, u8 mode)
{
struct bnxt_qplib_chip_ctx *cctx;
cctx = rdev->chip_ctx;
cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ?
mode : BNXT_QPLIB_WQE_MODE_STATIC;
if (bnxt_re_hwrm_qcaps(rdev))
dev_err(rdev_to_dev(rdev),
"Failed to query hwrm qcaps\n");
if (bnxt_qplib_is_chip_gen_p7(rdev->chip_ctx))
cctx->modes.toggle_bits |= BNXT_QPLIB_CQ_TOGGLE_BIT;
}
static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_chip_ctx *chip_ctx;
if (!rdev->chip_ctx)
return;
chip_ctx = rdev->chip_ctx;
rdev->chip_ctx = NULL;
rdev->rcfw.res = NULL;
rdev->qplib_res.cctx = NULL;
rdev->qplib_res.pdev = NULL;
rdev->qplib_res.netdev = NULL;
kfree(chip_ctx);
}
static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev, u8 wqe_mode)
{
struct bnxt_qplib_chip_ctx *chip_ctx;
struct bnxt_en_dev *en_dev;
int rc;
en_dev = rdev->en_dev;
chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL);
if (!chip_ctx)
return -ENOMEM;
chip_ctx->chip_num = en_dev->chip_num;
chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size;
rdev->chip_ctx = chip_ctx;
/* rest members to follow eventually */
rdev->qplib_res.cctx = rdev->chip_ctx;
rdev->rcfw.res = &rdev->qplib_res;
rdev->qplib_res.dattr = &rdev->dev_attr;
rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev);
bnxt_re_set_drv_mode(rdev, wqe_mode);
bnxt_re_set_db_offset(rdev);
rc = bnxt_qplib_map_db_bar(&rdev->qplib_res);
if (rc)
return rc;
if (bnxt_qplib_determine_atomics(en_dev->pdev))
ibdev_info(&rdev->ibdev,
"platform doesn't support global atomics.");
return 0;
}
/* SR-IOV helper functions */
static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev)
{
if (BNXT_EN_VF(rdev->en_dev))
rdev->is_virtfn = 1;
}
/* Set the maximum number of each resource that the driver actually wants
* to allocate. This may be up to the maximum number the firmware has
* reserved for the function. The driver may choose to allocate fewer
* resources than the firmware maximum.
*/
static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_dev_attr *attr;
struct bnxt_qplib_ctx *ctx;
int i;
attr = &rdev->dev_attr;
ctx = &rdev->qplib_ctx;
ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT,
attr->max_qp);
ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K;
/* Use max_mr from fw since max_mrw does not get set */
ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr);
ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT,
attr->max_srq);
ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq);
if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
rdev->qplib_ctx.tqm_ctx.qcount[i] =
rdev->dev_attr.tqm_alloc_reqs[i];
}
static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf)
{
struct bnxt_qplib_vf_res *vf_res;
u32 mrws = 0;
u32 vf_pct;
u32 nvfs;
vf_res = &qplib_ctx->vf_res;
/*
* Reserve a set of resources for the PF. Divide the remaining
* resources among the VFs
*/
vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF;
nvfs = num_vf;
num_vf = 100 * num_vf;
vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf;
vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf;
vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf;
/*
* The driver allows many more MRs than other resources. If the
* firmware does also, then reserve a fixed amount for the PF and
* divide the rest among VFs. VFs may use many MRs for NFS
* mounts, ISER, NVME applications, etc. If the firmware severely
* restricts the number of MRs, then let PF have half and divide
* the rest among VFs, as for the other resource types.
*/
if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) {
mrws = qplib_ctx->mrw_count * vf_pct;
nvfs = num_vf;
} else {
mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF;
}
vf_res->max_mrw_per_vf = (mrws / nvfs);
vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF;
}
static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev)
{
u32 num_vfs;
memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res));
bnxt_re_limit_pf_res(rdev);
num_vfs = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ?
BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs;
if (num_vfs)
bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs);
}
static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev)
{
rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev);
if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) {
bnxt_re_set_resource_limits(rdev);
bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw,
&rdev->qplib_ctx);
}
}
static void bnxt_re_shutdown(struct auxiliary_device *adev)
{
struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev);
if (!rdev)
return;
ib_unregister_device(&rdev->ibdev);
bnxt_re_dev_uninit(rdev);
}
static void bnxt_re_stop_irq(void *handle)
{
struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle;
struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw;
struct bnxt_qplib_nq *nq;
int indx;
for (indx = BNXT_RE_NQ_IDX; indx < rdev->num_msix; indx++) {
nq = &rdev->nq[indx - 1];
bnxt_qplib_nq_stop_irq(nq, false);
}
bnxt_qplib_rcfw_stop_irq(rcfw, false);
}
static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent)
{
struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle;
struct bnxt_msix_entry *msix_ent = rdev->en_dev->msix_entries;
struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw;
struct bnxt_qplib_nq *nq;
int indx, rc;
if (!ent) {
/* Not setting the f/w timeout bit in rcfw.
* During the driver unload the first command
* to f/w will timeout and that will set the
* timeout bit.
*/
ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n");
return;
}
/* Vectors may change after restart, so update with new vectors
* in device sctructure.
