/*
* Copyright (c) 2004 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005 Voltaire, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <net/addrconf.h>
#include <rdma/ib_cache.h>
#include "core_priv.h"
struct ib_pkey_cache {
int table_len;
u16 table[0];
};
struct ib_update_work {
struct work_struct work;
struct ib_device *device;
u8 port_num;
};
union ib_gid zgid;
EXPORT_SYMBOL(zgid);
static const struct ib_gid_attr zattr;
enum gid_attr_find_mask {
GID_ATTR_FIND_MASK_GID = 1UL << 0,
GID_ATTR_FIND_MASK_NETDEV = 1UL << 1,
GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2,
};
enum gid_table_entry_props {
GID_TABLE_ENTRY_INVALID = 1UL << 0,
GID_TABLE_ENTRY_DEFAULT = 1UL << 1,
};
enum gid_table_write_action {
GID_TABLE_WRITE_ACTION_ADD,
GID_TABLE_WRITE_ACTION_DEL,
/* MODIFY only updates the GID table. Currently only used by
* ib_cache_update.
*/
GID_TABLE_WRITE_ACTION_MODIFY
};
struct ib_gid_table_entry {
/* This lock protects an entry from being
* read and written simultaneously.
*/
rwlock_t lock;
unsigned long props;
union ib_gid gid;
struct ib_gid_attr attr;
void *context;
};
struct ib_gid_table {
int sz;
/* In RoCE, adding a GID to the table requires:
* (a) Find if this GID is already exists.
* (b) Find a free space.
* (c) Write the new GID
*
* Delete requires different set of operations:
* (a) Find the GID
* (b) Delete it.
*
* Add/delete should be carried out atomically.
* This is done by locking this mutex from multiple
* writers. We don't need this lock for IB, as the MAD
* layer replaces all entries. All data_vec entries
* are locked by this lock.
**/
struct mutex lock;
struct ib_gid_table_entry *data_vec;
};
static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
{
if (rdma_cap_roce_gid_table(ib_dev, port)) {
struct ib_event event;
event.device = ib_dev;
event.element.port_num = port;
event.event = IB_EVENT_GID_CHANGE;
ib_dispatch_event(&event);
}
}
static int write_gid(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table, int ix,
const union ib_gid *gid,
const struct ib_gid_attr *attr,
enum gid_table_write_action action,
bool default_gid)
{
int ret = 0;
struct net_device *old_net_dev;
unsigned long flags;
/* in rdma_cap_roce_gid_table, this funciton should be protected by a
* sleep-able lock.
*/
write_lock_irqsave(&table->data_vec[ix].lock, flags);
if (rdma_cap_roce_gid_table(ib_dev, port)) {
table->data_vec[ix].props |= GID_TABLE_ENTRY_INVALID;
write_unlock_irqrestore(&table->data_vec[ix].lock, flags);
/* GID_TABLE_WRITE_ACTION_MODIFY currently isn't supported by
* RoCE providers and thus only updates the cache.
