// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_vm.h"
#include <linux/dma-fence-array.h>
#include <linux/nospec.h>
#include <drm/drm_exec.h>
#include <drm/drm_print.h>
#include <drm/ttm/ttm_execbuf_util.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/xe_drm.h>
#include <linux/ascii85.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <generated/xe_wa_oob.h>
#include "xe_assert.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_drm_client.h"
#include "xe_exec_queue.h"
#include "xe_gt.h"
#include "xe_gt_pagefault.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_migrate.h"
#include "xe_pat.h"
#include "xe_pm.h"
#include "xe_preempt_fence.h"
#include "xe_pt.h"
#include "xe_res_cursor.h"
#include "xe_sync.h"
#include "xe_trace.h"
#include "xe_wa.h"
static struct drm_gem_object *xe_vm_obj(struct xe_vm *vm)
{
return vm->gpuvm.r_obj;
}
/**
* xe_vma_userptr_check_repin() - Advisory check for repin needed
* @uvma: The userptr vma
*
* Check if the userptr vma has been invalidated since last successful
* repin. The check is advisory only and can the function can be called
* without the vm->userptr.notifier_lock held. There is no guarantee that the
* vma userptr will remain valid after a lockless check, so typically
* the call needs to be followed by a proper check under the notifier_lock.
*
* Return: 0 if userptr vma is valid, -EAGAIN otherwise; repin recommended.
*/
int xe_vma_userptr_check_repin(struct xe_userptr_vma *uvma)
{
return mmu_interval_check_retry(&uvma->userptr.notifier,
uvma->userptr.notifier_seq) ?
-EAGAIN : 0;
}
int xe_vma_userptr_pin_pages(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
struct xe_vma *vma = &uvma->vma;
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_device *xe = vm->xe;
const unsigned long num_pages = xe_vma_size(vma) >> PAGE_SHIFT;
struct page **pages;
bool in_kthread = !current->mm;
unsigned long notifier_seq;
int pinned, ret, i;
bool read_only = xe_vma_read_only(vma);
lockdep_assert_held(&vm->lock);
xe_assert(xe, xe_vma_is_userptr(vma));
retry:
if (vma->gpuva.flags & XE_VMA_DESTROYED)
return 0;
notifier_seq = mmu_interval_read_begin(&userptr->notifier);
if (notifier_seq == userptr->notifier_seq)
return 0;
pages = kvmalloc_array(num_pages, sizeof(*pages), GFP_KERNEL);
if (!pages)
return -ENOMEM;
if (userptr->sg) {
dma_unmap_sgtable(xe->drm.dev,
userptr->sg,
read_only ? DMA_TO_DEVICE :
DMA_BIDIRECTIONAL, 0);
sg_free_table(userptr->sg);
userptr->sg = NULL;
}
pinned = ret = 0;
if (in_kthread) {
if (!mmget_not_zero(userptr->notifier.mm)) {
ret = -EFAULT;
goto mm_closed;
}
kthread_use_mm(userptr->notifier.mm);
}
while (pinned < num_pages) {
ret = get_user_pages_fast(xe_vma_userptr(vma) +
pinned * PAGE_SIZE,
num_pages - pinned,
read_only ? 0 : FOLL_WRITE,
&pages[pinned]);
if (ret < 0)
break;
pinned += ret;
ret = 0;
}
if (in_kthread) {
kthread_unuse_mm(userptr->notifier.mm);
mmput(userptr->notifier.mm);
}
mm_closed:
if (ret)
goto out;
ret = sg_alloc_table_from_pages_segment(&userptr->sgt, pages,
pinned, 0,
(u64)pinned << PAGE_SHIFT,
xe_sg_segment_size(xe->drm.dev),
GFP_KERNEL);
if (ret) {
userptr->sg = NULL;
goto out;
}
userptr->sg = &userptr->sgt;
ret = dma_map_sgtable(xe->drm.dev, userptr->sg,
read_only ? DMA_TO_DEVICE :
DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC |
DMA_ATTR_NO_KERNEL_MAPPING);
if (ret) {
sg_free_table(userptr->sg);
userptr->sg = NULL;
goto out;
}
for (i = 0; i < pinned; ++i) {
if (!read_only) {
lock_page(pages[i]);
set_page_dirty(pages[i]);
unlock_page(pages[i]);
}
mark_page_accessed(pages[i]);
}
out:
release_pages(pages, pinned);
kvfree(pages);
if (!(ret < 0)) {
userptr->notifier_seq = notifier_seq;
if (xe_vma_userptr_check_repin(uvma) == -EAGAIN)
goto retry;
}
return ret < 0 ? ret : 0;
}
static bool preempt_fences_waiting(struct xe_vm *vm)
{
struct xe_exec_queue *q;
lockdep_assert_held(&vm->lock);
xe_vm_assert_held(vm);
list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
if (!q->compute.pfence ||
(q->compute.pfence && test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&q->compute.pfence->flags))) {
return true;
}
}
return false;
}
static void free_preempt_fences(struct list_head *list)
{
struct list_head *link, *next;
list_for_each_safe(link, next, list)
xe_preempt_fence_free(to_preempt_fence_from_link(link));
}
static int alloc_preempt_fences(struct xe_vm *vm, struct list_head *list,
unsigned int *count)
{
lockdep_assert_held(&vm->lock);
xe_vm_assert_held(vm);
if (*count >= vm->preempt.num_exec_queues)
return 0;
for (; *count < vm->preempt.num_exec_queues; ++(*count)) {
struct xe_preempt_fence *pfence = xe_preempt_fence_alloc();
if (IS_ERR(pfence))
return PTR_ERR(pfence);
list_move_tail(xe_preempt_fence_link(pfence), list);
}
return 0;
}
static int wait_for_existing_preempt_fences(struct xe_vm *vm)
{
struct xe_exec_queue *q;
xe_vm_assert_held(vm);
list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
if (q->compute.pfence) {
long timeout = dma_fence_wait(q->compute.pfence, false);
if (timeout < 0)
return -ETIME;
dma_fence_put(q->compute.pfence);
q->compute.pfence = NULL;
}
}
return 0;
}
static bool xe_vm_is_idle(struct xe_vm *vm)
{
struct xe_exec_queue *q;
xe_vm_assert_held(vm);
list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
if (!xe_exec_queue_is_idle(q))
return false;
}
return true;
}
static void arm_preempt_fences(struct xe_vm *vm, struct list_head *list)
{
struct list_head *link;
struct xe_exec_queue *q;
list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
struct dma_fence *fence;
link = list->next;
xe_assert(vm->xe, link != list);
fence = xe_preempt_fence_arm(to_preempt_fence_from_link(link),
q, q->compute.context,
++q->compute.seqno);
dma_fence_put(q->compute.pfence);
q->compute.pfence = fence;
}
}
static int add_preempt_fences(struct xe_vm *vm, struct xe_bo *bo)
{
struct xe_exec_queue *q;
int err;
if (!vm->preempt.num_exec_queues)
return 0;
err = xe_bo_lock(bo, true);
if (err)
return err;
err = dma_resv_reserve_fences(bo->ttm.base.resv, vm->preempt.num_exec_queues);
if (err)
goto out_unlock;
list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
if (q->compute.pfence) {
dma_resv_add_fence(bo->ttm.base.resv,
q->compute.pfence,
DMA_RESV_USAGE_BOOKKEEP);
}
out_unlock:
xe_bo_unlock(bo);
return err;
}
static void resume_and_reinstall_preempt_fences(struct xe_vm *vm,
struct drm_exec *exec)
{
struct xe_exec_queue *q;
lockdep_assert_held(&vm->lock);
xe_vm_assert_held(vm);
list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
q->ops->resume(q);
drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, q->compute.pfence,
DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
}
}
int xe_vm_add_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
{
struct drm_gpuvm_exec vm_exec = {
.vm = &vm->gpuvm,
.flags = DRM_EXEC_INTERRUPTIBLE_WAIT,
.num_fences = 1,
};
struct drm_exec *exec = &vm_exec.exec;
struct dma_fence *pfence;
int err;
bool wait;
xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
down_write(&vm->lock);
err = drm_gpuvm_exec_lock(&vm_exec);
if (err)
goto out_up_write;
pfence = xe_preempt_fence_create(q, q->compute.context,
++q->compute.seqno);
if (!pfence) {
err = -ENOMEM;
goto out_fini;
}
list_add(&q->compute.link, &vm->preempt.exec_queues);
++vm->preempt.num_exec_queues;
q->compute.pfence = pfence;
down_read(&vm->userptr.notifier_lock);
drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, pfence,
DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
/*
* Check to see if a preemption on VM is in flight or userptr
* invalidation, if so trigger this preempt fence to sync state with
* other preempt fences on the VM.
*/
wait = __xe_vm_userptr_needs_repin(vm) || preempt_fences_waiting(vm);
if (wait)
dma_fence_enable_sw_signaling(pfence);
up_read(&vm->userptr.notifier_lock);
out_fini:
drm_exec_fini(exec);
out_up_write:
up_write(&vm->lock);
return err;
}
/**
* xe_vm_remove_compute_exec_queue() - Remove compute exec queue from VM
* @vm: The VM.
* @q: The exec_queue
*/
void xe_vm_remove_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
{
if (!xe_vm_in_preempt_fence_mode(vm))
return;
down_write(&vm->lock);
list_del(&q->compute.link);
--vm->preempt.num_exec_queues;
if (q->compute.pfence) {
dma_fence_enable_sw_signaling(q->compute.pfence);
dma_fence_put(q->compute.pfence);
q->compute.pfence = NULL;
}
up_write(&vm->lock);
}
/**
* __xe_vm_userptr_needs_repin() - Check whether the VM does have userptrs
* that need repinning.
* @vm: The VM.
*
* This function checks for whether the VM has userptrs that need repinning,
* and provides a release-type barrier on the userptr.notifier_lock after
* checking.
*
* Return: 0 if there are no userptrs needing repinning, -EAGAIN if there are.
*/
int __xe_vm_userptr_needs_repin(struct xe_vm *vm)
{
lockdep_assert_held_read(&vm->userptr.notifier_lock);
return (list_empty(&vm->userptr.repin_list) &&
list_empty(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
}
#define XE_VM_REBIND_RETRY_TIMEOUT_MS 1000
static void xe_vm_kill(struct xe_vm *vm)
{
struct xe_exec_queue *q;
lockdep_assert_held(&vm->lock);
xe_vm_lock(vm, false);
vm->flags |= XE_VM_FLAG_BANNED;
trace_xe_vm_kill(vm);
list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
q->ops->kill(q);
xe_vm_unlock(vm);
/* TODO: Inform user the VM is banned */
}
/**
* xe_vm_validate_should_retry() - Whether to retry after a validate error.
* @exec: The drm_exec object used for locking before validation.
* @err: The error returned from ttm_bo_validate().
* @end: A ktime_t cookie that should be set to 0 before first use and
* that should be reused on subsequent calls.
*
* With multiple active VMs, under memory pressure, it is possible that
* ttm_bo_validate() run into -EDEADLK and in such case returns -ENOMEM.
* Until ttm properly handles locking in such scenarios, best thing the
* driver can do is retry with a timeout. Check if that is necessary, and
* if so unlock the drm_exec's objects while keeping the ticket to prepare
* for a rerun.
*
* Return: true if a retry after drm_exec_init() is recommended;
* false otherwise.