*/
for (indx = 0; indx < rdev->num_msix; indx++)
rdev->en_dev->msix_entries[indx].vector = ent[indx].vector;
rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector,
false);
if (rc) {
ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n");
return;
}
for (indx = BNXT_RE_NQ_IDX ; indx < rdev->num_msix; indx++) {
nq = &rdev->nq[indx - 1];
rc = bnxt_qplib_nq_start_irq(nq, indx - 1,
msix_ent[indx].vector, false);
if (rc) {
ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n",
indx - 1);
return;
}
}
}
static struct bnxt_ulp_ops bnxt_re_ulp_ops = {
.ulp_irq_stop = bnxt_re_stop_irq,
.ulp_irq_restart = bnxt_re_start_irq
};
/* RoCE -> Net driver */
static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev;
int rc;
en_dev = rdev->en_dev;
rc = bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev);
if (!rc)
rdev->qplib_res.pdev = rdev->en_dev->pdev;
return rc;
}
static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd)
{
hdr->req_type = cpu_to_le16(opcd);
hdr->cmpl_ring = cpu_to_le16(-1);
hdr->target_id = cpu_to_le16(-1);
}
static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg,
int msg_len, void *resp, int resp_max_len,
int timeout)
{
fw_msg->msg = msg;
fw_msg->msg_len = msg_len;
fw_msg->resp = resp;
fw_msg->resp_max_len = resp_max_len;
fw_msg->timeout = timeout;
}
/* Query device config using common hwrm */
static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
u32 *offset)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_func_qcfg_output resp = {0};
struct hwrm_func_qcfg_input req = {0};
struct bnxt_fw_msg fw_msg = {};
int rc;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG);
req.fid = cpu_to_le16(0xffff);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (!rc) {
*db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024);
*offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024);
}
return rc;
}
/* Query function capabilities using common hwrm */
int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_func_qcaps_output resp = {};
struct hwrm_func_qcaps_input req = {};
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_fw_msg fw_msg = {};
u32 flags_ext2;
int rc;
cctx = rdev->chip_ctx;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS);
req.fid = cpu_to_le16(0xffff);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (rc)
return rc;
cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE;
flags_ext2 = le32_to_cpu(resp.flags_ext2);
cctx->modes.dbr_pacing = flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED ||
flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_V0_SUPPORTED;
return 0;
}
static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
struct hwrm_func_dbr_pacing_qcfg_output resp = {};
struct hwrm_func_dbr_pacing_qcfg_input req = {};
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_fw_msg fw_msg = {};
int rc;
cctx = rdev->chip_ctx;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (rc)
return rc;
if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) ==
FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC)
cctx->dbr_stat_db_fifo =
le32_to_cpu(resp.dbr_stat_db_fifo_reg) &
~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK;
pacing_data->fifo_max_depth = le32_to_cpu(resp.dbr_stat_db_max_fifo_depth);
if (!pacing_data->fifo_max_depth)
pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH(cctx);
pacing_data->fifo_room_mask = le32_to_cpu(resp.dbr_stat_db_fifo_reg_fifo_room_mask);
pacing_data->fifo_room_shift = resp.dbr_stat_db_fifo_reg_fifo_room_shift;
return 0;
}
/* Update the pacing tunable parameters to the default values */
static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing;
pacing_data->pacing_th = rdev->pacing.pacing_algo_th;
pacing_data->alarm_th =
pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
}
static u32 __get_fifo_occupancy(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
u32 read_val, fifo_occup;
read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off);
fifo_occup = pacing_data->fifo_max_depth -
((read_val & pacing_data->fifo_room_mask) >>
pacing_data->fifo_room_shift);
return fifo_occup;
}
static bool is_dbr_fifo_full(struct bnxt_re_dev *rdev)
{
u32 max_occup, fifo_occup;
fifo_occup = __get_fifo_occupancy(rdev);
max_occup = BNXT_RE_MAX_FIFO_DEPTH(rdev->chip_ctx) - 1;
if (fifo_occup == max_occup)
return true;
return false;
}
static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
u32 fifo_occup;
/* loop shouldn't run infintely as the occupancy usually goes
* below pacing algo threshold as soon as pacing kicks in.
*/
while (1) {
fifo_occup = __get_fifo_occupancy(rdev);
/* Fifo occupancy cannot be greater the MAX FIFO depth */
if (fifo_occup > pacing_data->fifo_max_depth)
break;
if (fifo_occup < pacing_data->pacing_th)
break;
}
}
static void bnxt_re_db_fifo_check(struct work_struct *work)
{
struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
dbq_fifo_check_work);
struct bnxt_qplib_db_pacing_data *pacing_data;
u32 pacing_save;
if (!mutex_trylock(&rdev->pacing.dbq_lock))
return;
pacing_data = rdev->qplib_res.pacing_data;
pacing_save = rdev->pacing.do_pacing_save;
__wait_for_fifo_occupancy_below_th(rdev);
cancel_delayed_work_sync(&rdev->dbq_pacing_work);
if (pacing_save > rdev->pacing.dbr_def_do_pacing) {
/* Double the do_pacing value during the congestion */
pacing_save = pacing_save << 1;
} else {
/*
* when a new congestion is detected increase the do_pacing
* by 8 times. And also increase the pacing_th by 4 times. The
* reason to increase pacing_th is to give more space for the
* queue to oscillate down without getting empty, but also more
* room for the queue to increase without causing another alarm.
*/
pacing_save = pacing_save << 3;
pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4;
}
if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING)
pacing_save = BNXT_RE_MAX_DBR_DO_PACING;
pacing_data->do_pacing = pacing_save;
rdev->pacing.do_pacing_save = pacing_data->do_pacing;
pacing_data->alarm_th =
pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE;
schedule_delayed_work(&rdev->dbq_pacing_work,
msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
rdev->stats.pacing.alerts++;
mutex_unlock(&rdev->pacing.dbq_lock);
}
static void bnxt_re_pacing_timer_exp(struct work_struct *work)
{
struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
dbq_pacing_work.work);
struct bnxt_qplib_db_pacing_data *pacing_data;
u32 fifo_occup;
if (!mutex_trylock(&rdev->pacing.dbq_lock))
return;
pacing_data = rdev->qplib_res.pacing_data;
fifo_occup = __get_fifo_occupancy(rdev);
if (fifo_occup > pacing_data->pacing_th)
goto restart_timer;
/*
* Instead of immediately going back to the default do_pacing
* reduce it by 1/8 times and restart the timer.
*/
pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3);
pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing);
if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) {
bnxt_re_set_default_pacing_data(rdev);
rdev->stats.pacing.complete++;
goto dbq_unlock;
}
restart_timer:
schedule_delayed_work(&rdev->dbq_pacing_work,
msecs_to_jiffies(rdev->pacing.dbq_pacing_time));
rdev->stats.pacing.resched++;
dbq_unlock:
rdev->pacing.do_pacing_save = pacing_data->do_pacing;
mutex_unlock(&rdev->pacing.dbq_lock);
}
void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data;
if (!rdev->pacing.dbr_pacing)
return;
mutex_lock(&rdev->pacing.dbq_lock);
pacing_data = rdev->qplib_res.pacing_data;
/*
* Increase the alarm_th to max so that other user lib instances do not
* keep alerting the driver.