*/
if (action == GID_TABLE_WRITE_ACTION_ADD)
ret = ib_dev->add_gid(ib_dev, port, ix, gid, attr,
&table->data_vec[ix].context);
else if (action == GID_TABLE_WRITE_ACTION_DEL)
ret = ib_dev->del_gid(ib_dev, port, ix,
&table->data_vec[ix].context);
write_lock_irqsave(&table->data_vec[ix].lock, flags);
}
old_net_dev = table->data_vec[ix].attr.ndev;
if (old_net_dev && old_net_dev != attr->ndev)
dev_put(old_net_dev);
/* if modify_gid failed, just delete the old gid */
if (ret || action == GID_TABLE_WRITE_ACTION_DEL) {
gid = &zgid;
attr = &zattr;
table->data_vec[ix].context = NULL;
}
if (default_gid)
table->data_vec[ix].props |= GID_TABLE_ENTRY_DEFAULT;
memcpy(&table->data_vec[ix].gid, gid, sizeof(*gid));
memcpy(&table->data_vec[ix].attr, attr, sizeof(*attr));
if (table->data_vec[ix].attr.ndev &&
table->data_vec[ix].attr.ndev != old_net_dev)
dev_hold(table->data_vec[ix].attr.ndev);
table->data_vec[ix].props &= ~GID_TABLE_ENTRY_INVALID;
write_unlock_irqrestore(&table->data_vec[ix].lock, flags);
if (!ret)
dispatch_gid_change_event(ib_dev, port);
return ret;
}
static int add_gid(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table, int ix,
const union ib_gid *gid,
const struct ib_gid_attr *attr,
bool default_gid) {
return write_gid(ib_dev, port, table, ix, gid, attr,
GID_TABLE_WRITE_ACTION_ADD, default_gid);
}
static int modify_gid(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table, int ix,
const union ib_gid *gid,
const struct ib_gid_attr *attr,
bool default_gid) {
return write_gid(ib_dev, port, table, ix, gid, attr,
GID_TABLE_WRITE_ACTION_MODIFY, default_gid);
}
static int del_gid(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table, int ix,
bool default_gid) {
return write_gid(ib_dev, port, table, ix, &zgid, &zattr,
GID_TABLE_WRITE_ACTION_DEL, default_gid);
}
static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
const struct ib_gid_attr *val, bool default_gid,
unsigned long mask)
{
int i;
for (i = 0; i < table->sz; i++) {
unsigned long flags;
struct ib_gid_attr *attr = &table->data_vec[i].attr;
read_lock_irqsave(&table->data_vec[i].lock, flags);
if (table->data_vec[i].props & GID_TABLE_ENTRY_INVALID)
goto next;
if (mask & GID_ATTR_FIND_MASK_GID &&
memcmp(gid, &table->data_vec[i].gid, sizeof(*gid)))
goto next;
if (mask & GID_ATTR_FIND_MASK_NETDEV &&
attr->ndev != val->ndev)
goto next;
if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
!!(table->data_vec[i].props & GID_TABLE_ENTRY_DEFAULT) !=
default_gid)
goto next;
read_unlock_irqrestore(&table->data_vec[i].lock, flags);
return i;
next:
read_unlock_irqrestore(&table->data_vec[i].lock, flags);
}
return -1;
}
static void make_default_gid(struct net_device *dev, union ib_gid *gid)
{
gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
addrconf_ifid_eui48(&gid->raw[8], dev);
}
int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr)
{
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
struct ib_gid_table *table;
int ix;
int ret = 0;
struct net_device *idev;
table = ports_table[port - rdma_start_port(ib_dev)];
if (!memcmp(gid, &zgid, sizeof(*gid)))
return -EINVAL;
if (ib_dev->get_netdev) {
idev = ib_dev->get_netdev(ib_dev, port);
if (idev && attr->ndev != idev) {
union ib_gid default_gid;
/* Adding default GIDs in not permitted */
make_default_gid(idev, &default_gid);
if (!memcmp(gid, &default_gid, sizeof(*gid))) {
dev_put(idev);
return -EPERM;
}
}
if (idev)
dev_put(idev);
}
mutex_lock(&table->lock);
ix = find_gid(table, gid, attr, false, GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_NETDEV);
if (ix >= 0)
goto out_unlock;
ix = find_gid(table, &zgid, NULL, false, GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_DEFAULT);
if (ix < 0) {
ret = -ENOSPC;
goto out_unlock;
}
add_gid(ib_dev, port, table, ix, gid, attr, false);
out_unlock:
mutex_unlock(&table->lock);
return ret;
}