*/
bool xe_vm_validate_should_retry(struct drm_exec *exec, int err, ktime_t *end)
{
ktime_t cur;
if (err != -ENOMEM)
return false;
cur = ktime_get();
*end = *end ? : ktime_add_ms(cur, XE_VM_REBIND_RETRY_TIMEOUT_MS);
if (!ktime_before(cur, *end))
return false;
msleep(20);
return true;
}
static int xe_gpuvm_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
{
struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
struct drm_gpuva *gpuva;
int ret;
lockdep_assert_held(&vm->lock);
drm_gpuvm_bo_for_each_va(gpuva, vm_bo)
list_move_tail(&gpuva_to_vma(gpuva)->combined_links.rebind,
&vm->rebind_list);
ret = xe_bo_validate(gem_to_xe_bo(vm_bo->obj), vm, false);
if (ret)
return ret;
vm_bo->evicted = false;
return 0;
}
static int xe_preempt_work_begin(struct drm_exec *exec, struct xe_vm *vm,
bool *done)
{
int err;
/*
* 1 fence for each preempt fence plus a fence for each tile from a
* possible rebind
*/
err = drm_gpuvm_prepare_vm(&vm->gpuvm, exec, vm->preempt.num_exec_queues +
vm->xe->info.tile_count);
if (err)
return err;
if (xe_vm_is_idle(vm)) {
vm->preempt.rebind_deactivated = true;
*done = true;
return 0;
}
if (!preempt_fences_waiting(vm)) {
*done = true;
return 0;
}
err = drm_gpuvm_prepare_objects(&vm->gpuvm, exec, vm->preempt.num_exec_queues);
if (err)
return err;
err = wait_for_existing_preempt_fences(vm);
if (err)
return err;
return drm_gpuvm_validate(&vm->gpuvm, exec);
}
static void preempt_rebind_work_func(struct work_struct *w)
{
struct xe_vm *vm = container_of(w, struct xe_vm, preempt.rebind_work);
struct drm_exec exec;
struct dma_fence *rebind_fence;
unsigned int fence_count = 0;
LIST_HEAD(preempt_fences);
ktime_t end = 0;
int err = 0;
long wait;
int __maybe_unused tries = 0;
xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
trace_xe_vm_rebind_worker_enter(vm);
down_write(&vm->lock);
if (xe_vm_is_closed_or_banned(vm)) {
up_write(&vm->lock);
trace_xe_vm_rebind_worker_exit(vm);
return;
}
retry:
if (xe_vm_userptr_check_repin(vm)) {
err = xe_vm_userptr_pin(vm);
if (err)
goto out_unlock_outer;
}
drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
drm_exec_until_all_locked(&exec) {
bool done = false;
err = xe_preempt_work_begin(&exec, vm, &done);
drm_exec_retry_on_contention(&exec);
if (err || done) {
drm_exec_fini(&exec);
if (err && xe_vm_validate_should_retry(&exec, err, &end))
err = -EAGAIN;
goto out_unlock_outer;
}
}
err = alloc_preempt_fences(vm, &preempt_fences, &fence_count);
if (err)
goto out_unlock;
rebind_fence = xe_vm_rebind(vm, true);
if (IS_ERR(rebind_fence)) {
err = PTR_ERR(rebind_fence);
goto out_unlock;
}
if (rebind_fence) {
dma_fence_wait(rebind_fence, false);
dma_fence_put(rebind_fence);
}
/* Wait on munmap style VM unbinds */
wait = dma_resv_wait_timeout(xe_vm_resv(vm),
DMA_RESV_USAGE_KERNEL,
false, MAX_SCHEDULE_TIMEOUT);
if (wait <= 0) {
err = -ETIME;
goto out_unlock;
}
#define retry_required(__tries, __vm) \
(IS_ENABLED(CONFIG_DRM_XE_USERPTR_INVAL_INJECT) ? \
(!(__tries)++ || __xe_vm_userptr_needs_repin(__vm)) : \
__xe_vm_userptr_needs_repin(__vm))
down_read(&vm->userptr.notifier_lock);
if (retry_required(tries, vm)) {
up_read(&vm->userptr.notifier_lock);
err = -EAGAIN;
goto out_unlock;
}
#undef retry_required
spin_lock(&vm->xe->ttm.lru_lock);
ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
spin_unlock(&vm->xe->ttm.lru_lock);
/* Point of no return. */
arm_preempt_fences(vm, &preempt_fences);
resume_and_reinstall_preempt_fences(vm, &exec);
up_read(&vm->userptr.notifier_lock);
out_unlock:
drm_exec_fini(&exec);
out_unlock_outer:
if (err == -EAGAIN) {
trace_xe_vm_rebind_worker_retry(vm);
goto retry;
}
if (err) {
drm_warn(&vm->xe->drm, "VM worker error: %d\n", err);
xe_vm_kill(vm);
}
up_write(&vm->lock);
free_preempt_fences(&preempt_fences);
trace_xe_vm_rebind_worker_exit(vm);
}
static bool vma_userptr_invalidate(struct mmu_interval_notifier *mni,
const struct mmu_notifier_range *range,
unsigned long cur_seq)
{
struct xe_userptr *userptr = container_of(mni, typeof(*userptr), notifier);
struct xe_userptr_vma *uvma = container_of(userptr, typeof(*uvma), userptr);
struct xe_vma *vma = &uvma->vma;
struct xe_vm *vm = xe_vma_vm(vma);
struct dma_resv_iter cursor;
struct dma_fence *fence;
long err;
xe_assert(vm->xe, xe_vma_is_userptr(vma));
trace_xe_vma_userptr_invalidate(vma);
if (!mmu_notifier_range_blockable(range))
return false;
vm_dbg(&xe_vma_vm(vma)->xe->drm,
"NOTIFIER: addr=0x%016llx, range=0x%016llx",
xe_vma_start(vma), xe_vma_size(vma));
down_write(&vm->userptr.notifier_lock);
mmu_interval_set_seq(mni, cur_seq);
/* No need to stop gpu access if the userptr is not yet bound. */
if (!userptr->initial_bind) {
up_write(&vm->userptr.notifier_lock);
return true;
}
/*
* Tell exec and rebind worker they need to repin and rebind this
* userptr.
*/
if (!xe_vm_in_fault_mode(vm) &&
!(vma->gpuva.flags & XE_VMA_DESTROYED) && vma->tile_present) {
spin_lock(&vm->userptr.invalidated_lock);
list_move_tail(&userptr->invalidate_link,
&vm->userptr.invalidated);
spin_unlock(&vm->userptr.invalidated_lock);
}
up_write(&vm->userptr.notifier_lock);
/*
* Preempt fences turn into schedule disables, pipeline these.
* Note that even in fault mode, we need to wait for binds and
* unbinds to complete, and those are attached as BOOKMARK fences
* to the vm.
*/
dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP);
dma_resv_for_each_fence_unlocked(&cursor, fence)
dma_fence_enable_sw_signaling(fence);
dma_resv_iter_end(&cursor);
err = dma_resv_wait_timeout(xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP,
false, MAX_SCHEDULE_TIMEOUT);
XE_WARN_ON(err <= 0);
if (xe_vm_in_fault_mode(vm)) {
err = xe_vm_invalidate_vma(vma);
XE_WARN_ON(err);
}
trace_xe_vma_userptr_invalidate_complete(vma);
return true;
}
static const struct mmu_interval_notifier_ops vma_userptr_notifier_ops = {
.invalidate = vma_userptr_invalidate,
};
int xe_vm_userptr_pin(struct xe_vm *vm)
{
struct xe_userptr_vma *uvma, *next;
int err = 0;
LIST_HEAD(tmp_evict);
xe_assert(vm->xe, !xe_vm_in_fault_mode(vm));
lockdep_assert_held_write(&vm->lock);
/* Collect invalidated userptrs */
spin_lock(&vm->userptr.invalidated_lock);
list_for_each_entry_safe(uvma, next, &vm->userptr.invalidated,
userptr.invalidate_link) {
list_del_init(&uvma->userptr.invalidate_link);
list_move_tail(&uvma->userptr.repin_link,
&vm->userptr.repin_list);
}
spin_unlock(&vm->userptr.invalidated_lock);
/* Pin and move to temporary list */
list_for_each_entry_safe(uvma, next, &vm->userptr.repin_list,
userptr.repin_link) {
err = xe_vma_userptr_pin_pages(uvma);
if (err == -EFAULT) {
list_del_init(&uvma->userptr.repin_link);
/* Wait for pending binds */
xe_vm_lock(vm, false);
dma_resv_wait_timeout(xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP,
false, MAX_SCHEDULE_TIMEOUT);
err = xe_vm_invalidate_vma(&uvma->vma);
xe_vm_unlock(vm);
if (err)
return err;
} else {
if (err < 0)
return err;
list_del_init(&uvma->userptr.repin_link);
list_move_tail(&uvma->vma.combined_links.rebind,
&vm->rebind_list);
}
}
return 0;
}
/**
* xe_vm_userptr_check_repin() - Check whether the VM might have userptrs
* that need repinning.
* @vm: The VM.
*
* This function does an advisory check for whether the VM has userptrs that
* need repinning.
*
* Return: 0 if there are no indications of userptrs needing repinning,
* -EAGAIN if there are.
*/
int xe_vm_userptr_check_repin(struct xe_vm *vm)
{
return (list_empty_careful(&vm->userptr.repin_list) &&
list_empty_careful(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
}
static struct dma_fence *
xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
struct xe_sync_entry *syncs, u32 num_syncs,
bool first_op, bool last_op);
struct dma_fence *xe_vm_rebind(struct xe_vm *vm, bool rebind_worker)
{
struct dma_fence *fence = NULL;
struct xe_vma *vma, *next;
lockdep_assert_held(&vm->lock);
if (xe_vm_in_lr_mode(vm) && !rebind_worker)
return NULL;
xe_vm_assert_held(vm);
list_for_each_entry_safe(vma, next, &vm->rebind_list,
combined_links.rebind) {
xe_assert(vm->xe, vma->tile_present);
list_del_init(&vma->combined_links.rebind);
dma_fence_put(fence);
if (rebind_worker)
trace_xe_vma_rebind_worker(vma);
else
trace_xe_vma_rebind_exec(vma);
fence = xe_vm_bind_vma(vma, NULL, NULL, 0, false, false);
if (IS_ERR(fence))
return fence;
}
return fence;
}
static void xe_vma_free(struct xe_vma *vma)
{
if (xe_vma_is_userptr(vma))
kfree(to_userptr_vma(vma));
else
kfree(vma);
}
#define VMA_CREATE_FLAG_READ_ONLY BIT(0)
#define VMA_CREATE_FLAG_IS_NULL BIT(1)
#define VMA_CREATE_FLAG_DUMPABLE BIT(2)
static struct xe_vma *xe_vma_create(struct xe_vm *vm,
struct xe_bo *bo,
u64 bo_offset_or_userptr,
u64 start, u64 end,
u16 pat_index, unsigned int flags)
{
struct xe_vma *vma;
struct xe_tile *tile;
u8 id;
bool read_only = (flags & VMA_CREATE_FLAG_READ_ONLY);
bool is_null = (flags & VMA_CREATE_FLAG_IS_NULL);
bool dumpable = (flags & VMA_CREATE_FLAG_DUMPABLE);
xe_assert(vm->xe, start < end);
xe_assert(vm->xe, end < vm->size);
/*
* Allocate and ensure that the xe_vma_is_userptr() return
* matches what was allocated.