*/
pacing_data->alarm_th = pacing_data->fifo_max_depth;
pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING;
cancel_work_sync(&rdev->dbq_fifo_check_work);
schedule_work(&rdev->dbq_fifo_check_work);
mutex_unlock(&rdev->pacing.dbq_lock);
}
static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev)
{
/* Allocate a page for app use */
rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL);
if (!rdev->pacing.dbr_page)
return -ENOMEM;
memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE);
rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page;
if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) {
free_page((u64)rdev->pacing.dbr_page);
rdev->pacing.dbr_page = NULL;
return -EIO;
}
/* MAP HW window 2 for reading db fifo depth */
writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK,
rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
rdev->pacing.dbr_db_fifo_reg_off =
(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) +
BNXT_RE_GRC_FIFO_REG_BASE;
rdev->pacing.dbr_bar_addr =
pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off;
if (is_dbr_fifo_full(rdev)) {
free_page((u64)rdev->pacing.dbr_page);
rdev->pacing.dbr_page = NULL;
return -EIO;
}
rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD;
rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME;
rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION;
rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing;
rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off;
bnxt_re_set_default_pacing_data(rdev);
/* Initialize worker for DBR Pacing */
INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check);
INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp);
return 0;
}
static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev)
{
cancel_work_sync(&rdev->dbq_fifo_check_work);
cancel_delayed_work_sync(&rdev->dbq_pacing_work);
if (rdev->pacing.dbr_page)
free_page((u64)rdev->pacing.dbr_page);
rdev->pacing.dbr_page = NULL;
rdev->pacing.dbr_pacing = false;
}
static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev,
u16 fw_ring_id, int type)
{
struct bnxt_en_dev *en_dev;
struct hwrm_ring_free_input req = {};
struct hwrm_ring_free_output resp;
struct bnxt_fw_msg fw_msg = {};
int rc = -EINVAL;
if (!rdev)
return rc;
en_dev = rdev->en_dev;
if (!en_dev)
return rc;
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
return 0;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE);
req.ring_type = type;
req.ring_id = cpu_to_le16(fw_ring_id);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (rc)
ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x",
req.ring_id, rc);
return rc;
}
static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev,
struct bnxt_re_ring_attr *ring_attr,
u16 *fw_ring_id)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_ring_alloc_input req = {};
struct hwrm_ring_alloc_output resp;
struct bnxt_fw_msg fw_msg = {};
int rc = -EINVAL;
if (!en_dev)
return rc;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC);
req.enables = 0;
req.page_tbl_addr = cpu_to_le64(ring_attr->dma_arr[0]);
if (ring_attr->pages > 1) {
/* Page size is in log2 units */
req.page_size = BNXT_PAGE_SHIFT;
req.page_tbl_depth = 1;
}
req.fbo = 0;
/* Association of ring index with doorbell index and MSIX number */
req.logical_id = cpu_to_le16(ring_attr->lrid);
req.length = cpu_to_le32(ring_attr->depth + 1);
req.ring_type = ring_attr->type;
req.int_mode = ring_attr->mode;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (!rc)
*fw_ring_id = le16_to_cpu(resp.ring_id);
return rc;
}
static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev,
u32 fw_stats_ctx_id)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_stat_ctx_free_input req = {};
struct hwrm_stat_ctx_free_output resp = {};
struct bnxt_fw_msg fw_msg = {};
int rc = -EINVAL;
if (!en_dev)
return rc;
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
return 0;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE);
req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (rc)
ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x",
rc);
return rc;
}
static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev,
dma_addr_t dma_map,
u32 *fw_stats_ctx_id)
{
struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx;
struct hwrm_stat_ctx_alloc_output resp = {};
struct hwrm_stat_ctx_alloc_input req = {};
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_fw_msg fw_msg = {};
int rc = -EINVAL;
*fw_stats_ctx_id = INVALID_STATS_CTX_ID;
if (!en_dev)
return rc;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC);
req.update_period_ms = cpu_to_le32(1000);
req.stats_dma_addr = cpu_to_le64(dma_map);
req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size);
req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (!rc)
*fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id);
return rc;
}
static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext)
{
}
/* Device */
static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev)
{
struct ib_device *ibdev =
ib_device_get_by_netdev(netdev, RDMA_DRIVER_BNXT_RE);
if (!ibdev)
return NULL;
return container_of(ibdev, struct bnxt_re_dev, ibdev);
}
static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr,
char *buf)
{
struct bnxt_re_dev *rdev =
rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor);
}
static DEVICE_ATTR_RO(hw_rev);
static ssize_t hca_type_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct bnxt_re_dev *rdev =
rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev);
return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc);
}
static DEVICE_ATTR_RO(hca_type);
static struct attribute *bnxt_re_attributes[] = {
&dev_attr_hw_rev.attr,
&dev_attr_hca_type.attr,
NULL
};
static const struct attribute_group bnxt_re_dev_attr_group = {
.attrs = bnxt_re_attributes,
};
static const struct ib_device_ops bnxt_re_dev_ops = {
.owner = THIS_MODULE,
.driver_id = RDMA_DRIVER_BNXT_RE,
.uverbs_abi_ver = BNXT_RE_ABI_VERSION,
.add_gid = bnxt_re_add_gid,
.alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats,
.alloc_mr = bnxt_re_alloc_mr,
.alloc_pd = bnxt_re_alloc_pd,
.alloc_ucontext = bnxt_re_alloc_ucontext,
.create_ah = bnxt_re_create_ah,
.create_cq = bnxt_re_create_cq,
.create_qp = bnxt_re_create_qp,
.create_srq = bnxt_re_create_srq,
.create_user_ah = bnxt_re_create_ah,
.dealloc_pd = bnxt_re_dealloc_pd,
.dealloc_ucontext = bnxt_re_dealloc_ucontext,
.del_gid = bnxt_re_del_gid,
.dereg_mr = bnxt_re_dereg_mr,