int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr)
{
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
struct ib_gid_table *table;
int ix;
table = ports_table[port - rdma_start_port(ib_dev)];
mutex_lock(&table->lock);
ix = find_gid(table, gid, attr, false,
GID_ATTR_FIND_MASK_GID |
GID_ATTR_FIND_MASK_NETDEV |
GID_ATTR_FIND_MASK_DEFAULT);
if (ix < 0)
goto out_unlock;
del_gid(ib_dev, port, table, ix, false);
out_unlock:
mutex_unlock(&table->lock);
return 0;
}
int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
struct net_device *ndev)
{
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
struct ib_gid_table *table;
int ix;
table = ports_table[port - rdma_start_port(ib_dev)];
mutex_lock(&table->lock);
for (ix = 0; ix < table->sz; ix++)
if (table->data_vec[ix].attr.ndev == ndev)
del_gid(ib_dev, port, table, ix, false);
mutex_unlock(&table->lock);
return 0;
}
static int __ib_cache_gid_get(struct ib_device *ib_dev, u8 port, int index,
union ib_gid *gid, struct ib_gid_attr *attr)
{
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
struct ib_gid_table *table;
unsigned long flags;
table = ports_table[port - rdma_start_port(ib_dev)];
if (index < 0 || index >= table->sz)
return -EINVAL;
read_lock_irqsave(&table->data_vec[index].lock, flags);
if (table->data_vec[index].props & GID_TABLE_ENTRY_INVALID) {
read_unlock_irqrestore(&table->data_vec[index].lock, flags);
return -EAGAIN;
}
memcpy(gid, &table->data_vec[index].gid, sizeof(*gid));
if (attr) {
memcpy(attr, &table->data_vec[index].attr, sizeof(*attr));
if (attr->ndev)
dev_hold(attr->ndev);
}
read_unlock_irqrestore(&table->data_vec[index].lock, flags);
return 0;
}
static int _ib_cache_gid_table_find(struct ib_device *ib_dev,
const union ib_gid *gid,
const struct ib_gid_attr *val,
unsigned long mask,
u8 *port, u16 *index)
{
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
struct ib_gid_table *table;
u8 p;
int local_index;
for (p = 0; p < ib_dev->phys_port_cnt; p++) {
table = ports_table[p];
local_index = find_gid(table, gid, val, false, mask);
if (local_index >= 0) {
if (index)
*index = local_index;
if (port)
*port = p + rdma_start_port(ib_dev);
return 0;
}
}
return -ENOENT;
}
static int ib_cache_gid_find(struct ib_device *ib_dev,
const union ib_gid *gid,
struct net_device *ndev, u8 *port,
u16 *index)
{
unsigned long mask = GID_ATTR_FIND_MASK_GID;
struct ib_gid_attr gid_attr_val = {.ndev = ndev};
if (ndev)
mask |= GID_ATTR_FIND_MASK_NETDEV;
return _ib_cache_gid_table_find(ib_dev, gid, &gid_attr_val,
mask, port, index);
}
int ib_find_cached_gid_by_port(struct ib_device *ib_dev,
const union ib_gid *gid,
u8 port, struct net_device *ndev,
u16 *index)
{
int local_index;
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
struct ib_gid_table *table;
unsigned long mask = GID_ATTR_FIND_MASK_GID;
struct ib_gid_attr val = {.ndev = ndev};
if (port < rdma_start_port(ib_dev) ||
port > rdma_end_port(ib_dev))
return -ENOENT;
table = ports_table[port - rdma_start_port(ib_dev)];
if (ndev)
mask |= GID_ATTR_FIND_MASK_NETDEV;
local_index = find_gid(table, gid, &val, false, mask);
if (local_index >= 0) {
if (index)
*index = local_index;
return 0;
}
return -ENOENT;
}
EXPORT_SYMBOL(ib_find_cached_gid_by_port);
/**
* ib_find_gid_by_filter - Returns the GID table index where a specified
* GID value occurs
* @device: The device to query.
* @gid: The GID value to search for.
* @port_num: The port number of the device where the GID value could be
* searched.
* @filter: The filter function is executed on any matching GID in the table.
* If the filter function returns true, the corresponding index is returned,
* otherwise, we continue searching the GID table. It's guaranteed that
* while filter is executed, ndev field is valid and the structure won't
* change. filter is executed in an atomic context. filter must not be NULL.