*/
if (!bo && !is_null) {
struct xe_userptr_vma *uvma = kzalloc(sizeof(*uvma), GFP_KERNEL);
if (!uvma)
return ERR_PTR(-ENOMEM);
vma = &uvma->vma;
} else {
vma = kzalloc(sizeof(*vma), GFP_KERNEL);
if (!vma)
return ERR_PTR(-ENOMEM);
if (is_null)
vma->gpuva.flags |= DRM_GPUVA_SPARSE;
if (bo)
vma->gpuva.gem.obj = &bo->ttm.base;
}
INIT_LIST_HEAD(&vma->combined_links.rebind);
INIT_LIST_HEAD(&vma->gpuva.gem.entry);
vma->gpuva.vm = &vm->gpuvm;
vma->gpuva.va.addr = start;
vma->gpuva.va.range = end - start + 1;
if (read_only)
vma->gpuva.flags |= XE_VMA_READ_ONLY;
if (dumpable)
vma->gpuva.flags |= XE_VMA_DUMPABLE;
for_each_tile(tile, vm->xe, id)
vma->tile_mask |= 0x1 << id;
if (GRAPHICS_VER(vm->xe) >= 20 || vm->xe->info.platform == XE_PVC)
vma->gpuva.flags |= XE_VMA_ATOMIC_PTE_BIT;
vma->pat_index = pat_index;
if (bo) {
struct drm_gpuvm_bo *vm_bo;
xe_bo_assert_held(bo);
vm_bo = drm_gpuvm_bo_obtain(vma->gpuva.vm, &bo->ttm.base);
if (IS_ERR(vm_bo)) {
xe_vma_free(vma);
return ERR_CAST(vm_bo);
}
drm_gpuvm_bo_extobj_add(vm_bo);
drm_gem_object_get(&bo->ttm.base);
vma->gpuva.gem.offset = bo_offset_or_userptr;
drm_gpuva_link(&vma->gpuva, vm_bo);
drm_gpuvm_bo_put(vm_bo);
} else /* userptr or null */ {
if (!is_null) {
struct xe_userptr *userptr = &to_userptr_vma(vma)->userptr;
u64 size = end - start + 1;
int err;
INIT_LIST_HEAD(&userptr->invalidate_link);
INIT_LIST_HEAD(&userptr->repin_link);
vma->gpuva.gem.offset = bo_offset_or_userptr;
err = mmu_interval_notifier_insert(&userptr->notifier,
current->mm,
xe_vma_userptr(vma), size,
&vma_userptr_notifier_ops);
if (err) {
xe_vma_free(vma);
return ERR_PTR(err);
}
userptr->notifier_seq = LONG_MAX;
}
xe_vm_get(vm);
}
return vma;
}
static void xe_vma_destroy_late(struct xe_vma *vma)
{
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_device *xe = vm->xe;
bool read_only = xe_vma_read_only(vma);
if (vma->ufence) {
xe_sync_ufence_put(vma->ufence);
vma->ufence = NULL;
}
if (xe_vma_is_userptr(vma)) {
struct xe_userptr *userptr = &to_userptr_vma(vma)->userptr;
if (userptr->sg) {
dma_unmap_sgtable(xe->drm.dev,
userptr->sg,
read_only ? DMA_TO_DEVICE :
DMA_BIDIRECTIONAL, 0);
sg_free_table(userptr->sg);
userptr->sg = NULL;
}
/*
* Since userptr pages are not pinned, we can't remove
* the notifer until we're sure the GPU is not accessing
* them anymore
*/
mmu_interval_notifier_remove(&userptr->notifier);
xe_vm_put(vm);
} else if (xe_vma_is_null(vma)) {
xe_vm_put(vm);
} else {
xe_bo_put(xe_vma_bo(vma));
}
xe_vma_free(vma);
}
static void vma_destroy_work_func(struct work_struct *w)
{
struct xe_vma *vma =
container_of(w, struct xe_vma, destroy_work);
xe_vma_destroy_late(vma);
}
static void vma_destroy_cb(struct dma_fence *fence,
struct dma_fence_cb *cb)
{
struct xe_vma *vma = container_of(cb, struct xe_vma, destroy_cb);
INIT_WORK(&vma->destroy_work, vma_destroy_work_func);
queue_work(system_unbound_wq, &vma->destroy_work);
}
static void xe_vma_destroy(struct xe_vma *vma, struct dma_fence *fence)
{
struct xe_vm *vm = xe_vma_vm(vma);
lockdep_assert_held_write(&vm->lock);
xe_assert(vm->xe, list_empty(&vma->combined_links.destroy));
if (xe_vma_is_userptr(vma)) {
xe_assert(vm->xe, vma->gpuva.flags & XE_VMA_DESTROYED);
spin_lock(&vm->userptr.invalidated_lock);
list_del(&to_userptr_vma(vma)->userptr.invalidate_link);
spin_unlock(&vm->userptr.invalidated_lock);
} else if (!xe_vma_is_null(vma)) {
xe_bo_assert_held(xe_vma_bo(vma));
drm_gpuva_unlink(&vma->gpuva);
}
xe_vm_assert_held(vm);
if (fence) {
int ret = dma_fence_add_callback(fence, &vma->destroy_cb,
vma_destroy_cb);
if (ret) {
XE_WARN_ON(ret != -ENOENT);
xe_vma_destroy_late(vma);
}
} else {
xe_vma_destroy_late(vma);
}
}
/**
* xe_vm_prepare_vma() - drm_exec utility to lock a vma
* @exec: The drm_exec object we're currently locking for.
* @vma: The vma for witch we want to lock the vm resv and any attached
* object's resv.
* @num_shared: The number of dma-fence slots to pre-allocate in the
* objects' reservation objects.
*
* Return: 0 on success, negative error code on error. In particular
* may return -EDEADLK on WW transaction contention and -EINTR if
* an interruptible wait is terminated by a signal.
*/
int xe_vm_prepare_vma(struct drm_exec *exec, struct xe_vma *vma,
unsigned int num_shared)
{
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_bo *bo = xe_vma_bo(vma);
int err;
XE_WARN_ON(!vm);
if (num_shared)
err = drm_exec_prepare_obj(exec, xe_vm_obj(vm), num_shared);
else
err = drm_exec_lock_obj(exec, xe_vm_obj(vm));
if (!err && bo && !bo->vm) {
if (num_shared)
err = drm_exec_prepare_obj(exec, &bo->ttm.base, num_shared);
else
err = drm_exec_lock_obj(exec, &bo->ttm.base);
}
return err;
}
static void xe_vma_destroy_unlocked(struct xe_vma *vma)
{
struct drm_exec exec;
int err;
drm_exec_init(&exec, 0, 0);
drm_exec_until_all_locked(&exec) {
err = xe_vm_prepare_vma(&exec, vma, 0);
drm_exec_retry_on_contention(&exec);
if (XE_WARN_ON(err))
break;
}
xe_vma_destroy(vma, NULL);
drm_exec_fini(&exec);
}
struct xe_vma *
xe_vm_find_overlapping_vma(struct xe_vm *vm, u64 start, u64 range)
{
struct drm_gpuva *gpuva;
lockdep_assert_held(&vm->lock);
if (xe_vm_is_closed_or_banned(vm))
return NULL;
xe_assert(vm->xe, start + range <= vm->size);
gpuva = drm_gpuva_find_first(&vm->gpuvm, start, range);
return gpuva ? gpuva_to_vma(gpuva) : NULL;
}
static int xe_vm_insert_vma(struct xe_vm *vm, struct xe_vma *vma)
{
int err;
xe_assert(vm->xe, xe_vma_vm(vma) == vm);
lockdep_assert_held(&vm->lock);
mutex_lock(&vm->snap_mutex);
err = drm_gpuva_insert(&vm->gpuvm, &vma->gpuva);
mutex_unlock(&vm->snap_mutex);
XE_WARN_ON(err); /* Shouldn't be possible */
return err;
}
static void xe_vm_remove_vma(struct xe_vm *vm, struct xe_vma *vma)
{
xe_assert(vm->xe, xe_vma_vm(vma) == vm);
lockdep_assert_held(&vm->lock);
mutex_lock(&vm->snap_mutex);
drm_gpuva_remove(&vma->gpuva);
mutex_unlock(&vm->snap_mutex);
if (vm->usm.last_fault_vma == vma)
vm->usm.last_fault_vma = NULL;
}
static struct drm_gpuva_op *xe_vm_op_alloc(void)
{
struct xe_vma_op *op;
op = kzalloc(sizeof(*op), GFP_KERNEL);
if (unlikely(!op))
return NULL;
return &op->base;
}
static void xe_vm_free(struct drm_gpuvm *gpuvm);
static const struct drm_gpuvm_ops gpuvm_ops = {
.op_alloc = xe_vm_op_alloc,
.vm_bo_validate = xe_gpuvm_validate,
.vm_free = xe_vm_free,
};
static u64 pde_encode_pat_index(struct xe_device *xe, u16 pat_index)
{
u64 pte = 0;
if (pat_index & BIT(0))
pte |= XE_PPGTT_PTE_PAT0;
if (pat_index & BIT(1))
pte |= XE_PPGTT_PTE_PAT1;
return pte;
}
static u64 pte_encode_pat_index(struct xe_device *xe, u16 pat_index,
u32 pt_level)
{
u64 pte = 0;
if (pat_index & BIT(0))
pte |= XE_PPGTT_PTE_PAT0;
if (pat_index & BIT(1))
pte |= XE_PPGTT_PTE_PAT1;
if (pat_index & BIT(2)) {
if (pt_level)
pte |= XE_PPGTT_PDE_PDPE_PAT2;
else
pte |= XE_PPGTT_PTE_PAT2;
}
if (pat_index & BIT(3))
pte |= XELPG_PPGTT_PTE_PAT3;
if (pat_index & (BIT(4)))
pte |= XE2_PPGTT_PTE_PAT4;
return pte;
}
static u64 pte_encode_ps(u32 pt_level)
{
XE_WARN_ON(pt_level > MAX_HUGEPTE_LEVEL);
if (pt_level == 1)
return XE_PDE_PS_2M;
else if (pt_level == 2)
return XE_PDPE_PS_1G;
return 0;
}
static u64 xelp_pde_encode_bo(struct xe_bo *bo, u64 bo_offset,
const u16 pat_index)
{
struct xe_device *xe = xe_bo_device(bo);
u64 pde;
pde = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
pde |= XE_PAGE_PRESENT | XE_PAGE_RW;
pde |= pde_encode_pat_index(xe, pat_index);
return pde;
}
static u64 xelp_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
u16 pat_index, u32 pt_level)
{
struct xe_device *xe = xe_bo_device(bo);
u64 pte;
pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
pte |= pte_encode_pat_index(xe, pat_index, pt_level);
pte |= pte_encode_ps(pt_level);
if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
pte |= XE_PPGTT_PTE_DM;
return pte;
}
static u64 xelp_pte_encode_vma(u64 pte, struct xe_vma *vma,
u16 pat_index, u32 pt_level)
{
struct xe_device *xe = xe_vma_vm(vma)->xe;
pte |= XE_PAGE_PRESENT;
if (likely(!xe_vma_read_only(vma)))
pte |= XE_PAGE_RW;
pte |= pte_encode_pat_index(xe, pat_index, pt_level);
pte |= pte_encode_ps(pt_level);
if (unlikely(xe_vma_is_null(vma)))
pte |= XE_PTE_NULL;
return pte;
}
static u64 xelp_pte_encode_addr(struct xe_device *xe, u64 addr,
u16 pat_index,
u32 pt_level, bool devmem, u64 flags)
{
u64 pte;
/* Avoid passing random bits directly as flags */
xe_assert(xe, !(flags & ~XE_PTE_PS64));
pte = addr;
pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
pte |= pte_encode_pat_index(xe, pat_index, pt_level);
pte |= pte_encode_ps(pt_level);
if (devmem)
pte |= XE_PPGTT_PTE_DM;
pte |= flags;
return pte;
}
static const struct xe_pt_ops xelp_pt_ops = {
.pte_encode_bo = xelp_pte_encode_bo,
.pte_encode_vma = xelp_pte_encode_vma,
.pte_encode_addr = xelp_pte_encode_addr,
.pde_encode_bo = xelp_pde_encode_bo,
};
static void vm_destroy_work_func(struct work_struct *w);
/**
* xe_vm_create_scratch() - Setup a scratch memory pagetable tree for the
* given tile and vm.
* @xe: xe device.
* @tile: tile to set up for.
* @vm: vm to set up for.
*
* Sets up a pagetable tree with one page-table per level and a single
* leaf PTE. All pagetable entries point to the single page-table or,
* for MAX_HUGEPTE_LEVEL, a NULL huge PTE returning 0 on read and
* writes become NOPs.
*
* Return: 0 on success, negative error code on error.