.destroy_ah = bnxt_re_destroy_ah,
.destroy_cq = bnxt_re_destroy_cq,
.destroy_qp = bnxt_re_destroy_qp,
.destroy_srq = bnxt_re_destroy_srq,
.device_group = &bnxt_re_dev_attr_group,
.disassociate_ucontext = bnxt_re_disassociate_ucontext,
.get_dev_fw_str = bnxt_re_query_fw_str,
.get_dma_mr = bnxt_re_get_dma_mr,
.get_hw_stats = bnxt_re_ib_get_hw_stats,
.get_link_layer = bnxt_re_get_link_layer,
.get_port_immutable = bnxt_re_get_port_immutable,
.map_mr_sg = bnxt_re_map_mr_sg,
.mmap = bnxt_re_mmap,
.mmap_free = bnxt_re_mmap_free,
.modify_qp = bnxt_re_modify_qp,
.modify_srq = bnxt_re_modify_srq,
.poll_cq = bnxt_re_poll_cq,
.post_recv = bnxt_re_post_recv,
.post_send = bnxt_re_post_send,
.post_srq_recv = bnxt_re_post_srq_recv,
.query_ah = bnxt_re_query_ah,
.query_device = bnxt_re_query_device,
.query_pkey = bnxt_re_query_pkey,
.query_port = bnxt_re_query_port,
.query_qp = bnxt_re_query_qp,
.query_srq = bnxt_re_query_srq,
.reg_user_mr = bnxt_re_reg_user_mr,
.reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf,
.req_notify_cq = bnxt_re_req_notify_cq,
.resize_cq = bnxt_re_resize_cq,
INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah),
INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq),
INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd),
INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp),
INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq),
INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx),
};
static int bnxt_re_register_ib(struct bnxt_re_dev *rdev)
{
struct ib_device *ibdev = &rdev->ibdev;
int ret;
/* ib device init */
ibdev->node_type = RDMA_NODE_IB_CA;
strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA",
strlen(BNXT_RE_DESC) + 5);
ibdev->phys_port_cnt = 1;
addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr);
ibdev->num_comp_vectors = rdev->num_msix - 1;
ibdev->dev.parent = &rdev->en_dev->pdev->dev;
ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY;
if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS))
ibdev->driver_def = bnxt_re_uapi_defs;
ib_set_device_ops(ibdev, &bnxt_re_dev_ops);
ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1);
if (ret)
return ret;
dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX);
ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ);
return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev);
}
static struct bnxt_re_dev *bnxt_re_dev_add(struct bnxt_aux_priv *aux_priv,
struct bnxt_en_dev *en_dev)
{
struct bnxt_re_dev *rdev;
/* Allocate bnxt_re_dev instance here */
rdev = ib_alloc_device(bnxt_re_dev, ibdev);
if (!rdev) {
ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!",
ROCE_DRV_MODULE_NAME);
return NULL;
}
/* Default values */
rdev->nb.notifier_call = NULL;
rdev->netdev = en_dev->net;
rdev->en_dev = en_dev;
rdev->id = rdev->en_dev->pdev->devfn;
INIT_LIST_HEAD(&rdev->qp_list);
mutex_init(&rdev->qp_lock);
mutex_init(&rdev->pacing.dbq_lock);
atomic_set(&rdev->stats.res.qp_count, 0);
atomic_set(&rdev->stats.res.cq_count, 0);
atomic_set(&rdev->stats.res.srq_count, 0);
atomic_set(&rdev->stats.res.mr_count, 0);
atomic_set(&rdev->stats.res.mw_count, 0);
atomic_set(&rdev->stats.res.ah_count, 0);
atomic_set(&rdev->stats.res.pd_count, 0);
rdev->cosq[0] = 0xFFFF;
rdev->cosq[1] = 0xFFFF;
return rdev;
}
static int bnxt_re_handle_unaffi_async_event(struct creq_func_event
*unaffi_async)
{
switch (unaffi_async->event) {
case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_CQ_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_TQM_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR:
break;
case CREQ_FUNC_EVENT_EVENT_TIM_ERROR:
break;
default:
return -EINVAL;
}
return 0;
}
static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event,
struct bnxt_re_qp *qp)
{
struct bnxt_re_srq *srq = container_of(qp->qplib_qp.srq, struct bnxt_re_srq,
qplib_srq);
struct creq_qp_error_notification *err_event;
struct ib_event event = {};
unsigned int flags;
if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR &&
rdma_is_kernel_res(&qp->ib_qp.res)) {
flags = bnxt_re_lock_cqs(qp);
bnxt_qplib_add_flush_qp(&qp->qplib_qp);
bnxt_re_unlock_cqs(qp, flags);
}
event.device = &qp->rdev->ibdev;
event.element.qp = &qp->ib_qp;
event.event = IB_EVENT_QP_FATAL;
err_event = (struct creq_qp_error_notification *)qp_event;
switch (err_event->req_err_state_reason) {
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_OPCODE_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TIMEOUT_RETRY_LIMIT:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RNR_TIMEOUT_RETRY_LIMIT:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_2:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_3:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_READ_RESP:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_BIND:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_FAST_REG:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ILLEGAL_INVALIDATE:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETRAN_LOCAL_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_AV_DOMAIN_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PROD_WQE_MSMTCH_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_PSN_RANGE_CHECK_ERROR:
event.event = IB_EVENT_QP_ACCESS_ERR;
break;
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_1:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_NAK_ARRIVAL_4:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_READ_RESP_LENGTH:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_WQE_FORMAT_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_ORRQ_FORMAT_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_AVID_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_SERV_TYPE_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_INVALID_OP_ERROR:
event.event = IB_EVENT_QP_REQ_ERR;
break;
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_MEMORY_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_MEMORY_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CMP_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_CQ_LOAD_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_TX_PCI_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RX_PCI_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_REQ_ERR_STATE_REASON_REQ_RETX_SETUP_ERROR:
event.event = IB_EVENT_QP_FATAL;
break;
default:
break;
}
switch (err_event->res_err_state_reason) {
