// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_reg_sr.h"
#include <linux/align.h>
#include <linux/string_helpers.h>
#include <linux/xarray.h>
#include <drm/drm_print.h>
#include <drm/drm_managed.h>
#include "xe_rtp_types.h"
#include "xe_device_types.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_mcr.h"
#include "xe_macros.h"
#include "xe_mmio.h"
#include "gt/intel_engine_regs.h"
#include "gt/intel_gt_regs.h"
#define XE_REG_SR_GROW_STEP_DEFAULT 16
static void reg_sr_fini(struct drm_device *drm, void *arg)
{
struct xe_reg_sr *sr = arg;
xa_destroy(&sr->xa);
kfree(sr->pool.arr);
memset(&sr->pool, 0, sizeof(sr->pool));
}
int xe_reg_sr_init(struct xe_reg_sr *sr, const char *name, struct xe_device *xe)
{
xa_init(&sr->xa);
memset(&sr->pool, 0, sizeof(sr->pool));
sr->pool.grow_step = XE_REG_SR_GROW_STEP_DEFAULT;
sr->name = name;
return drmm_add_action_or_reset(&xe->drm, reg_sr_fini, sr);
}
int xe_reg_sr_dump_kv(struct xe_reg_sr *sr,
struct xe_reg_sr_kv **dst)
{
struct xe_reg_sr_kv *iter;
struct xe_reg_sr_entry *entry;
unsigned long idx;
if (xa_empty(&sr->xa)) {
*dst = NULL;
return 0;
}
*dst = kmalloc_array(sr->pool.used, sizeof(**dst), GFP_KERNEL);
if (!*dst)
return -ENOMEM;
iter = *dst;
xa_for_each(&sr->xa, idx, entry) {
iter->k = idx;
iter->v = *entry;
iter++;
}
return 0;
}
static struct xe_reg_sr_entry *alloc_entry(struct xe_reg_sr *sr)
{
if (sr->pool.used == sr->pool.allocated) {
struct xe_reg_sr_entry *arr;
arr = krealloc_array(sr->pool.arr,
ALIGN(sr->pool.allocated + 1, sr->pool.grow_step),
sizeof(*arr), GFP_KERNEL);
if (!arr)
return NULL;
sr->pool.arr = arr;
sr->pool.allocated += sr->pool.grow_step;
}
return &sr->pool.arr[sr->pool.used++];
}
static bool compatible_entries(const struct xe_reg_sr_entry *e1,
const struct xe_reg_sr_entry *e2)
{
/*
* Don't allow overwriting values: clr_bits/set_bits should be disjoint
* when operating in the same register
*/
if (e1->clr_bits & e2->clr_bits || e1->set_bits & e2->set_bits ||
e1->clr_bits & e2->set_bits || e1->set_bits & e2->clr_bits)
return false;
if (e1->masked_reg != e2->masked_reg)
return false;
if (e1->reg_type != e2->reg_type)
return false;
return true;
}
int xe_reg_sr_add(struct xe_reg_sr *sr, u32 reg,
const struct xe_reg_sr_entry *e)
{
unsigned long idx = reg;
struct xe_reg_sr_entry *pentry = xa_load(&sr->xa, idx);
int ret;
if (pentry) {
if (!compatible_entries(pentry, e)) {
ret = -EINVAL;
goto fail;
}
pentry->clr_bits |= e->clr_bits;
pentry->set_bits |= e->set_bits;
pentry->read_mask |= e->read_mask;
return 0;
}
pentry = alloc_entry(sr);
if (!pentry) {
ret = -ENOMEM;
goto fail;
}
*pentry = *e;
ret = xa_err(xa_store(&sr->xa, idx, pentry, GFP_KERNEL));
if (ret)
goto fail;
return 0;
fail:
DRM_ERROR("Discarding save-restore reg %04lx (clear: %08x, set: %08x, masked: %s): ret=%d\n",
idx, e->clr_bits, e->set_bits,
str_yes_no(e->masked_reg), ret);
return ret;
}
static void apply_one_mmio(struct xe_gt *gt, u32 reg,
struct xe_reg_sr_entry *entry)
{
struct xe_device *xe = gt_to_xe(gt);
u32 val;
/*
* If this is a masked register, need to figure what goes on the upper
* 16 bits: it's either the clr_bits (when using FIELD_SET and WR) or
* the set_bits, when using SET.
*
* When it's not masked, we have to read it from hardware, unless we are
* supposed to set all bits.
*/
if (entry->masked_reg)
val = (entry->clr_bits ?: entry->set_bits << 16);
else if (entry->clr_bits + 1)
val = (entry->reg_type == XE_RTP_REG_MCR ?
xe_gt_mcr_unicast_read_any(gt, MCR_REG(reg)) :
xe_mmio_read32(gt, reg)) & (~entry->clr_bits);
else
val = 0;
/*
* TODO: add selftest to validate all tables, regardless of platform:
* - Masked registers can't have set_bits with upper bits set
* - set_bits must be contained in clr_bits
*/
val |= entry->set_bits;
drm_dbg(&xe->drm, "REG[0x%x] = 0x%08x", reg, val);
if (entry->reg_type == XE_RTP_REG_MCR)
xe_gt_mcr_multicast_write(gt, MCR_REG(reg), val);
else
xe_mmio_write32(gt, reg, val);
}
void xe_reg_sr_apply_mmio(struct xe_reg_sr *sr, struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_reg_sr_entry *entry;
unsigned long reg;
int err;
drm_dbg(&xe->drm, "Applying %s save-restore MMIOs\n", sr->name);
err = xe_force_wake_get(>->mmio.fw, XE_FORCEWAKE_ALL);
if (err)
goto err_force_wake;
xa_for_each(&sr->xa, reg, entry)
apply_one_mmio(gt, reg, entry);
err = xe_force_wake_put(>->mmio.fw, XE_FORCEWAKE_ALL);
XE_WARN_ON(err);
return;
err_force_wake:
drm_err(&xe->drm, "Failed to apply, err=%d\n", err);
}
void xe_reg_sr_apply_whitelist(struct xe_reg_sr *sr, u32 mmio_base,
struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_reg_sr_entry *entry;
unsigned long reg;
unsigned int slot = 0;
int err;
drm_dbg(&xe->drm, "Whitelisting %s registers\n", sr->name);
err = xe_force_wake_get(>->mmio.fw, XE_FORCEWAKE_ALL);
if (err)
goto err_force_wake;
xa_for_each(&sr->xa, reg, entry) {
xe_mmio_write32(gt, RING_FORCE_TO_NONPRIV(mmio_base, slot).reg,
reg | entry->set_bits);
slot++;
}
/* And clear the rest just in case of garbage */
for (; slot < RING_MAX_NONPRIV_SLOTS; slot++)
xe_mmio_write32(gt, RING_FORCE_TO_NONPRIV(mmio_base, slot).reg,
RING_NOPID(mmio_base).reg);
err = xe_force_wake_put(>->mmio.fw, XE_FORCEWAKE_ALL);
XE_WARN_ON(err);
return;
err_force_wake:
drm_err(&xe->drm, "Failed to apply, err=%d\n", err);
}