*/
static int xe_vm_create_scratch(struct xe_device *xe, struct xe_tile *tile,
struct xe_vm *vm)
{
u8 id = tile->id;
int i;
for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; i++) {
vm->scratch_pt[id][i] = xe_pt_create(vm, tile, i);
if (IS_ERR(vm->scratch_pt[id][i]))
return PTR_ERR(vm->scratch_pt[id][i]);
xe_pt_populate_empty(tile, vm, vm->scratch_pt[id][i]);
}
return 0;
}
static void xe_vm_free_scratch(struct xe_vm *vm)
{
struct xe_tile *tile;
u8 id;
if (!xe_vm_has_scratch(vm))
return;
for_each_tile(tile, vm->xe, id) {
u32 i;
if (!vm->pt_root[id])
continue;
for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; ++i)
if (vm->scratch_pt[id][i])
xe_pt_destroy(vm->scratch_pt[id][i], vm->flags, NULL);
}
}
struct xe_vm *xe_vm_create(struct xe_device *xe, u32 flags)
{
struct drm_gem_object *vm_resv_obj;
struct xe_vm *vm;
int err, number_tiles = 0;
struct xe_tile *tile;
u8 id;
vm = kzalloc(sizeof(*vm), GFP_KERNEL);
if (!vm)
return ERR_PTR(-ENOMEM);
vm->xe = xe;
vm->size = 1ull << xe->info.va_bits;
vm->flags = flags;
init_rwsem(&vm->lock);
mutex_init(&vm->snap_mutex);
INIT_LIST_HEAD(&vm->rebind_list);
INIT_LIST_HEAD(&vm->userptr.repin_list);
INIT_LIST_HEAD(&vm->userptr.invalidated);
init_rwsem(&vm->userptr.notifier_lock);
spin_lock_init(&vm->userptr.invalidated_lock);
INIT_WORK(&vm->destroy_work, vm_destroy_work_func);
INIT_LIST_HEAD(&vm->preempt.exec_queues);
vm->preempt.min_run_period_ms = 10; /* FIXME: Wire up to uAPI */
for_each_tile(tile, xe, id)
xe_range_fence_tree_init(&vm->rftree[id]);
vm->pt_ops = &xelp_pt_ops;
if (!(flags & XE_VM_FLAG_MIGRATION))
xe_device_mem_access_get(xe);
vm_resv_obj = drm_gpuvm_resv_object_alloc(&xe->drm);
if (!vm_resv_obj) {
err = -ENOMEM;
goto err_no_resv;
}
drm_gpuvm_init(&vm->gpuvm, "Xe VM", DRM_GPUVM_RESV_PROTECTED, &xe->drm,
vm_resv_obj, 0, vm->size, 0, 0, &gpuvm_ops);
drm_gem_object_put(vm_resv_obj);
err = dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
if (err)
goto err_close;
if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
vm->flags |= XE_VM_FLAG_64K;
for_each_tile(tile, xe, id) {
if (flags & XE_VM_FLAG_MIGRATION &&
tile->id != XE_VM_FLAG_TILE_ID(flags))
continue;
vm->pt_root[id] = xe_pt_create(vm, tile, xe->info.vm_max_level);
if (IS_ERR(vm->pt_root[id])) {
err = PTR_ERR(vm->pt_root[id]);
vm->pt_root[id] = NULL;
goto err_unlock_close;
}
}
if (xe_vm_has_scratch(vm)) {
for_each_tile(tile, xe, id) {
if (!vm->pt_root[id])
continue;
err = xe_vm_create_scratch(xe, tile, vm);
if (err)
goto err_unlock_close;
}
vm->batch_invalidate_tlb = true;
}
if (vm->flags & XE_VM_FLAG_LR_MODE) {
INIT_WORK(&vm->preempt.rebind_work, preempt_rebind_work_func);
vm->batch_invalidate_tlb = false;
}
/* Fill pt_root after allocating scratch tables */
for_each_tile(tile, xe, id) {
if (!vm->pt_root[id])
continue;
xe_pt_populate_empty(tile, vm, vm->pt_root[id]);
}
dma_resv_unlock(xe_vm_resv(vm));
/* Kernel migration VM shouldn't have a circular loop.. */
if (!(flags & XE_VM_FLAG_MIGRATION)) {
for_each_tile(tile, xe, id) {
struct xe_gt *gt = tile->primary_gt;
struct xe_vm *migrate_vm;
struct xe_exec_queue *q;
u32 create_flags = EXEC_QUEUE_FLAG_VM;
if (!vm->pt_root[id])
continue;
migrate_vm = xe_migrate_get_vm(tile->migrate);
q = xe_exec_queue_create_class(xe, gt, migrate_vm,
XE_ENGINE_CLASS_COPY,
create_flags);
xe_vm_put(migrate_vm);
if (IS_ERR(q)) {
err = PTR_ERR(q);
goto err_close;
}
vm->q[id] = q;
number_tiles++;
}
}
if (number_tiles > 1)
vm->composite_fence_ctx = dma_fence_context_alloc(1);
mutex_lock(&xe->usm.lock);
if (flags & XE_VM_FLAG_FAULT_MODE)
xe->usm.num_vm_in_fault_mode++;
else if (!(flags & XE_VM_FLAG_MIGRATION))
xe->usm.num_vm_in_non_fault_mode++;
mutex_unlock(&xe->usm.lock);
trace_xe_vm_create(vm);
return vm;
err_unlock_close:
dma_resv_unlock(xe_vm_resv(vm));
err_close:
xe_vm_close_and_put(vm);
return ERR_PTR(err);
err_no_resv:
mutex_destroy(&vm->snap_mutex);
for_each_tile(tile, xe, id)
xe_range_fence_tree_fini(&vm->rftree[id]);
kfree(vm);
if (!(flags & XE_VM_FLAG_MIGRATION))
xe_device_mem_access_put(xe);
return ERR_PTR(err);
}
static void xe_vm_close(struct xe_vm *vm)
{
down_write(&vm->lock);
vm->size = 0;
up_write(&vm->lock);
}
void xe_vm_close_and_put(struct xe_vm *vm)
{
LIST_HEAD(contested);
struct xe_device *xe = vm->xe;
struct xe_tile *tile;
struct xe_vma *vma, *next_vma;
struct drm_gpuva *gpuva, *next;
u8 id;
xe_assert(xe, !vm->preempt.num_exec_queues);
xe_vm_close(vm);
if (xe_vm_in_preempt_fence_mode(vm))
flush_work(&vm->preempt.rebind_work);
down_write(&vm->lock);
for_each_tile(tile, xe, id) {
if (vm->q[id])
xe_exec_queue_last_fence_put(vm->q[id], vm);
}
up_write(&vm->lock);
for_each_tile(tile, xe, id) {
if (vm->q[id]) {
xe_exec_queue_kill(vm->q[id]);
xe_exec_queue_put(vm->q[id]);
vm->q[id] = NULL;
}
}
down_write(&vm->lock);
xe_vm_lock(vm, false);
drm_gpuvm_for_each_va_safe(gpuva, next, &vm->gpuvm) {
vma = gpuva_to_vma(gpuva);
if (xe_vma_has_no_bo(vma)) {
down_read(&vm->userptr.notifier_lock);
vma->gpuva.flags |= XE_VMA_DESTROYED;
up_read(&vm->userptr.notifier_lock);
}
xe_vm_remove_vma(vm, vma);
/* easy case, remove from VMA? */
if (xe_vma_has_no_bo(vma) || xe_vma_bo(vma)->vm) {
list_del_init(&vma->combined_links.rebind);
xe_vma_destroy(vma, NULL);
continue;
}
list_move_tail(&vma->combined_links.destroy, &contested);
vma->gpuva.flags |= XE_VMA_DESTROYED;
}
/*
* All vm operations will add shared fences to resv.
* The only exception is eviction for a shared object,
* but even so, the unbind when evicted would still
* install a fence to resv. Hence it's safe to
* destroy the pagetables immediately.
*/
xe_vm_free_scratch(vm);
for_each_tile(tile, xe, id) {
if (vm->pt_root[id]) {
xe_pt_destroy(vm->pt_root[id], vm->flags, NULL);
vm->pt_root[id] = NULL;
}
}
xe_vm_unlock(vm);
/*
* VM is now dead, cannot re-add nodes to vm->vmas if it's NULL
* Since we hold a refcount to the bo, we can remove and free
* the members safely without locking.
*/
list_for_each_entry_safe(vma, next_vma, &contested,
combined_links.destroy) {
list_del_init(&vma->combined_links.destroy);
xe_vma_destroy_unlocked(vma);
}
up_write(&vm->lock);
mutex_lock(&xe->usm.lock);
if (vm->flags & XE_VM_FLAG_FAULT_MODE)
xe->usm.num_vm_in_fault_mode--;
else if (!(vm->flags & XE_VM_FLAG_MIGRATION))
xe->usm.num_vm_in_non_fault_mode--;
mutex_unlock(&xe->usm.lock);
for_each_tile(tile, xe, id)
xe_range_fence_tree_fini(&vm->rftree[id]);
xe_vm_put(vm);
}
static void vm_destroy_work_func(struct work_struct *w)
{
struct xe_vm *vm =
container_of(w, struct xe_vm, destroy_work);
struct xe_device *xe = vm->xe;
struct xe_tile *tile;
u8 id;
void *lookup;
/* xe_vm_close_and_put was not called? */
xe_assert(xe, !vm->size);
mutex_destroy(&vm->snap_mutex);
if (!(vm->flags & XE_VM_FLAG_MIGRATION)) {
xe_device_mem_access_put(xe);
if (xe->info.has_asid && vm->usm.asid) {
mutex_lock(&xe->usm.lock);
lookup = xa_erase(&xe->usm.asid_to_vm, vm->usm.asid);
xe_assert(xe, lookup == vm);
mutex_unlock(&xe->usm.lock);
}
}
for_each_tile(tile, xe, id)
XE_WARN_ON(vm->pt_root[id]);
trace_xe_vm_free(vm);
dma_fence_put(vm->rebind_fence);
kfree(vm);
}
static void xe_vm_free(struct drm_gpuvm *gpuvm)
{
struct xe_vm *vm = container_of(gpuvm, struct xe_vm, gpuvm);
/* To destroy the VM we need to be able to sleep */
queue_work(system_unbound_wq, &vm->destroy_work);
}
struct xe_vm *xe_vm_lookup(struct xe_file *xef, u32 id)
{
struct xe_vm *vm;
mutex_lock(&xef->vm.lock);
vm = xa_load(&xef->vm.xa, id);
if (vm)
xe_vm_get(vm);
mutex_unlock(&xef->vm.lock);
return vm;
}
u64 xe_vm_pdp4_descriptor(struct xe_vm *vm, struct xe_tile *tile)
{
return vm->pt_ops->pde_encode_bo(vm->pt_root[tile->id]->bo, 0,
tile_to_xe(tile)->pat.idx[XE_CACHE_WB]);
}
static struct xe_exec_queue *
to_wait_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
{
return q ? q : vm->q[0];
}
static struct dma_fence *
xe_vm_unbind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
struct xe_sync_entry *syncs, u32 num_syncs,
bool first_op, bool last_op)
{
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
struct xe_tile *tile;
struct dma_fence *fence = NULL;
struct dma_fence **fences = NULL;
struct dma_fence_array *cf = NULL;
int cur_fence = 0, i;
int number_tiles = hweight8(vma->tile_present);
int err;
u8 id;
trace_xe_vma_unbind(vma);
if (vma->ufence) {
struct xe_user_fence * const f = vma->ufence;
if (!xe_sync_ufence_get_status(f))
return ERR_PTR(-EBUSY);
vma->ufence = NULL;
xe_sync_ufence_put(f);
}
if (number_tiles > 1) {
fences = kmalloc_array(number_tiles, sizeof(*fences),
GFP_KERNEL);
if (!fences)
return ERR_PTR(-ENOMEM);
}
for_each_tile(tile, vm->xe, id) {
if (!(vma->tile_present & BIT(id)))
goto next;
fence = __xe_pt_unbind_vma(tile, vma, q ? q : vm->q[id],
first_op ? syncs : NULL,
first_op ? num_syncs : 0);
if (IS_ERR(fence)) {
err = PTR_ERR(fence);
goto err_fences;
}
if (fences)
fences[cur_fence++] = fence;
next:
if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
q = list_next_entry(q, multi_gt_list);
}
if (fences) {
cf = dma_fence_array_create(number_tiles, fences,
vm->composite_fence_ctx,
vm->composite_fence_seqno++,
false);
if (!cf) {
--vm->composite_fence_seqno;
err = -ENOMEM;
goto err_fences;
}
}
fence = cf ? &cf->base : !fence ?