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEED_MAX:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PAYLOAD_LENGTH_MISMATCH:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_SEQ_ERROR_RETRY_LIMIT:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_INVALID_R_KEY:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_DOMAIN_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_NO_PERMISSION:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_RANGE_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_INVALID_R_KEY:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_DOMAIN_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_NO_PERMISSION:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_RANGE_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNALIGN_ATOMIC:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_PSN_NOT_FOUND:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_INVALID_DUP_RKEY:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_FORMAT_ERROR:
event.event = IB_EVENT_QP_ACCESS_ERR;
break;
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_EXCEEDS_WQE:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_WQE_FORMAT_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_UNSUPPORTED_OPCODE:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_REM_INVALIDATE:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_OPCODE_ERROR:
event.event = IB_EVENT_QP_REQ_ERR;
break;
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_IRRQ_OFLOW:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CMP_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_CQ_LOAD_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_TX_PCI_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_RX_PCI_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_MEMORY_ERROR:
event.event = IB_EVENT_QP_FATAL;
break;
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_LOAD_ERROR:
case CREQ_QP_ERROR_NOTIFICATION_RES_ERR_STATE_REASON_RES_SRQ_ERROR:
if (srq)
event.event = IB_EVENT_SRQ_ERR;
break;
default:
break;
}
if (err_event->res_err_state_reason || err_event->req_err_state_reason) {
ibdev_dbg(&qp->rdev->ibdev,
"%s %s qp_id: %d cons (%d %d) req (%d %d) res (%d %d)\n",
__func__, rdma_is_kernel_res(&qp->ib_qp.res) ? "kernel" : "user",
qp->qplib_qp.id,
err_event->sq_cons_idx,
err_event->rq_cons_idx,
err_event->req_slow_path_state,
err_event->req_err_state_reason,
err_event->res_slow_path_state,
err_event->res_err_state_reason);
} else {
if (srq)
event.event = IB_EVENT_QP_LAST_WQE_REACHED;
}
if (event.event == IB_EVENT_SRQ_ERR && srq->ib_srq.event_handler) {
(*srq->ib_srq.event_handler)(&event,
srq->ib_srq.srq_context);
} else if (event.device && qp->ib_qp.event_handler) {
qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context);
}
return 0;
}
static int bnxt_re_handle_cq_async_error(void *event, struct bnxt_re_cq *cq)
{
struct creq_cq_error_notification *cqerr;
struct ib_event ibevent = {};
cqerr = event;
switch (cqerr->cq_err_reason) {
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_INVALID_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_OVERFLOW_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_LOAD_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_INVALID_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_OVERFLOW_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_LOAD_ERROR:
ibevent.event = IB_EVENT_CQ_ERR;
break;
default:
break;
}
if (ibevent.event == IB_EVENT_CQ_ERR && cq->ib_cq.event_handler) {
ibevent.element.cq = &cq->ib_cq;
ibevent.device = &cq->rdev->ibdev;
ibdev_dbg(&cq->rdev->ibdev,
"%s err reason %d\n", __func__, cqerr->cq_err_reason);
cq->ib_cq.event_handler(&ibevent, cq->ib_cq.cq_context);
}
return 0;
}
static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async,
void *obj)
{
struct bnxt_qplib_qp *lib_qp;
struct bnxt_qplib_cq *lib_cq;
struct bnxt_re_qp *qp;
struct bnxt_re_cq *cq;
int rc = 0;
u8 event;
if (!obj)
return rc; /* QP was already dead, still return success */
event = affi_async->event;
switch (event) {
case CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION:
lib_qp = obj;
qp = container_of(lib_qp, struct bnxt_re_qp, qplib_qp);
rc = bnxt_re_handle_qp_async_event(affi_async, qp);
break;
case CREQ_QP_EVENT_EVENT_CQ_ERROR_NOTIFICATION:
lib_cq = obj;
cq = container_of(lib_cq, struct bnxt_re_cq, qplib_cq);
rc = bnxt_re_handle_cq_async_error(affi_async, cq);
break;
default:
rc = -EINVAL;
}
return rc;
}
static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw,
void *aeqe, void *obj)
{
struct creq_qp_event *affi_async;
struct creq_func_event *unaffi_async;
u8 type;
int rc;
type = ((struct creq_base *)aeqe)->type;
if (type == CREQ_BASE_TYPE_FUNC_EVENT) {
unaffi_async = aeqe;
rc = bnxt_re_handle_unaffi_async_event(unaffi_async);
} else {
affi_async = aeqe;
rc = bnxt_re_handle_affi_async_event(affi_async, obj);
}
return rc;
}
static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq,
struct bnxt_qplib_srq *handle, u8 event)
{
struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq,
qplib_srq);
struct ib_event ib_event;
ib_event.device = &srq->rdev->ibdev;
ib_event.element.srq = &srq->ib_srq;
if (srq->ib_srq.event_handler) {
if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT)
ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED;
(*srq->ib_srq.event_handler)(&ib_event,
srq->ib_srq.srq_context);
}
return 0;
}
static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq,
struct bnxt_qplib_cq *handle)
{
struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq,
qplib_cq);
u32 *cq_ptr;
if (cq->ib_cq.comp_handler) {
if (cq->uctx_cq_page) {
cq_ptr = (u32 *)cq->uctx_cq_page;
*cq_ptr = cq->qplib_cq.toggle;
}
(*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context);
}
return 0;
}
static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev)
{
int i;
for (i = 1; i < rdev->num_msix; i++)
bnxt_qplib_disable_nq(&rdev->nq[i - 1]);
if (rdev->qplib_res.rcfw)
bnxt_qplib_cleanup_res(&rdev->qplib_res);
}
static int bnxt_re_init_res(struct bnxt_re_dev *rdev)
{
int num_vec_enabled = 0;
int rc = 0, i;
u32 db_offt;
bnxt_qplib_init_res(&rdev->qplib_res);
for (i = 1; i < rdev->num_msix ; i++) {
db_offt = rdev->en_dev->msix_entries[i].db_offset;
rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nq[i - 1],
i - 1, rdev->en_dev->msix_entries[i].vector,
db_offt, &bnxt_re_cqn_handler,
&bnxt_re_srqn_handler);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to enable NQ with rc = 0x%x", rc);
goto fail;
}
num_vec_enabled++;
}
return 0;