* @index: The index into the cached GID table where the GID was found. This
* parameter may be NULL.
*
* ib_cache_gid_find_by_filter() searches for the specified GID value
* of which the filter function returns true in the port's GID table.
* This function is only supported on RoCE ports.
*
*/
static int ib_cache_gid_find_by_filter(struct ib_device *ib_dev,
const union ib_gid *gid,
u8 port,
bool (*filter)(const union ib_gid *,
const struct ib_gid_attr *,
void *),
void *context,
u16 *index)
{
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
struct ib_gid_table *table;
unsigned int i;
bool found = false;
if (!ports_table)
return -EOPNOTSUPP;
if (port < rdma_start_port(ib_dev) ||
port > rdma_end_port(ib_dev) ||
!rdma_protocol_roce(ib_dev, port))
return -EPROTONOSUPPORT;
table = ports_table[port - rdma_start_port(ib_dev)];
for (i = 0; i < table->sz; i++) {
struct ib_gid_attr attr;
unsigned long flags;
read_lock_irqsave(&table->data_vec[i].lock, flags);
if (table->data_vec[i].props & GID_TABLE_ENTRY_INVALID)
goto next;
if (memcmp(gid, &table->data_vec[i].gid, sizeof(*gid)))
goto next;
memcpy(&attr, &table->data_vec[i].attr, sizeof(attr));
if (filter(gid, &attr, context))
found = true;
next:
read_unlock_irqrestore(&table->data_vec[i].lock, flags);
if (found)
break;
}
if (!found)
return -ENOENT;
if (index)
*index = i;
return 0;
}
static struct ib_gid_table *alloc_gid_table(int sz)
{
unsigned int i;
struct ib_gid_table *table =
kzalloc(sizeof(struct ib_gid_table), GFP_KERNEL);
if (!table)
return NULL;
table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
if (!table->data_vec)
goto err_free_table;
mutex_init(&table->lock);
table->sz = sz;
for (i = 0; i < sz; i++)
rwlock_init(&table->data_vec[i].lock);
return table;
err_free_table:
kfree(table);
return NULL;
}
static void release_gid_table(struct ib_gid_table *table)
{
if (table) {
kfree(table->data_vec);
kfree(table);
}
}
static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table)
{
int i;
if (!table)
return;
for (i = 0; i < table->sz; ++i) {
if (memcmp(&table->data_vec[i].gid, &zgid,
sizeof(table->data_vec[i].gid)))
del_gid(ib_dev, port, table, i,
table->data_vec[i].props &
GID_ATTR_FIND_MASK_DEFAULT);
}
}
void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
struct net_device *ndev,
enum ib_cache_gid_default_mode mode)
{
struct ib_gid_table **ports_table = ib_dev->cache.gid_cache;
union ib_gid gid;
struct ib_gid_attr gid_attr;
struct ib_gid_table *table;
int ix;
union ib_gid current_gid;
struct ib_gid_attr current_gid_attr = {};
table = ports_table[port - rdma_start_port(ib_dev)];
make_default_gid(ndev, &gid);
memset(&gid_attr, 0, sizeof(gid_attr));
gid_attr.ndev = ndev;
mutex_lock(&table->lock);
ix = find_gid(table, NULL, NULL, true, GID_ATTR_FIND_MASK_DEFAULT);
/* Coudn't find default GID location */
WARN_ON(ix < 0);
if (!__ib_cache_gid_get(ib_dev, port, ix,
¤t_gid, ¤t_gid_attr) &&
mode == IB_CACHE_GID_DEFAULT_MODE_SET &&
!memcmp(&gid, ¤t_gid, sizeof(gid)) &&
!memcmp(&gid_attr, ¤t_gid_attr, sizeof(gid_attr)))
goto unlock;
if ((memcmp(¤t_gid, &zgid, sizeof(current_gid)) ||
memcmp(¤t_gid_attr, &zattr,
sizeof(current_gid_attr))) &&
del_gid(ib_dev, port, table, ix, true)) {
pr_warn("ib_cache_gid: can't delete index %d for default gid %pI6\n",
ix, gid.raw);
goto unlock;
}
if (mode == IB_CACHE_GID_DEFAULT_MODE_SET)
if (add_gid(ib_dev, port, table, ix, &gid, &gid_attr, true))