xe_exec_queue_last_fence_get(wait_exec_queue, vm) : fence;
if (last_op) {
for (i = 0; i < num_syncs; i++)
xe_sync_entry_signal(&syncs[i], NULL, fence);
}
return fence;
err_fences:
if (fences) {
while (cur_fence)
dma_fence_put(fences[--cur_fence]);
kfree(fences);
}
return ERR_PTR(err);
}
static struct dma_fence *
xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
struct xe_sync_entry *syncs, u32 num_syncs,
bool first_op, bool last_op)
{
struct xe_tile *tile;
struct dma_fence *fence;
struct dma_fence **fences = NULL;
struct dma_fence_array *cf = NULL;
struct xe_vm *vm = xe_vma_vm(vma);
int cur_fence = 0, i;
int number_tiles = hweight8(vma->tile_mask);
int err;
u8 id;
trace_xe_vma_bind(vma);
if (number_tiles > 1) {
fences = kmalloc_array(number_tiles, sizeof(*fences),
GFP_KERNEL);
if (!fences)
return ERR_PTR(-ENOMEM);
}
for_each_tile(tile, vm->xe, id) {
if (!(vma->tile_mask & BIT(id)))
goto next;
fence = __xe_pt_bind_vma(tile, vma, q ? q : vm->q[id],
first_op ? syncs : NULL,
first_op ? num_syncs : 0,
vma->tile_present & BIT(id));
if (IS_ERR(fence)) {
err = PTR_ERR(fence);
goto err_fences;
}
if (fences)
fences[cur_fence++] = fence;
next:
if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
q = list_next_entry(q, multi_gt_list);
}
if (fences) {
cf = dma_fence_array_create(number_tiles, fences,
vm->composite_fence_ctx,
vm->composite_fence_seqno++,
false);
if (!cf) {
--vm->composite_fence_seqno;
err = -ENOMEM;
goto err_fences;
}
}
if (last_op) {
for (i = 0; i < num_syncs; i++)
xe_sync_entry_signal(&syncs[i], NULL,
cf ? &cf->base : fence);
}
return cf ? &cf->base : fence;
err_fences:
if (fences) {
while (cur_fence)
dma_fence_put(fences[--cur_fence]);
kfree(fences);
}
return ERR_PTR(err);
}
static struct xe_user_fence *
find_ufence_get(struct xe_sync_entry *syncs, u32 num_syncs)
{
unsigned int i;
for (i = 0; i < num_syncs; i++) {
struct xe_sync_entry *e = &syncs[i];
if (xe_sync_is_ufence(e))
return xe_sync_ufence_get(e);
}
return NULL;
}
static int __xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma,
struct xe_exec_queue *q, struct xe_sync_entry *syncs,
u32 num_syncs, bool immediate, bool first_op,
bool last_op)
{
struct dma_fence *fence;
struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
struct xe_user_fence *ufence;
xe_vm_assert_held(vm);
ufence = find_ufence_get(syncs, num_syncs);
if (vma->ufence && ufence)
xe_sync_ufence_put(vma->ufence);
vma->ufence = ufence ?: vma->ufence;
if (immediate) {
fence = xe_vm_bind_vma(vma, q, syncs, num_syncs, first_op,
last_op);
if (IS_ERR(fence))
return PTR_ERR(fence);
} else {
int i;
xe_assert(vm->xe, xe_vm_in_fault_mode(vm));
fence = xe_exec_queue_last_fence_get(wait_exec_queue, vm);
if (last_op) {
for (i = 0; i < num_syncs; i++)
xe_sync_entry_signal(&syncs[i], NULL, fence);
}
}
if (last_op)
xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
dma_fence_put(fence);
return 0;
}
static int xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma, struct xe_exec_queue *q,
struct xe_bo *bo, struct xe_sync_entry *syncs,
u32 num_syncs, bool immediate, bool first_op,
bool last_op)
{
int err;
xe_vm_assert_held(vm);
xe_bo_assert_held(bo);
if (bo && immediate) {
err = xe_bo_validate(bo, vm, true);
if (err)
return err;
}
return __xe_vm_bind(vm, vma, q, syncs, num_syncs, immediate, first_op,
last_op);
}
static int xe_vm_unbind(struct xe_vm *vm, struct xe_vma *vma,
struct xe_exec_queue *q, struct xe_sync_entry *syncs,
u32 num_syncs, bool first_op, bool last_op)
{
struct dma_fence *fence;
struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
xe_vm_assert_held(vm);
xe_bo_assert_held(xe_vma_bo(vma));
fence = xe_vm_unbind_vma(vma, q, syncs, num_syncs, first_op, last_op);
if (IS_ERR(fence))
return PTR_ERR(fence);
xe_vma_destroy(vma, fence);
if (last_op)
xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
dma_fence_put(fence);
return 0;
}
#define ALL_DRM_XE_VM_CREATE_FLAGS (DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE | \
DRM_XE_VM_CREATE_FLAG_LR_MODE | \
DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
int xe_vm_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_vm_create *args = data;
struct xe_tile *tile;
struct xe_vm *vm;
u32 id, asid;
int err;
u32 flags = 0;
if (XE_IOCTL_DBG(xe, args->extensions))
return -EINVAL;
if (XE_WA(xe_root_mmio_gt(xe), 14016763929))
args->flags |= DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE;
if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
!xe->info.has_usm))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->flags & ~ALL_DRM_XE_VM_CREATE_FLAGS))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE &&
args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
return -EINVAL;
if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE) &&
args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
xe_device_in_non_fault_mode(xe)))
return -EINVAL;
if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE) &&
xe_device_in_fault_mode(xe)))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->extensions))
return -EINVAL;
if (args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE)
flags |= XE_VM_FLAG_SCRATCH_PAGE;
if (args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE)
flags |= XE_VM_FLAG_LR_MODE;
if (args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
flags |= XE_VM_FLAG_FAULT_MODE;
vm = xe_vm_create(xe, flags);
if (IS_ERR(vm))
return PTR_ERR(vm);
mutex_lock(&xef->vm.lock);
err = xa_alloc(&xef->vm.xa, &id, vm, xa_limit_32b, GFP_KERNEL);
mutex_unlock(&xef->vm.lock);
if (err)
goto err_close_and_put;
if (xe->info.has_asid) {
mutex_lock(&xe->usm.lock);
err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, vm,
XA_LIMIT(1, XE_MAX_ASID - 1),
&xe->usm.next_asid, GFP_KERNEL);
mutex_unlock(&xe->usm.lock);
if (err < 0)
goto err_free_id;
vm->usm.asid = asid;
}
args->vm_id = id;
vm->xef = xef;
/* Record BO memory for VM pagetable created against client */
for_each_tile(tile, xe, id)
if (vm->pt_root[id])
xe_drm_client_add_bo(vm->xef->client, vm->pt_root[id]->bo);
#if IS_ENABLED(CONFIG_DRM_XE_DEBUG_MEM)
/* Warning: Security issue - never enable by default */
args->reserved[0] = xe_bo_main_addr(vm->pt_root[0]->bo, XE_PAGE_SIZE);
#endif
return 0;
err_free_id:
mutex_lock(&xef->vm.lock);
xa_erase(&xef->vm.xa, id);
mutex_unlock(&xef->vm.lock);
err_close_and_put:
xe_vm_close_and_put(vm);
return err;
}
int xe_vm_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_vm_destroy *args = data;
struct xe_vm *vm;
int err = 0;
if (XE_IOCTL_DBG(xe, args->pad) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
mutex_lock(&xef->vm.lock);
vm = xa_load(&xef->vm.xa, args->vm_id);
if (XE_IOCTL_DBG(xe, !vm))
err = -ENOENT;
else if (XE_IOCTL_DBG(xe, vm->preempt.num_exec_queues))
err = -EBUSY;
else
xa_erase(&xef->vm.xa, args->vm_id);
mutex_unlock(&xef->vm.lock);
if (!err)
xe_vm_close_and_put(vm);
return err;
}
static const u32 region_to_mem_type[] = {
XE_PL_TT,
XE_PL_VRAM0,
XE_PL_VRAM1,
};
static int xe_vm_prefetch(struct xe_vm *vm, struct xe_vma *vma,
struct xe_exec_queue *q, u32 region,
struct xe_sync_entry *syncs, u32 num_syncs,
bool first_op, bool last_op)
{
struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
int err;
xe_assert(vm->xe, region < ARRAY_SIZE(region_to_mem_type));
if (!xe_vma_has_no_bo(vma)) {
err = xe_bo_migrate(xe_vma_bo(vma), region_to_mem_type[region]);
if (err)
return err;
}
if (vma->tile_mask != (vma->tile_present & ~vma->tile_invalidated)) {
return xe_vm_bind(vm, vma, q, xe_vma_bo(vma), syncs, num_syncs,
true, first_op, last_op);
} else {
int i;
/* Nothing to do, signal fences now */
if (last_op) {
for (i = 0; i < num_syncs; i++) {
struct dma_fence *fence =
xe_exec_queue_last_fence_get(wait_exec_queue, vm);
xe_sync_entry_signal(&syncs[i], NULL, fence);
dma_fence_put(fence);
}
}
return 0;
}
}
static void prep_vma_destroy(struct xe_vm *vm, struct xe_vma *vma,
bool post_commit)
{
down_read(&vm->userptr.notifier_lock);
vma->gpuva.flags |= XE_VMA_DESTROYED;
up_read(&vm->userptr.notifier_lock);
if (post_commit)
xe_vm_remove_vma(vm, vma);
}
#undef ULL
#define ULL unsigned long long
#if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
{
struct xe_vma *vma;
switch (op->op) {
case DRM_GPUVA_OP_MAP:
vm_dbg(&xe->drm, "MAP: addr=0x%016llx, range=0x%016llx",
(ULL)op->map.va.addr, (ULL)op->map.va.range);
break;
case DRM_GPUVA_OP_REMAP:
vma = gpuva_to_vma(op->remap.unmap->va);
vm_dbg(&xe->drm, "REMAP:UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
(ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
op->remap.unmap->keep ? 1 : 0);
if (op->remap.prev)
vm_dbg(&xe->drm,
"REMAP:PREV: addr=0x%016llx, range=0x%016llx",
(ULL)op->remap.prev->va.addr,
(ULL)op->remap.prev->va.range);
if (op->remap.next)
vm_dbg(&xe->drm,
"REMAP:NEXT: addr=0x%016llx, range=0x%016llx",
(ULL)op->remap.next->va.addr,
(ULL)op->remap.next->va.range);
break;
case DRM_GPUVA_OP_UNMAP:
vma = gpuva_to_vma(op->unmap.va);
vm_dbg(&xe->drm, "UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
(ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
op->unmap.keep ? 1 : 0);
break;
case DRM_GPUVA_OP_PREFETCH:
vma = gpuva_to_vma(op->prefetch.va);
vm_dbg(&xe->drm, "PREFETCH: addr=0x%016llx, range=0x%016llx",
(ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma));
break;
default:
drm_warn(&xe->drm, "NOT POSSIBLE");
}
}
#else
static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
{
}
#endif
/*
* Create operations list from IOCTL arguments, setup operations fields so parse
* and commit steps are decoupled from IOCTL arguments. This step can fail.
*/
static struct drm_gpuva_ops *
vm_bind_ioctl_ops_create(struct xe_vm *vm, struct xe_bo *bo,
u64 bo_offset_or_userptr, u64 addr, u64 range,
u32 operation, u32 flags,
u32 prefetch_region, u16 pat_index)
{
struct drm_gem_object *obj = bo ? &bo->ttm.base : NULL;
struct drm_gpuva_ops *ops;
struct drm_gpuva_op *__op;
struct drm_gpuvm_bo *vm_bo;
int err;
lockdep_assert_held_write(&vm->lock);
vm_dbg(&vm->xe->drm,
"op=%d, addr=0x%016llx, range=0x%016llx, bo_offset_or_userptr=0x%016llx",
operation, (ULL)addr, (ULL)range,
(ULL)bo_offset_or_userptr);
switch (operation) {
case DRM_XE_VM_BIND_OP_MAP:
case DRM_XE_VM_BIND_OP_MAP_USERPTR:
ops = drm_gpuvm_sm_map_ops_create(&vm->gpuvm, addr, range,
obj, bo_offset_or_userptr);
break;
case DRM_XE_VM_BIND_OP_UNMAP:
ops = drm_gpuvm_sm_unmap_ops_create(&vm->gpuvm, addr, range);
break;
case DRM_XE_VM_BIND_OP_PREFETCH:
ops = drm_gpuvm_prefetch_ops_create(&vm->gpuvm, addr, range);
break;
case DRM_XE_VM_BIND_OP_UNMAP_ALL:
xe_assert(vm->xe, bo);
err = xe_bo_lock(bo, true);
if (err)
return ERR_PTR(err);
vm_bo = drm_gpuvm_bo_obtain(&vm->gpuvm, obj);
if (IS_ERR(vm_bo)) {
xe_bo_unlock(bo);
return ERR_CAST(vm_bo);
}
ops = drm_gpuvm_bo_unmap_ops_create(vm_bo);
drm_gpuvm_bo_put(vm_bo);
xe_bo_unlock(bo);
break;
default:
drm_warn(&vm->xe->drm, "NOT POSSIBLE");
ops = ERR_PTR(-EINVAL);
}
if (IS_ERR(ops))
return ops;
drm_gpuva_for_each_op(__op, ops) {
struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
if (__op->op == DRM_GPUVA_OP_MAP) {
op->map.is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
op->map.dumpable = flags & DRM_XE_VM_BIND_FLAG_DUMPABLE;
op->map.pat_index = pat_index;
} else if (__op->op == DRM_GPUVA_OP_PREFETCH) {
op->prefetch.region = prefetch_region;
}
print_op(vm->xe, __op);
}
return ops;
}
static struct xe_vma *new_vma(struct xe_vm *vm, struct drm_gpuva_op_map *op,
u16 pat_index, unsigned int flags)
{
struct xe_bo *bo = op->gem.obj ? gem_to_xe_bo(op->gem.obj) : NULL;
struct drm_exec exec;
struct xe_vma *vma;
int err;
lockdep_assert_held_write(&vm->lock);
if (bo) {
drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
drm_exec_until_all_locked(&exec) {
err = 0;
if (!bo->vm) {
err = drm_exec_lock_obj(&exec, xe_vm_obj(vm));
drm_exec_retry_on_contention(&exec);
}
if (!err) {
err = drm_exec_lock_obj(&exec, &bo->ttm.base);
drm_exec_retry_on_contention(&exec);
}
if (err) {
drm_exec_fini(&exec);
return ERR_PTR(err);
}
}
}
vma = xe_vma_create(vm, bo, op->gem.offset,
op->va.addr, op->va.addr +
op->va.range - 1, pat_index, flags);
if (bo)
drm_exec_fini(&exec);
if (xe_vma_is_userptr(vma)) {
err = xe_vma_userptr_pin_pages(to_userptr_vma(vma));
if (err) {
prep_vma_destroy(vm, vma, false);
xe_vma_destroy_unlocked(vma);
return ERR_PTR(err);
}
} else if (!xe_vma_has_no_bo(vma) && !bo->vm) {
err = add_preempt_fences(vm, bo);
if (err) {
prep_vma_destroy(vm, vma, false);
xe_vma_destroy_unlocked(vma);
return ERR_PTR(err);
}
}
return vma;
}
static u64 xe_vma_max_pte_size(struct xe_vma *vma)
{
if (vma->gpuva.flags & XE_VMA_PTE_1G)
return SZ_1G;
else if (vma->gpuva.flags & (XE_VMA_PTE_2M | XE_VMA_PTE_COMPACT))
return SZ_2M;
else if (vma->gpuva.flags & XE_VMA_PTE_64K)
return SZ_64K;
else if (vma->gpuva.flags & XE_VMA_PTE_4K)
return SZ_4K;
return SZ_1G; /* Uninitialized, used max size */
}
static void xe_vma_set_pte_size(struct xe_vma *vma, u64 size)
{
switch (size) {
case SZ_1G:
vma->gpuva.flags |= XE_VMA_PTE_1G;
break;
case SZ_2M:
vma->gpuva.flags |= XE_VMA_PTE_2M;
break;
case SZ_64K:
vma->gpuva.flags |= XE_VMA_PTE_64K;
break;
case SZ_4K:
vma->gpuva.flags |= XE_VMA_PTE_4K;
break;
}
}
static int xe_vma_op_commit(struct xe_vm *vm, struct xe_vma_op *op)
{
int err = 0;
lockdep_assert_held_write(&vm->lock);
switch (op->base.op) {
case DRM_GPUVA_OP_MAP:
err |= xe_vm_insert_vma(vm, op->map.vma);
if (!err)
op->flags |= XE_VMA_OP_COMMITTED;
break;
case DRM_GPUVA_OP_REMAP:
{
u8 tile_present =
gpuva_to_vma(op->base.remap.unmap->va)->tile_present;
prep_vma_destroy(vm, gpuva_to_vma(op->base.remap.unmap->va),
true);
op->flags |= XE_VMA_OP_COMMITTED;
if (op->remap.prev) {
err |= xe_vm_insert_vma(vm, op->remap.prev);
if (!err)
op->flags |= XE_VMA_OP_PREV_COMMITTED;
if (!err && op->remap.skip_prev) {
op->remap.prev->tile_present =
tile_present;
op->remap.prev = NULL;
}
}
if (op->remap.next) {
err |= xe_vm_insert_vma(vm, op->remap.next);
if (!err)
op->flags |= XE_VMA_OP_NEXT_COMMITTED;
if (!err && op->remap.skip_next) {
op->remap.next->tile_present =
tile_present;
op->remap.next = NULL;
}
}
/* Adjust for partial unbind after removin VMA from VM */
if (!err) {
op->base.remap.unmap->va->va.addr = op->remap.start;
op->base.remap.unmap->va->va.range = op->remap.range;
}
break;
}
case DRM_GPUVA_OP_UNMAP:
prep_vma_destroy(vm, gpuva_to_vma(op->base.unmap.va), true);
op->flags |= XE_VMA_OP_COMMITTED;
break;
case DRM_GPUVA_OP_PREFETCH:
op->flags |= XE_VMA_OP_COMMITTED;
break;
default:
drm_warn(&vm->xe->drm, "NOT POSSIBLE");
}
return err;
}
static int vm_bind_ioctl_ops_parse(struct xe_vm *vm, struct xe_exec_queue *q,
struct drm_gpuva_ops *ops,
struct xe_sync_entry *syncs, u32 num_syncs,
struct list_head *ops_list, bool last)
{
struct xe_device *xe = vm->xe;
struct xe_vma_op *last_op = NULL;
struct drm_gpuva_op *__op;
int err = 0;
lockdep_assert_held_write(&vm->lock);
drm_gpuva_for_each_op(__op, ops) {
struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
struct xe_vma *vma;
bool first = list_empty(ops_list);
unsigned int flags = 0;
INIT_LIST_HEAD(&op->link);
list_add_tail(&op->link, ops_list);
if (first) {
op->flags |= XE_VMA_OP_FIRST;
op->num_syncs = num_syncs;
op->syncs = syncs;
}
op->q = q;
switch (op->base.op) {
case DRM_GPUVA_OP_MAP:
{
flags |= op->map.is_null ?
VMA_CREATE_FLAG_IS_NULL : 0;
flags |= op->map.dumpable ?
VMA_CREATE_FLAG_DUMPABLE : 0;
vma = new_vma(vm, &op->base.map, op->map.pat_index,
flags);
if (IS_ERR(vma))
return PTR_ERR(vma);
op->map.vma = vma;
break;
}
case DRM_GPUVA_OP_REMAP:
{
struct xe_vma *old =
gpuva_to_vma(op->base.remap.unmap->va);
op->remap.start = xe_vma_start(old);
op->remap.range = xe_vma_size(old);
if (op->base.remap.prev) {
flags |= op->base.remap.unmap->va->flags &
XE_VMA_READ_ONLY ?
VMA_CREATE_FLAG_READ_ONLY : 0;
flags |= op->base.remap.unmap->va->flags &
DRM_GPUVA_SPARSE ?
VMA_CREATE_FLAG_IS_NULL : 0;
flags |= op->base.remap.unmap->va->flags &
XE_VMA_DUMPABLE ?
VMA_CREATE_FLAG_DUMPABLE : 0;
vma = new_vma(vm, op->base.remap.prev,
old->pat_index, flags);
if (IS_ERR(vma))
return PTR_ERR(vma);
op->remap.prev = vma;
/*
* Userptr creates a new SG mapping so
* we must also rebind.
*/
op->remap.skip_prev = !xe_vma_is_userptr(old) &&
IS_ALIGNED(xe_vma_end(vma),
xe_vma_max_pte_size(old));
if (op->remap.skip_prev) {
xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
op->remap.range -=
xe_vma_end(vma) -
xe_vma_start(old);
op->remap.start = xe_vma_end(vma);
vm_dbg(&xe->drm, "REMAP:SKIP_PREV: addr=0x%016llx, range=0x%016llx",
(ULL)op->remap.start,
(ULL)op->remap.range);
}
}
if (op->base.remap.next) {
flags |= op->base.remap.unmap->va->flags &
XE_VMA_READ_ONLY ?
VMA_CREATE_FLAG_READ_ONLY : 0;
flags |= op->base.remap.unmap->va->flags &
DRM_GPUVA_SPARSE ?
VMA_CREATE_FLAG_IS_NULL : 0;
flags |= op->base.remap.unmap->va->flags &
XE_VMA_DUMPABLE ?
VMA_CREATE_FLAG_DUMPABLE : 0;
vma = new_vma(vm, op->base.remap.next,
old->pat_index, flags);
if (IS_ERR(vma))
return PTR_ERR(vma);
op->remap.next = vma;
/*
* Userptr creates a new SG mapping so
* we must also rebind.
*/
op->remap.skip_next = !xe_vma_is_userptr(old) &&
IS_ALIGNED(xe_vma_start(vma),
xe_vma_max_pte_size(old));
if (op->remap.skip_next) {
xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
op->remap.range -=
xe_vma_end(old) -
xe_vma_start(vma);
vm_dbg(&xe->drm, "REMAP:SKIP_NEXT: addr=0x%016llx, range=0x%016llx",
(ULL)op->remap.start,
(ULL)op->remap.range);
}
}
break;
}
case DRM_GPUVA_OP_UNMAP:
case DRM_GPUVA_OP_PREFETCH:
/* Nothing to do */
break;
default:
drm_warn(&vm->xe->drm, "NOT POSSIBLE");
}
last_op = op;
err = xe_vma_op_commit(vm, op);
if (err)
return err;
}
/* FIXME: Unhandled corner case */
XE_WARN_ON(!last_op && last && !list_empty(ops_list));
if (!last_op)
return 0;
last_op->ops = ops;
if (last) {
last_op->flags |= XE_VMA_OP_LAST;
last_op->num_syncs = num_syncs;
last_op->syncs = syncs;
}
return 0;
}
static int op_execute(struct drm_exec *exec, struct xe_vm *vm,
struct xe_vma *vma, struct xe_vma_op *op)
{
int err;
lockdep_assert_held_write(&vm->lock);
err = xe_vm_prepare_vma(exec, vma, 1);
if (err)
return err;
xe_vm_assert_held(vm);
xe_bo_assert_held(xe_vma_bo(vma));
switch (op->base.op) {
case DRM_GPUVA_OP_MAP:
err = xe_vm_bind(vm, vma, op->q, xe_vma_bo(vma),
op->syncs, op->num_syncs,
!xe_vm_in_fault_mode(vm),
op->flags & XE_VMA_OP_FIRST,
op->flags & XE_VMA_OP_LAST);
break;
case DRM_GPUVA_OP_REMAP:
{
bool prev = !!op->remap.prev;
bool next = !!op->remap.next;
if (!op->remap.unmap_done) {
if (prev || next)
vma->gpuva.flags |= XE_VMA_FIRST_REBIND;
err = xe_vm_unbind(vm, vma, op->q, op->syncs,
op->num_syncs,
op->flags & XE_VMA_OP_FIRST,
op->flags & XE_VMA_OP_LAST &&
!prev && !next);
if (err)
break;
op->remap.unmap_done = true;
}
if (prev) {
op->remap.prev->gpuva.flags |= XE_VMA_LAST_REBIND;
err = xe_vm_bind(vm, op->remap.prev, op->q,
xe_vma_bo(op->remap.prev), op->syncs,
op->num_syncs, true, false,
op->flags & XE_VMA_OP_LAST && !next);
op->remap.prev->gpuva.flags &= ~XE_VMA_LAST_REBIND;
if (err)
break;
op->remap.prev = NULL;
}
if (next) {
op->remap.next->gpuva.flags |= XE_VMA_LAST_REBIND;
err = xe_vm_bind(vm, op->remap.next, op->q,
xe_vma_bo(op->remap.next),
op->syncs, op->num_syncs,
true, false,
op->flags & XE_VMA_OP_LAST);
op->remap.next->gpuva.flags &= ~XE_VMA_LAST_REBIND;
if (err)
break;
op->remap.next = NULL;
}
break;
}
case DRM_GPUVA_OP_UNMAP:
err = xe_vm_unbind(vm, vma, op->q, op->syncs,
op->num_syncs, op->flags & XE_VMA_OP_FIRST,
op->flags & XE_VMA_OP_LAST);
break;
case DRM_GPUVA_OP_PREFETCH:
err = xe_vm_prefetch(vm, vma, op->q, op->prefetch.region,
op->syncs, op->num_syncs,
op->flags & XE_VMA_OP_FIRST,
op->flags & XE_VMA_OP_LAST);
break;
default:
drm_warn(&vm->xe->drm, "NOT POSSIBLE");
}
if (err)
trace_xe_vma_fail(vma);
return err;
}
static int __xe_vma_op_execute(struct xe_vm *vm, struct xe_vma *vma,
struct xe_vma_op *op)
{
struct drm_exec exec;
int err;
retry_userptr:
drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
drm_exec_until_all_locked(&exec) {
err = op_execute(&exec, vm, vma, op);
drm_exec_retry_on_contention(&exec);
if (err)
break;
}
drm_exec_fini(&exec);
if (err == -EAGAIN) {
lockdep_assert_held_write(&vm->lock);
if (op->base.op == DRM_GPUVA_OP_REMAP) {
if (!op->remap.unmap_done)
vma = gpuva_to_vma(op->base.remap.unmap->va);
else if (op->remap.prev)