fail:
for (i = num_vec_enabled; i >= 0; i--)
bnxt_qplib_disable_nq(&rdev->nq[i]);
return rc;
}
static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev)
{
u8 type;
int i;
for (i = 0; i < rdev->num_msix - 1; i++) {
type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type);
bnxt_qplib_free_nq(&rdev->nq[i]);
rdev->nq[i].res = NULL;
}
}
static void bnxt_re_free_res(struct bnxt_re_dev *rdev)
{
bnxt_re_free_nq_res(rdev);
if (rdev->qplib_res.dpi_tbl.max) {
bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
&rdev->dpi_privileged);
}
if (rdev->qplib_res.rcfw) {
bnxt_qplib_free_res(&rdev->qplib_res);
rdev->qplib_res.rcfw = NULL;
}
}
static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev)
{
struct bnxt_re_ring_attr rattr = {};
int num_vec_created = 0;
int rc, i;
u8 type;
/* Configure and allocate resources for qplib */
rdev->qplib_res.rcfw = &rdev->rcfw;
rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->en_dev->pdev,
rdev->netdev, &rdev->dev_attr);
if (rc)
goto fail;
rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res,
&rdev->dpi_privileged,
rdev, BNXT_QPLIB_DPI_TYPE_KERNEL);
if (rc)
goto dealloc_res;
for (i = 0; i < rdev->num_msix - 1; i++) {
struct bnxt_qplib_nq *nq;
nq = &rdev->nq[i];
nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT;
rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, &rdev->nq[i]);
if (rc) {
ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x",
i, rc);
goto free_nq;
}
type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr;
rattr.pages = nq->hwq.pbl[rdev->nq[i].hwq.level].pg_count;
rattr.type = type;
rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1;
rattr.lrid = rdev->en_dev->msix_entries[i + 1].ring_idx;
rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to allocate NQ fw id with rc = 0x%x",
rc);
bnxt_qplib_free_nq(&rdev->nq[i]);
goto free_nq;
}
num_vec_created++;
}
return 0;
free_nq:
for (i = num_vec_created - 1; i >= 0; i--) {
type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type);
bnxt_qplib_free_nq(&rdev->nq[i]);
}
bnxt_qplib_dealloc_dpi(&rdev->qplib_res,
&rdev->dpi_privileged);
dealloc_res:
bnxt_qplib_free_res(&rdev->qplib_res);
fail:
rdev->qplib_res.rcfw = NULL;
return rc;
}
static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp,
u8 port_num, enum ib_event_type event)
{
struct ib_event ib_event;
ib_event.device = ibdev;
if (qp) {
ib_event.element.qp = qp;
ib_event.event = event;
if (qp->event_handler)
qp->event_handler(&ib_event, qp->qp_context);
} else {
ib_event.element.port_num = port_num;
ib_event.event = event;
ib_dispatch_event(&ib_event);
}
}
static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev,
struct bnxt_re_qp *qp)
{
return (qp->ib_qp.qp_type == IB_QPT_GSI) ||
(qp == rdev->gsi_ctx.gsi_sqp);
}
static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev)
{
int mask = IB_QP_STATE;
struct ib_qp_attr qp_attr;
struct bnxt_re_qp *qp;
qp_attr.qp_state = IB_QPS_ERR;
mutex_lock(&rdev->qp_lock);
list_for_each_entry(qp, &rdev->qp_list, list) {
/* Modify the state of all QPs except QP1/Shadow QP */
if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) {
if (qp->qplib_qp.state !=
CMDQ_MODIFY_QP_NEW_STATE_RESET &&
qp->qplib_qp.state !=
CMDQ_MODIFY_QP_NEW_STATE_ERR) {
bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp,
1, IB_EVENT_QP_FATAL);
bnxt_re_modify_qp(&qp->ib_qp, &qp_attr, mask,
NULL);
}
}
}
mutex_unlock(&rdev->qp_lock);
}
static int bnxt_re_update_gid(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl;
struct bnxt_qplib_gid gid;
u16 gid_idx, index;
int rc = 0;
if (!ib_device_try_get(&rdev->ibdev))
return 0;
for (index = 0; index < sgid_tbl->active; index++) {
gid_idx = sgid_tbl->hw_id[index];
if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero,
sizeof(bnxt_qplib_gid_zero)))
continue;
/* need to modify the VLAN enable setting of non VLAN GID only
* as setting is done for VLAN GID while adding GID
*/
if (sgid_tbl->vlan[index])
continue;
memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid));
rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx,
rdev->qplib_res.netdev->dev_addr);
}
ib_device_put(&rdev->ibdev);
return rc;
}
static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev)
{
u32 prio_map = 0, tmp_map = 0;
struct net_device *netdev;
struct dcb_app app = {};
netdev = rdev->netdev;
app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE;
app.protocol = ETH_P_IBOE;
tmp_map = dcb_ieee_getapp_mask(netdev, &app);
prio_map = tmp_map;
app.selector = IEEE_8021QAZ_APP_SEL_DGRAM;
app.protocol = ROCE_V2_UDP_DPORT;
tmp_map = dcb_ieee_getapp_mask(netdev, &app);
prio_map |= tmp_map;
return prio_map;
}
static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev)
{
u8 prio_map = 0;
/* Get priority for roce */
prio_map = bnxt_re_get_priority_mask(rdev);
if (prio_map == rdev->cur_prio_map)
return 0;
rdev->cur_prio_map = prio_map;
/* Actual priorities are not programmed as they are already
* done by L2 driver; just enable or disable priority vlan tagging
*/
if ((prio_map == 0 && rdev->qplib_res.prio) ||
(prio_map != 0 && !rdev->qplib_res.prio)) {
rdev->qplib_res.prio = prio_map;
bnxt_re_update_gid(rdev);
}
return 0;
}
static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_ver_get_output resp = {};
struct hwrm_ver_get_input req = {};
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_fw_msg fw_msg = {};
int rc;
bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET);
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
req.hwrm_intf_min = HWRM_VERSION_MINOR;
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = bnxt_send_msg(en_dev, &fw_msg);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x",
rc);
return;
}
cctx = rdev->chip_ctx;
cctx->hwrm_intf_ver =
(u64)le16_to_cpu(resp.hwrm_intf_major) << 48 |
(u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 |
(u64)le16_to_cpu(resp.hwrm_intf_build) << 16 |
le16_to_cpu(resp.hwrm_intf_patch);
cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout);
if (!cctx->hwrm_cmd_max_timeout)
cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT;
}
static int bnxt_re_ib_init(struct bnxt_re_dev *rdev)
{
int rc;
u32 event;
/* Register ib dev */
rc = bnxt_re_register_ib(rdev);
if (rc) {
pr_err("Failed to register with IB: %#x\n", rc);
return rc;
}
dev_info(rdev_to_dev(rdev), "Device registered with IB successfully");
set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags);
event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ?
IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR;
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event);
return rc;
}
static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev)
{
u8 type;
int rc;
if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags))
cancel_delayed_work_sync(&rdev->worker);
if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED,
&rdev->flags))
bnxt_re_cleanup_res(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags))
bnxt_re_free_res(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) {
rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw);
if (rc)
ibdev_warn(&rdev->ibdev,
"Failed to deinitialize RCFW: %#x", rc);
bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
}
rdev->num_msix = 0;
if (rdev->pacing.dbr_pacing)
bnxt_re_deinitialize_dbr_pacing(rdev);
bnxt_re_destroy_chip_ctx(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags))
bnxt_unregister_dev(rdev->en_dev);
}
/* worker thread for polling periodic events. Now used for QoS programming*/
static void bnxt_re_worker(struct work_struct *work)
{
struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
worker.work);
bnxt_re_setup_qos(rdev);
schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
}
static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 wqe_mode)
{
struct bnxt_re_ring_attr rattr = {};
struct bnxt_qplib_creq_ctx *creq;
u32 db_offt;
int vid;
u8 type;
int rc;
/* Registered a new RoCE device instance to netdev */
rc = bnxt_re_register_netdev(rdev);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to register with netedev: %#x\n", rc);
return -EINVAL;
}
set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
rc = bnxt_re_setup_chip_ctx(rdev, wqe_mode);
if (rc) {
bnxt_unregister_dev(rdev->en_dev);
clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
ibdev_err(&rdev->ibdev, "Failed to get chip context\n");
return -EINVAL;
}
/* Check whether VF or PF */
bnxt_re_get_sriov_func_type(rdev);
if (!rdev->en_dev->ulp_tbl->msix_requested) {
ibdev_err(&rdev->ibdev,
"Failed to get MSI-X vectors: %#x\n", rc);
rc = -EINVAL;
goto fail;
}
ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n",
rdev->en_dev->ulp_tbl->msix_requested);
rdev->num_msix = rdev->en_dev->ulp_tbl->msix_requested;
bnxt_re_query_hwrm_intf_version(rdev);
/* Establish RCFW Communication Channel to initialize the context
* memory for the function and all child VFs
*/
rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw,
&rdev->qplib_ctx,
BNXT_RE_MAX_QPC_COUNT);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to allocate RCFW Channel: %#x\n", rc);
goto fail;
}
type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
creq = &rdev->rcfw.creq;
rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr;
rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count;
rattr.type = type;
rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX;
rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1;
rattr.lrid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].ring_idx;
rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc);
goto free_rcfw;
}
db_offt = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].db_offset;
vid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].vector;
rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw,
vid, db_offt,
&bnxt_re_aeq_handler);
if (rc) {
ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n",
rc);
goto free_ring;
}
if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) {
rc = bnxt_re_initialize_dbr_pacing(rdev);
if (!rc) {
rdev->pacing.dbr_pacing = true;
} else {
ibdev_err(&rdev->ibdev,
"DBR pacing disabled with error : %d\n", rc);
rdev->pacing.dbr_pacing = false;
}
}
rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr);
if (rc)
goto disable_rcfw;
bnxt_re_set_resource_limits(rdev);
rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0,
bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx));
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to allocate QPLIB context: %#x\n", rc);
goto disable_rcfw;
}
rc = bnxt_re_net_stats_ctx_alloc(rdev,
rdev->qplib_ctx.stats.dma_map,
&rdev->qplib_ctx.stats.fw_id);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to allocate stats context: %#x\n", rc);
goto free_ctx;
}
rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx,
rdev->is_virtfn);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to initialize RCFW: %#x\n", rc);
goto free_sctx;
}
set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags);
/* Resources based on the 'new' device caps */
rc = bnxt_re_alloc_res(rdev);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to allocate resources: %#x\n", rc);
goto fail;
}
set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags);
rc = bnxt_re_init_res(rdev);
if (rc) {
ibdev_err(&rdev->ibdev,
"Failed to initialize resources: %#x\n", rc);
goto fail;
}
set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags);
if (!rdev->is_virtfn) {
rc = bnxt_re_setup_qos(rdev);
if (rc)
ibdev_info(&rdev->ibdev,
"RoCE priority not yet configured\n");
INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker);
set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags);
schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000));
/*
* Use the total VF count since the actual VF count may not be
* available at this point.
*/
bnxt_re_vf_res_config(rdev);
}
hash_init(rdev->cq_hash);
return 0;
free_sctx:
bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id);
free_ctx:
bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx);
disable_rcfw:
bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
free_ring:
type = bnxt_qplib_get_ring_type(rdev->chip_ctx);
bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type);
free_rcfw:
bnxt_qplib_free_rcfw_channel(&rdev->rcfw);
fail:
bnxt_re_dev_uninit(rdev);
return rc;
}
static int bnxt_re_add_device(struct auxiliary_device *adev, u8 wqe_mode)
{
struct bnxt_aux_priv *aux_priv =
container_of(adev, struct bnxt_aux_priv, aux_dev);
struct bnxt_en_dev *en_dev;
struct bnxt_re_dev *rdev;
int rc;
/* en_dev should never be NULL as long as adev and aux_dev are valid. */
en_dev = aux_priv->edev;
rdev = bnxt_re_dev_add(aux_priv, en_dev);
if (!rdev || !rdev_to_dev(rdev)) {
rc = -ENOMEM;
goto exit;
}
rc = bnxt_re_dev_init(rdev, wqe_mode);
if (rc)
goto re_dev_dealloc;
rc = bnxt_re_ib_init(rdev);
if (rc) {
pr_err("Failed to register with IB: %s",
aux_priv->aux_dev.name);
goto re_dev_uninit;
}
auxiliary_set_drvdata(adev, rdev);
return 0;
re_dev_uninit:
bnxt_re_dev_uninit(rdev);
re_dev_dealloc:
ib_dealloc_device(&rdev->ibdev);
exit:
return rc;
}
static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable)
{
struct bnxt_qplib_cc_param cc_param = {};
/* Do not enable congestion control on VFs */
if (rdev->is_virtfn)
return;
/* Currently enabling only for GenP5 adapters */
if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx))
return;
if (enable) {
cc_param.enable = 1;
cc_param.cc_mode = CMDQ_MODIFY_ROCE_CC_CC_MODE_PROBABILISTIC_CC_MODE;
}
cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN);
if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param))
ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable);
}
/*
* "Notifier chain callback can be invoked for the same chain from
* different CPUs at the same time".