pr_warn("ib_cache_gid: unable to add default gid %pI6\n",
gid.raw);
unlock:
if (current_gid_attr.ndev)
dev_put(current_gid_attr.ndev);
mutex_unlock(&table->lock);
}
static int gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
struct ib_gid_table *table)
{
if (rdma_protocol_roce(ib_dev, port)) {
struct ib_gid_table_entry *entry = &table->data_vec[0];
entry->props |= GID_TABLE_ENTRY_DEFAULT;
}
return 0;
}
static int _gid_table_setup_one(struct ib_device *ib_dev)
{
u8 port;
struct ib_gid_table **table;
int err = 0;
table = kcalloc(ib_dev->phys_port_cnt, sizeof(*table), GFP_KERNEL);
if (!table) {
pr_warn("failed to allocate ib gid cache for %s\n",
ib_dev->name);
return -ENOMEM;
}
for (port = 0; port < ib_dev->phys_port_cnt; port++) {
u8 rdma_port = port + rdma_start_port(ib_dev);
table[port] =
alloc_gid_table(
ib_dev->port_immutable[rdma_port].gid_tbl_len);
if (!table[port]) {
err = -ENOMEM;
goto rollback_table_setup;
}
err = gid_table_reserve_default(ib_dev,
port + rdma_start_port(ib_dev),
table[port]);
if (err)
goto rollback_table_setup;
}
ib_dev->cache.gid_cache = table;
return 0;
rollback_table_setup:
for (port = 0; port < ib_dev->phys_port_cnt; port++) {
cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev),
table[port]);
release_gid_table(table[port]);
}
kfree(table);
return err;
}
static void gid_table_release_one(struct ib_device *ib_dev)
{
struct ib_gid_table **table = ib_dev->cache.gid_cache;
u8 port;
if (!table)
return;
for (port = 0; port < ib_dev->phys_port_cnt; port++)
release_gid_table(table[port]);
kfree(table);
ib_dev->cache.gid_cache = NULL;
}
static void gid_table_cleanup_one(struct ib_device *ib_dev)
{
struct ib_gid_table **table = ib_dev->cache.gid_cache;
u8 port;
if (!table)
return;
for (port = 0; port < ib_dev->phys_port_cnt; port++)
cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev),
table[port]);
}
static int gid_table_setup_one(struct ib_device *ib_dev)
{
int err;
err = _gid_table_setup_one(ib_dev);
if (err)
return err;
err = roce_rescan_device(ib_dev);
if (err) {
gid_table_cleanup_one(ib_dev);
gid_table_release_one(ib_dev);
}
return err;
}
int ib_get_cached_gid(struct ib_device *device,
u8 port_num,
int index,
union ib_gid *gid,
struct ib_gid_attr *gid_attr)
{
if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device))
return -EINVAL;
return __ib_cache_gid_get(device, port_num, index, gid, gid_attr);
}
EXPORT_SYMBOL(ib_get_cached_gid);
int ib_find_cached_gid(struct ib_device *device,
const union ib_gid *gid,
struct net_device *ndev,
u8 *port_num,
u16 *index)
{
return ib_cache_gid_find(device, gid, ndev, port_num, index);
}
EXPORT_SYMBOL(ib_find_cached_gid);
int ib_find_gid_by_filter(struct ib_device *device,
const union ib_gid *gid,
u8 port_num,
bool (*filter)(const union ib_gid *gid,
const struct ib_gid_attr *,
void *),
void *context, u16 *index)
{
/* Only RoCE GID table supports filter function */
if (!rdma_cap_roce_gid_table(device, port_num) && filter)
return -EPROTONOSUPPORT;
return ib_cache_gid_find_by_filter(device, gid,
port_num, filter,
context, index);
}
EXPORT_SYMBOL(ib_find_gid_by_filter);
int ib_get_cached_pkey(struct ib_device *device,
u8 port_num,
int index,
u16 *pkey)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int ret = 0;
if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->cache.pkey_cache[port_num - rdma_start_port(device)];