vma = op->remap.prev;
else
vma = op->remap.next;
}
if (xe_vma_is_userptr(vma)) {
err = xe_vma_userptr_pin_pages(to_userptr_vma(vma));
if (!err)
goto retry_userptr;
trace_xe_vma_fail(vma);
}
}
return err;
}
static int xe_vma_op_execute(struct xe_vm *vm, struct xe_vma_op *op)
{
int ret = 0;
lockdep_assert_held_write(&vm->lock);
switch (op->base.op) {
case DRM_GPUVA_OP_MAP:
ret = __xe_vma_op_execute(vm, op->map.vma, op);
break;
case DRM_GPUVA_OP_REMAP:
{
struct xe_vma *vma;
if (!op->remap.unmap_done)
vma = gpuva_to_vma(op->base.remap.unmap->va);
else if (op->remap.prev)
vma = op->remap.prev;
else
vma = op->remap.next;
ret = __xe_vma_op_execute(vm, vma, op);
break;
}
case DRM_GPUVA_OP_UNMAP:
ret = __xe_vma_op_execute(vm, gpuva_to_vma(op->base.unmap.va),
op);
break;
case DRM_GPUVA_OP_PREFETCH:
ret = __xe_vma_op_execute(vm,
gpuva_to_vma(op->base.prefetch.va),
op);
break;
default:
drm_warn(&vm->xe->drm, "NOT POSSIBLE");
}
return ret;
}
static void xe_vma_op_cleanup(struct xe_vm *vm, struct xe_vma_op *op)
{
bool last = op->flags & XE_VMA_OP_LAST;
if (last) {
while (op->num_syncs--)
xe_sync_entry_cleanup(&op->syncs[op->num_syncs]);
kfree(op->syncs);
if (op->q)
xe_exec_queue_put(op->q);
}
if (!list_empty(&op->link))
list_del(&op->link);
if (op->ops)
drm_gpuva_ops_free(&vm->gpuvm, op->ops);
if (last)
xe_vm_put(vm);
}
static void xe_vma_op_unwind(struct xe_vm *vm, struct xe_vma_op *op,
bool post_commit, bool prev_post_commit,
bool next_post_commit)
{
lockdep_assert_held_write(&vm->lock);
switch (op->base.op) {
case DRM_GPUVA_OP_MAP:
if (op->map.vma) {
prep_vma_destroy(vm, op->map.vma, post_commit);
xe_vma_destroy_unlocked(op->map.vma);
}
break;
case DRM_GPUVA_OP_UNMAP:
{
struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
if (vma) {
down_read(&vm->userptr.notifier_lock);
vma->gpuva.flags &= ~XE_VMA_DESTROYED;
up_read(&vm->userptr.notifier_lock);
if (post_commit)
xe_vm_insert_vma(vm, vma);
}
break;
}
case DRM_GPUVA_OP_REMAP:
{
struct xe_vma *vma = gpuva_to_vma(op->base.remap.unmap->va);
if (op->remap.prev) {
prep_vma_destroy(vm, op->remap.prev, prev_post_commit);
xe_vma_destroy_unlocked(op->remap.prev);
}
if (op->remap.next) {
prep_vma_destroy(vm, op->remap.next, next_post_commit);
xe_vma_destroy_unlocked(op->remap.next);
}
if (vma) {
down_read(&vm->userptr.notifier_lock);
vma->gpuva.flags &= ~XE_VMA_DESTROYED;
up_read(&vm->userptr.notifier_lock);
if (post_commit)
xe_vm_insert_vma(vm, vma);
}
break;
}
case DRM_GPUVA_OP_PREFETCH:
/* Nothing to do */
break;
default:
drm_warn(&vm->xe->drm, "NOT POSSIBLE");
}
}
static void vm_bind_ioctl_ops_unwind(struct xe_vm *vm,
struct drm_gpuva_ops **ops,
int num_ops_list)
{
int i;
for (i = num_ops_list - 1; i >= 0; --i) {
struct drm_gpuva_ops *__ops = ops[i];
struct drm_gpuva_op *__op;
if (!__ops)
continue;
drm_gpuva_for_each_op_reverse(__op, __ops) {
struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
xe_vma_op_unwind(vm, op,
op->flags & XE_VMA_OP_COMMITTED,
op->flags & XE_VMA_OP_PREV_COMMITTED,
op->flags & XE_VMA_OP_NEXT_COMMITTED);
}
drm_gpuva_ops_free(&vm->gpuvm, __ops);
}
}
static int vm_bind_ioctl_ops_execute(struct xe_vm *vm,
struct list_head *ops_list)
{
struct xe_vma_op *op, *next;
int err;
lockdep_assert_held_write(&vm->lock);
list_for_each_entry_safe(op, next, ops_list, link) {
err = xe_vma_op_execute(vm, op);
if (err) {
drm_warn(&vm->xe->drm, "VM op(%d) failed with %d",
op->base.op, err);
/*
* FIXME: Killing VM rather than proper error handling
*/
xe_vm_kill(vm);
return -ENOSPC;
}
xe_vma_op_cleanup(vm, op);
}
return 0;
}
#define SUPPORTED_FLAGS (DRM_XE_VM_BIND_FLAG_NULL | \
DRM_XE_VM_BIND_FLAG_DUMPABLE)
#define XE_64K_PAGE_MASK 0xffffull
#define ALL_DRM_XE_SYNCS_FLAGS (DRM_XE_SYNCS_FLAG_WAIT_FOR_OP)
static int vm_bind_ioctl_check_args(struct xe_device *xe,
struct drm_xe_vm_bind *args,
struct drm_xe_vm_bind_op **bind_ops)
{
int err;
int i;
if (XE_IOCTL_DBG(xe, args->pad || args->pad2) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->extensions))
return -EINVAL;
if (args->num_binds > 1) {
u64 __user *bind_user =
u64_to_user_ptr(args->vector_of_binds);
*bind_ops = kvmalloc_array(args->num_binds,
sizeof(struct drm_xe_vm_bind_op),
GFP_KERNEL | __GFP_ACCOUNT);
if (!*bind_ops)
return -ENOMEM;
err = __copy_from_user(*bind_ops, bind_user,
sizeof(struct drm_xe_vm_bind_op) *
args->num_binds);
if (XE_IOCTL_DBG(xe, err)) {
err = -EFAULT;
goto free_bind_ops;
}
} else {
*bind_ops = &args->bind;
}
for (i = 0; i < args->num_binds; ++i) {
u64 range = (*bind_ops)[i].range;
u64 addr = (*bind_ops)[i].addr;
u32 op = (*bind_ops)[i].op;
u32 flags = (*bind_ops)[i].flags;
u32 obj = (*bind_ops)[i].obj;
u64 obj_offset = (*bind_ops)[i].obj_offset;
u32 prefetch_region = (*bind_ops)[i].prefetch_mem_region_instance;
bool is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
u16 pat_index = (*bind_ops)[i].pat_index;
u16 coh_mode;
if (XE_IOCTL_DBG(xe, pat_index >= xe->pat.n_entries)) {
err = -EINVAL;
goto free_bind_ops;
}
pat_index = array_index_nospec(pat_index, xe->pat.n_entries);
(*bind_ops)[i].pat_index = pat_index;
coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
if (XE_IOCTL_DBG(xe, !coh_mode)) { /* hw reserved */
err = -EINVAL;
goto free_bind_ops;
}
if (XE_WARN_ON(coh_mode > XE_COH_AT_LEAST_1WAY)) {
err = -EINVAL;
goto free_bind_ops;
}
if (XE_IOCTL_DBG(xe, op > DRM_XE_VM_BIND_OP_PREFETCH) ||
XE_IOCTL_DBG(xe, flags & ~SUPPORTED_FLAGS) ||
XE_IOCTL_DBG(xe, obj && is_null) ||
XE_IOCTL_DBG(xe, obj_offset && is_null) ||
XE_IOCTL_DBG(xe, op != DRM_XE_VM_BIND_OP_MAP &&
is_null) ||
XE_IOCTL_DBG(xe, !obj &&
op == DRM_XE_VM_BIND_OP_MAP &&
!is_null) ||
XE_IOCTL_DBG(xe, !obj &&
op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
XE_IOCTL_DBG(xe, addr &&
op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
XE_IOCTL_DBG(xe, range &&
op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
XE_IOCTL_DBG(xe, obj &&
op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
XE_IOCTL_DBG(xe, obj &&
op == DRM_XE_VM_BIND_OP_PREFETCH) ||
XE_IOCTL_DBG(xe, prefetch_region &&
op != DRM_XE_VM_BIND_OP_PREFETCH) ||
XE_IOCTL_DBG(xe, !(BIT(prefetch_region) &
xe->info.mem_region_mask)) ||
XE_IOCTL_DBG(xe, obj &&
op == DRM_XE_VM_BIND_OP_UNMAP)) {
err = -EINVAL;
goto free_bind_ops;
}
if (XE_IOCTL_DBG(xe, obj_offset & ~PAGE_MASK) ||
XE_IOCTL_DBG(xe, addr & ~PAGE_MASK) ||
XE_IOCTL_DBG(xe, range & ~PAGE_MASK) ||
XE_IOCTL_DBG(xe, !range &&
op != DRM_XE_VM_BIND_OP_UNMAP_ALL)) {
err = -EINVAL;
goto free_bind_ops;
}
}
return 0;
free_bind_ops:
if (args->num_binds > 1)
kvfree(*bind_ops);
return err;
}
static int vm_bind_ioctl_signal_fences(struct xe_vm *vm,
struct xe_exec_queue *q,
struct xe_sync_entry *syncs,
int num_syncs)
{
struct dma_fence *fence;
int i, err = 0;
fence = xe_sync_in_fence_get(syncs, num_syncs,
to_wait_exec_queue(vm, q), vm);
if (IS_ERR(fence))
return PTR_ERR(fence);
for (i = 0; i < num_syncs; i++)
xe_sync_entry_signal(&syncs[i], NULL, fence);
xe_exec_queue_last_fence_set(to_wait_exec_queue(vm, q), vm,
fence);
dma_fence_put(fence);
return err;
}
int xe_vm_bind_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_vm_bind *args = data;
struct drm_xe_sync __user *syncs_user;
struct xe_bo **bos = NULL;
struct drm_gpuva_ops **ops = NULL;
struct xe_vm *vm;
struct xe_exec_queue *q = NULL;
u32 num_syncs, num_ufence = 0;
struct xe_sync_entry *syncs = NULL;
struct drm_xe_vm_bind_op *bind_ops;
LIST_HEAD(ops_list);
int err;
int i;
err = vm_bind_ioctl_check_args(xe, args, &bind_ops);
if (err)
return err;
if (args->exec_queue_id) {
q = xe_exec_queue_lookup(xef, args->exec_queue_id);
if (XE_IOCTL_DBG(xe, !q)) {
err = -ENOENT;
goto free_objs;
}
if (XE_IOCTL_DBG(xe, !(q->flags & EXEC_QUEUE_FLAG_VM))) {
err = -EINVAL;
goto put_exec_queue;
}
}
vm = xe_vm_lookup(xef, args->vm_id);
if (XE_IOCTL_DBG(xe, !vm)) {
err = -EINVAL;
goto put_exec_queue;
}
err = down_write_killable(&vm->lock);
if (err)
goto put_vm;
if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
err = -ENOENT;
goto release_vm_lock;
}
for (i = 0; i < args->num_binds; ++i) {
u64 range = bind_ops[i].range;
u64 addr = bind_ops[i].addr;
if (XE_IOCTL_DBG(xe, range > vm->size) ||
XE_IOCTL_DBG(xe, addr > vm->size - range)) {
err = -EINVAL;
goto release_vm_lock;
}
}
if (args->num_binds) {
bos = kvcalloc(args->num_binds, sizeof(*bos),
GFP_KERNEL | __GFP_ACCOUNT);
if (!bos) {
err = -ENOMEM;
goto release_vm_lock;
}
ops = kvcalloc(args->num_binds, sizeof(*ops),
GFP_KERNEL | __GFP_ACCOUNT);
if (!ops) {
err = -ENOMEM;
goto release_vm_lock;
}
}
for (i = 0; i < args->num_binds; ++i) {
struct drm_gem_object *gem_obj;
u64 range = bind_ops[i].range;
u64 addr = bind_ops[i].addr;
u32 obj = bind_ops[i].obj;
u64 obj_offset = bind_ops[i].obj_offset;
u16 pat_index = bind_ops[i].pat_index;
u16 coh_mode;
if (!obj)
continue;
gem_obj = drm_gem_object_lookup(file, obj);
if (XE_IOCTL_DBG(xe, !gem_obj)) {
err = -ENOENT;
goto put_obj;
}
bos[i] = gem_to_xe_bo(gem_obj);
if (XE_IOCTL_DBG(xe, range > bos[i]->size) ||
XE_IOCTL_DBG(xe, obj_offset >
bos[i]->size - range)) {
err = -EINVAL;
goto put_obj;
}
if (bos[i]->flags & XE_BO_INTERNAL_64K) {
if (XE_IOCTL_DBG(xe, obj_offset &
XE_64K_PAGE_MASK) ||
XE_IOCTL_DBG(xe, addr & XE_64K_PAGE_MASK) ||
XE_IOCTL_DBG(xe, range & XE_64K_PAGE_MASK)) {
err = -EINVAL;
goto put_obj;
}
}
coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
if (bos[i]->cpu_caching) {
if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
bos[i]->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) {
err = -EINVAL;
goto put_obj;
}
} else if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE)) {
/*
* Imported dma-buf from a different device should
* require 1way or 2way coherency since we don't know
* how it was mapped on the CPU. Just assume is it
* potentially cached on CPU side.
*/
err = -EINVAL;
goto put_obj;
}
}
if (args->num_syncs) {
syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
if (!syncs) {
err = -ENOMEM;
goto put_obj;
}
}
syncs_user = u64_to_user_ptr(args->syncs);
for (num_syncs = 0; num_syncs < args->num_syncs; num_syncs++) {
err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs],
&syncs_user[num_syncs],
(xe_vm_in_lr_mode(vm) ?