*
* For cases when the netdev is already present, our call to the
* register_netdevice_notifier() will actually get the rtnl_lock()
* before sending NETDEV_REGISTER and (if up) NETDEV_UP
* events.
*
* But for cases when the netdev is not already present, the notifier
* chain is subjected to be invoked from different CPUs simultaneously.
*
* This is protected by the netdev_mutex.
*/
static int bnxt_re_netdev_event(struct notifier_block *notifier,
unsigned long event, void *ptr)
{
struct net_device *real_dev, *netdev = netdev_notifier_info_to_dev(ptr);
struct bnxt_re_dev *rdev;
real_dev = rdma_vlan_dev_real_dev(netdev);
if (!real_dev)
real_dev = netdev;
if (real_dev != netdev)
goto exit;
rdev = bnxt_re_from_netdev(real_dev);
if (!rdev)
return NOTIFY_DONE;
switch (event) {
case NETDEV_UP:
case NETDEV_DOWN:
case NETDEV_CHANGE:
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
netif_carrier_ok(real_dev) ?
IB_EVENT_PORT_ACTIVE :
IB_EVENT_PORT_ERR);
break;
default:
break;
}
ib_device_put(&rdev->ibdev);
exit:
return NOTIFY_DONE;
}
#define BNXT_ADEV_NAME "bnxt_en"
static void bnxt_re_remove(struct auxiliary_device *adev)
{
struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev);
if (!rdev)
return;
mutex_lock(&bnxt_re_mutex);
if (rdev->nb.notifier_call) {
unregister_netdevice_notifier(&rdev->nb);
rdev->nb.notifier_call = NULL;
} else {
/* If notifier is null, we should have already done a
* clean up before coming here.
*/
goto skip_remove;
}
bnxt_re_setup_cc(rdev, false);
ib_unregister_device(&rdev->ibdev);
bnxt_re_dev_uninit(rdev);
ib_dealloc_device(&rdev->ibdev);
skip_remove:
mutex_unlock(&bnxt_re_mutex);
}
static int bnxt_re_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct bnxt_re_dev *rdev;
int rc;
mutex_lock(&bnxt_re_mutex);
rc = bnxt_re_add_device(adev, BNXT_QPLIB_WQE_MODE_STATIC);
if (rc) {
mutex_unlock(&bnxt_re_mutex);
return rc;
}
rdev = auxiliary_get_drvdata(adev);
rdev->nb.notifier_call = bnxt_re_netdev_event;
rc = register_netdevice_notifier(&rdev->nb);
if (rc) {
rdev->nb.notifier_call = NULL;
pr_err("%s: Cannot register to netdevice_notifier",
ROCE_DRV_MODULE_NAME);
goto err;
}
bnxt_re_setup_cc(rdev, true);
mutex_unlock(&bnxt_re_mutex);
return 0;
err:
mutex_unlock(&bnxt_re_mutex);
bnxt_re_remove(adev);
return rc;
}
static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state)
{
struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev);
if (!rdev)
return 0;
mutex_lock(&bnxt_re_mutex);
/* L2 driver may invoke this callback during device error/crash or device
* reset. Current RoCE driver doesn't recover the device in case of
* error. Handle the error by dispatching fatal events to all qps
* ie. by calling bnxt_re_dev_stop and release the MSIx vectors as
* L2 driver want to modify the MSIx table.
*/
ibdev_info(&rdev->ibdev, "Handle device suspend call");
/* Check the current device state from bnxt_en_dev and move the
* device to detached state if FW_FATAL_COND is set.
* This prevents more commands to HW during clean-up,
* in case the device is already in error.
*/
if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state))
set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
bnxt_re_dev_stop(rdev);
bnxt_re_stop_irq(rdev);
/* Move the device states to detached and avoid sending any more
* commands to HW
*/
set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
wake_up_all(&rdev->rcfw.cmdq.waitq);
mutex_unlock(&bnxt_re_mutex);
return 0;
}
static int bnxt_re_resume(struct auxiliary_device *adev)
{
struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev);
if (!rdev)
return 0;
mutex_lock(&bnxt_re_mutex);
/* L2 driver may invoke this callback during device recovery, resume.
* reset. Current RoCE driver doesn't recover the device in case of
* error. Handle the error by dispatching fatal events to all qps
* ie. by calling bnxt_re_dev_stop and release the MSIx vectors as
* L2 driver want to modify the MSIx table.
*/
ibdev_info(&rdev->ibdev, "Handle device resume call");
mutex_unlock(&bnxt_re_mutex);
return 0;
}
static const struct auxiliary_device_id bnxt_re_id_table[] = {
{ .name = BNXT_ADEV_NAME ".rdma", },
{},
};
MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table);
static struct auxiliary_driver bnxt_re_driver = {
.name = "rdma",
.probe = bnxt_re_probe,
.remove = bnxt_re_remove,
.shutdown = bnxt_re_shutdown,
.suspend = bnxt_re_suspend,
.resume = bnxt_re_resume,
.id_table = bnxt_re_id_table,
};
static int __init bnxt_re_mod_init(void)
{
int rc;
pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version);
rc = auxiliary_driver_register(&bnxt_re_driver);
if (rc) {
pr_err("%s: Failed to register auxiliary driver\n",
ROCE_DRV_MODULE_NAME);
return rc;
}
return 0;
}
static void __exit bnxt_re_mod_exit(void)
{
auxiliary_driver_unregister(&bnxt_re_driver);
}
module_init(bnxt_re_mod_init);
module_exit(bnxt_re_mod_exit);