if (index < 0 || index >= cache->table_len)
ret = -EINVAL;
else
*pkey = cache->table[index];
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_pkey);
int ib_find_cached_pkey(struct ib_device *device,
u8 port_num,
u16 pkey,
u16 *index)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int i;
int ret = -ENOENT;
int partial_ix = -1;
if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->cache.pkey_cache[port_num - rdma_start_port(device)];
*index = -1;
for (i = 0; i < cache->table_len; ++i)
if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
if (cache->table[i] & 0x8000) {
*index = i;
ret = 0;
break;
} else
partial_ix = i;
}
if (ret && partial_ix >= 0) {
*index = partial_ix;
ret = 0;
}
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_find_cached_pkey);
int ib_find_exact_cached_pkey(struct ib_device *device,
u8 port_num,
u16 pkey,
u16 *index)
{
struct ib_pkey_cache *cache;
unsigned long flags;
int i;
int ret = -ENOENT;
if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
cache = device->cache.pkey_cache[port_num - rdma_start_port(device)];
*index = -1;
for (i = 0; i < cache->table_len; ++i)
if (cache->table[i] == pkey) {
*index = i;
ret = 0;
break;
}
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_find_exact_cached_pkey);
int ib_get_cached_lmc(struct ib_device *device,
u8 port_num,
u8 *lmc)
{
unsigned long flags;
int ret = 0;
if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device))
return -EINVAL;
read_lock_irqsave(&device->cache.lock, flags);
*lmc = device->cache.lmc_cache[port_num - rdma_start_port(device)];
read_unlock_irqrestore(&device->cache.lock, flags);
return ret;
}
EXPORT_SYMBOL(ib_get_cached_lmc);
static void ib_cache_update(struct ib_device *device,
u8 port)
{
struct ib_port_attr *tprops = NULL;
struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache;
struct ib_gid_cache {
int table_len;
union ib_gid table[0];
} *gid_cache = NULL;
int i;
int ret;
struct ib_gid_table *table;
struct ib_gid_table **ports_table = device->cache.gid_cache;
bool use_roce_gid_table =
rdma_cap_roce_gid_table(device, port);
if (port < rdma_start_port(device) || port > rdma_end_port(device))
return;
table = ports_table[port - rdma_start_port(device)];
tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
if (!tprops)
return;
ret = ib_query_port(device, port, tprops);
if (ret) {
printk(KERN_WARNING "ib_query_port failed (%d) for %s\n",
ret, device->name);
goto err;
}
pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len *
sizeof *pkey_cache->table, GFP_KERNEL);
if (!pkey_cache)
goto err;
pkey_cache->table_len = tprops->pkey_tbl_len;
if (!use_roce_gid_table) {
gid_cache = kmalloc(sizeof(*gid_cache) + tprops->gid_tbl_len *
sizeof(*gid_cache->table), GFP_KERNEL);
if (!gid_cache)
goto err;
gid_cache->table_len = tprops->gid_tbl_len;
}
for (i = 0; i < pkey_cache->table_len; ++i) {
ret = ib_query_pkey(device, port, i, pkey_cache->table + i);
if (ret) {
printk(KERN_WARNING "ib_query_pkey failed (%d) for %s (index %d)\n",
ret, device->name, i);
goto err;
}
}
if (!use_roce_gid_table) {
for (i = 0; i < gid_cache->table_len; ++i) {
ret = ib_query_gid(device, port, i,
gid_cache->table + i, NULL);
if (ret) {
printk(KERN_WARNING "ib_query_gid failed (%d) for %s (index %d)\n",
ret, device->name, i);
goto err;
}
}
}
write_lock_irq(&device->cache.lock);
old_pkey_cache = device->cache.pkey_cache[port - rdma_start_port(device)];