SYNC_PARSE_FLAG_LR_MODE : 0) |
(!args->num_binds ?
SYNC_PARSE_FLAG_DISALLOW_USER_FENCE : 0));
if (err)
goto free_syncs;
if (xe_sync_is_ufence(&syncs[num_syncs]))
num_ufence++;
}
if (XE_IOCTL_DBG(xe, num_ufence > 1)) {
err = -EINVAL;
goto free_syncs;
}
if (!args->num_binds) {
err = -ENODATA;
goto free_syncs;
}
for (i = 0; i < args->num_binds; ++i) {
u64 range = bind_ops[i].range;
u64 addr = bind_ops[i].addr;
u32 op = bind_ops[i].op;
u32 flags = bind_ops[i].flags;
u64 obj_offset = bind_ops[i].obj_offset;
u32 prefetch_region = bind_ops[i].prefetch_mem_region_instance;
u16 pat_index = bind_ops[i].pat_index;
ops[i] = vm_bind_ioctl_ops_create(vm, bos[i], obj_offset,
addr, range, op, flags,
prefetch_region, pat_index);
if (IS_ERR(ops[i])) {
err = PTR_ERR(ops[i]);
ops[i] = NULL;
goto unwind_ops;
}
err = vm_bind_ioctl_ops_parse(vm, q, ops[i], syncs, num_syncs,
&ops_list,
i == args->num_binds - 1);
if (err)
goto unwind_ops;
}
/* Nothing to do */
if (list_empty(&ops_list)) {
err = -ENODATA;
goto unwind_ops;
}
xe_vm_get(vm);
if (q)
xe_exec_queue_get(q);
err = vm_bind_ioctl_ops_execute(vm, &ops_list);
up_write(&vm->lock);
if (q)
xe_exec_queue_put(q);
xe_vm_put(vm);
for (i = 0; bos && i < args->num_binds; ++i)
xe_bo_put(bos[i]);
kvfree(bos);
kvfree(ops);
if (args->num_binds > 1)
kvfree(bind_ops);
return err;
unwind_ops:
vm_bind_ioctl_ops_unwind(vm, ops, args->num_binds);
free_syncs:
if (err == -ENODATA)
err = vm_bind_ioctl_signal_fences(vm, q, syncs, num_syncs);
while (num_syncs--)
xe_sync_entry_cleanup(&syncs[num_syncs]);
kfree(syncs);
put_obj:
for (i = 0; i < args->num_binds; ++i)
xe_bo_put(bos[i]);
release_vm_lock:
up_write(&vm->lock);
put_vm:
xe_vm_put(vm);
put_exec_queue:
if (q)
xe_exec_queue_put(q);
free_objs:
kvfree(bos);
kvfree(ops);
if (args->num_binds > 1)
kvfree(bind_ops);
return err;
}
/**
* xe_vm_lock() - Lock the vm's dma_resv object
* @vm: The struct xe_vm whose lock is to be locked
* @intr: Whether to perform any wait interruptible
*
* Return: 0 on success, -EINTR if @intr is true and the wait for a
* contended lock was interrupted. If @intr is false, the function
* always returns 0.
*/
int xe_vm_lock(struct xe_vm *vm, bool intr)
{
if (intr)
return dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
return dma_resv_lock(xe_vm_resv(vm), NULL);
}
/**
* xe_vm_unlock() - Unlock the vm's dma_resv object
* @vm: The struct xe_vm whose lock is to be released.
*
* Unlock a buffer object lock that was locked by xe_vm_lock().
*/
void xe_vm_unlock(struct xe_vm *vm)
{
dma_resv_unlock(xe_vm_resv(vm));
}
/**
* xe_vm_invalidate_vma - invalidate GPU mappings for VMA without a lock
* @vma: VMA to invalidate
*
* Walks a list of page tables leaves which it memset the entries owned by this
* VMA to zero, invalidates the TLBs, and block until TLBs invalidation is
* complete.
*
* Returns 0 for success, negative error code otherwise.
*/
int xe_vm_invalidate_vma(struct xe_vma *vma)
{
struct xe_device *xe = xe_vma_vm(vma)->xe;
struct xe_tile *tile;
u32 tile_needs_invalidate = 0;
int seqno[XE_MAX_TILES_PER_DEVICE];
u8 id;
int ret;
xe_assert(xe, !xe_vma_is_null(vma));
trace_xe_vma_invalidate(vma);
vm_dbg(&xe_vma_vm(vma)->xe->drm,
"INVALIDATE: addr=0x%016llx, range=0x%016llx",
xe_vma_start(vma), xe_vma_size(vma));
/* Check that we don't race with page-table updates */
if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
if (xe_vma_is_userptr(vma)) {
WARN_ON_ONCE(!mmu_interval_check_retry
(&to_userptr_vma(vma)->userptr.notifier,
to_userptr_vma(vma)->userptr.notifier_seq));
WARN_ON_ONCE(!dma_resv_test_signaled(xe_vm_resv(xe_vma_vm(vma)),
DMA_RESV_USAGE_BOOKKEEP));
} else {
xe_bo_assert_held(xe_vma_bo(vma));
}
}
for_each_tile(tile, xe, id) {
if (xe_pt_zap_ptes(tile, vma)) {
tile_needs_invalidate |= BIT(id);
xe_device_wmb(xe);
/*
* FIXME: We potentially need to invalidate multiple
* GTs within the tile
*/
seqno[id] = xe_gt_tlb_invalidation_vma(tile->primary_gt, NULL, vma);
if (seqno[id] < 0)
return seqno[id];
}
}
for_each_tile(tile, xe, id) {
if (tile_needs_invalidate & BIT(id)) {
ret = xe_gt_tlb_invalidation_wait(tile->primary_gt, seqno[id]);
if (ret < 0)
return ret;
}
}
vma->tile_invalidated = vma->tile_mask;
return 0;
}
int xe_analyze_vm(struct drm_printer *p, struct xe_vm *vm, int gt_id)
{
struct drm_gpuva *gpuva;
bool is_vram;
uint64_t addr;
if (!down_read_trylock(&vm->lock)) {
drm_printf(p, " Failed to acquire VM lock to dump capture");
return 0;
}
if (vm->pt_root[gt_id]) {
addr = xe_bo_addr(vm->pt_root[gt_id]->bo, 0, XE_PAGE_SIZE);
is_vram = xe_bo_is_vram(vm->pt_root[gt_id]->bo);
drm_printf(p, " VM root: A:0x%llx %s\n", addr,
is_vram ? "VRAM" : "SYS");
}
drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
struct xe_vma *vma = gpuva_to_vma(gpuva);
bool is_userptr = xe_vma_is_userptr(vma);
bool is_null = xe_vma_is_null(vma);
if (is_null) {
addr = 0;
} else if (is_userptr) {
struct sg_table *sg = to_userptr_vma(vma)->userptr.sg;
struct xe_res_cursor cur;
if (sg) {
xe_res_first_sg(sg, 0, XE_PAGE_SIZE, &cur);
addr = xe_res_dma(&cur);
} else {
addr = 0;
}
} else {
addr = __xe_bo_addr(xe_vma_bo(vma), 0, XE_PAGE_SIZE);
is_vram = xe_bo_is_vram(xe_vma_bo(vma));
}
drm_printf(p, " [%016llx-%016llx] S:0x%016llx A:%016llx %s\n",
xe_vma_start(vma), xe_vma_end(vma) - 1,
xe_vma_size(vma),
addr, is_null ? "NULL" : is_userptr ? "USR" :
is_vram ? "VRAM" : "SYS");
}
up_read(&vm->lock);
return 0;
}
struct xe_vm_snapshot {
unsigned long num_snaps;
struct {
u64 ofs, bo_ofs;
unsigned long len;
struct xe_bo *bo;
void *data;
struct mm_struct *mm;
} snap[];
};
struct xe_vm_snapshot *xe_vm_snapshot_capture(struct xe_vm *vm)
{
unsigned long num_snaps = 0, i;
struct xe_vm_snapshot *snap = NULL;
struct drm_gpuva *gpuva;
if (!vm)
return NULL;
mutex_lock(&vm->snap_mutex);
drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
if (gpuva->flags & XE_VMA_DUMPABLE)
num_snaps++;
}
if (num_snaps)
snap = kvzalloc(offsetof(struct xe_vm_snapshot, snap[num_snaps]), GFP_NOWAIT);
if (!snap)
goto out_unlock;
snap->num_snaps = num_snaps;
i = 0;
drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
struct xe_vma *vma = gpuva_to_vma(gpuva);
struct xe_bo *bo = vma->gpuva.gem.obj ?
gem_to_xe_bo(vma->gpuva.gem.obj) : NULL;
if (!(gpuva->flags & XE_VMA_DUMPABLE))
continue;
snap->snap[i].ofs = xe_vma_start(vma);
snap->snap[i].len = xe_vma_size(vma);
if (bo) {
snap->snap[i].bo = xe_bo_get(bo);
snap->snap[i].bo_ofs = xe_vma_bo_offset(vma);
} else if (xe_vma_is_userptr(vma)) {
struct mm_struct *mm =
to_userptr_vma(vma)->userptr.notifier.mm;
if (mmget_not_zero(mm))
snap->snap[i].mm = mm;
else
snap->snap[i].data = ERR_PTR(-EFAULT);
snap->snap[i].bo_ofs = xe_vma_userptr(vma);
} else {
snap->snap[i].data = ERR_PTR(-ENOENT);
}
i++;
}
out_unlock:
mutex_unlock(&vm->snap_mutex);
return snap;
}
void xe_vm_snapshot_capture_delayed(struct xe_vm_snapshot *snap)
{
if (!snap)
return;
for (int i = 0; i < snap->num_snaps; i++) {
struct xe_bo *bo = snap->snap[i].bo;
struct iosys_map src;
int err;
if (IS_ERR(snap->snap[i].data))
continue;
snap->snap[i].data = kvmalloc(snap->snap[i].len, GFP_USER);
if (!snap->snap[i].data) {
snap->snap[i].data = ERR_PTR(-ENOMEM);
goto cleanup_bo;
}
if (bo) {
dma_resv_lock(bo->ttm.base.resv, NULL);
err = ttm_bo_vmap(&bo->ttm, &src);
if (!err) {
xe_map_memcpy_from(xe_bo_device(bo),
snap->snap[i].data,
&src, snap->snap[i].bo_ofs,
snap->snap[i].len);
ttm_bo_vunmap(&bo->ttm, &src);
}
dma_resv_unlock(bo->ttm.base.resv);
} else {
void __user *userptr = (void __user *)(size_t)snap->snap[i].bo_ofs;
kthread_use_mm(snap->snap[i].mm);
if (!copy_from_user(snap->snap[i].data, userptr, snap->snap[i].len))
err = 0;
else
err = -EFAULT;
kthread_unuse_mm(snap->snap[i].mm);
mmput(snap->snap[i].mm);
snap->snap[i].mm = NULL;
}
if (err) {
kvfree(snap->snap[i].data);
snap->snap[i].data = ERR_PTR(err);
}
cleanup_bo:
xe_bo_put(bo);
snap->snap[i].bo = NULL;
}
}
void xe_vm_snapshot_print(struct xe_vm_snapshot *snap, struct drm_printer *p)
{
unsigned long i, j;
for (i = 0; i < snap->num_snaps; i++) {
if (IS_ERR(snap->snap[i].data))
goto uncaptured;
drm_printf(p, "[%llx].length: 0x%lx\n", snap->snap[i].ofs, snap->snap[i].len);
drm_printf(p, "[%llx].data: ",
snap->snap[i].ofs);
for (j = 0; j < snap->snap[i].len; j += sizeof(u32)) {
u32 *val = snap->snap[i].data + j;
char dumped[ASCII85_BUFSZ];
drm_puts(p, ascii85_encode(*val, dumped));
}
drm_puts(p, "\n");
continue;
uncaptured:
drm_printf(p, "Unable to capture range [%llx-%llx]: %li\n",
snap->snap[i].ofs, snap->snap[i].ofs + snap->snap[i].len - 1,
PTR_ERR(snap->snap[i].data));
}
}
void xe_vm_snapshot_free(struct xe_vm_snapshot *snap)
{
unsigned long i;
if (!snap)
return;
for (i = 0; i < snap->num_snaps; i++) {
if (!IS_ERR(snap->snap[i].data))
kvfree(snap->snap[i].data);
xe_bo_put(snap->snap[i].bo);
if (snap->snap[i].mm)
mmput(snap->snap[i].mm);
}
kvfree(snap);
}