device->cache.pkey_cache[port - rdma_start_port(device)] = pkey_cache;
if (!use_roce_gid_table) {
for (i = 0; i < gid_cache->table_len; i++) {
modify_gid(device, port, table, i, gid_cache->table + i,
&zattr, false);
}
}
device->cache.lmc_cache[port - rdma_start_port(device)] = tprops->lmc;
write_unlock_irq(&device->cache.lock);
kfree(gid_cache);
kfree(old_pkey_cache);
kfree(tprops);
return;
err:
kfree(pkey_cache);
kfree(gid_cache);
kfree(tprops);
}
static void ib_cache_task(struct work_struct *_work)
{
struct ib_update_work *work =
container_of(_work, struct ib_update_work, work);
ib_cache_update(work->device, work->port_num);
kfree(work);
}
static void ib_cache_event(struct ib_event_handler *handler,
struct ib_event *event)
{
struct ib_update_work *work;
if (event->event == IB_EVENT_PORT_ERR ||
event->event == IB_EVENT_PORT_ACTIVE ||
event->event == IB_EVENT_LID_CHANGE ||
event->event == IB_EVENT_PKEY_CHANGE ||
event->event == IB_EVENT_SM_CHANGE ||
event->event == IB_EVENT_CLIENT_REREGISTER ||
event->event == IB_EVENT_GID_CHANGE) {
work = kmalloc(sizeof *work, GFP_ATOMIC);
if (work) {
INIT_WORK(&work->work, ib_cache_task);
work->device = event->device;
work->port_num = event->element.port_num;
queue_work(ib_wq, &work->work);
}
}
}
int ib_cache_setup_one(struct ib_device *device)
{
int p;
int err;
rwlock_init(&device->cache.lock);
device->cache.pkey_cache =
kzalloc(sizeof *device->cache.pkey_cache *
(rdma_end_port(device) - rdma_start_port(device) + 1), GFP_KERNEL);
device->cache.lmc_cache = kmalloc(sizeof *device->cache.lmc_cache *
(rdma_end_port(device) -
rdma_start_port(device) + 1),
GFP_KERNEL);
if (!device->cache.pkey_cache ||
!device->cache.lmc_cache) {
printk(KERN_WARNING "Couldn't allocate cache "
"for %s\n", device->name);
return -ENOMEM;
}
err = gid_table_setup_one(device);
if (err)
/* Allocated memory will be cleaned in the release function */
return err;
for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p)
ib_cache_update(device, p + rdma_start_port(device));
INIT_IB_EVENT_HANDLER(&device->cache.event_handler,
device, ib_cache_event);
err = ib_register_event_handler(&device->cache.event_handler);
if (err)
goto err;
return 0;
err:
gid_table_cleanup_one(device);
return err;
}
void ib_cache_release_one(struct ib_device *device)
{
int p;
/*
* The release function frees all the cache elements.
* This function should be called as part of freeing
* all the device's resources when the cache could no
* longer be accessed.
*/
if (device->cache.pkey_cache)
for (p = 0;
p <= rdma_end_port(device) - rdma_start_port(device); ++p)
kfree(device->cache.pkey_cache[p]);
gid_table_release_one(device);
kfree(device->cache.pkey_cache);
kfree(device->cache.lmc_cache);
}
void ib_cache_cleanup_one(struct ib_device *device)
{
/* The cleanup function unregisters the event handler,
* waits for all in-progress workqueue elements and cleans
* up the GID cache. This function should be called after
* the device was removed from the devices list and all
* clients were removed, so the cache exists but is
* non-functional and shouldn't be updated anymore.
*/
ib_unregister_event_handler(&device->cache.event_handler);
flush_workqueue(ib_wq);
gid_table_cleanup_one(device);
}
void __init ib_cache_setup(void)
{
roce_gid_mgmt_init();
}
void __exit ib_cache_cleanup(void)
{
roce_gid_mgmt_cleanup();
}