// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_pm.h"
#include <linux/pm_runtime.h>
#include <drm/drm_managed.h>
#include <drm/ttm/ttm_placement.h>
#include "display/xe_display.h"
#include "xe_bo.h"
#include "xe_bo_evict.h"
#include "xe_device.h"
#include "xe_device_sysfs.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_guc.h"
#include "xe_irq.h"
#include "xe_pcode.h"
#include "xe_wa.h"
/**
* DOC: Xe Power Management
*
* Xe PM implements the main routines for both system level suspend states and
* for the opportunistic runtime suspend states.
*
* System Level Suspend (S-States) - In general this is OS initiated suspend
* driven by ACPI for achieving S0ix (a.k.a. S2idle, freeze), S3 (suspend to ram),
* S4 (disk). The main functions here are `xe_pm_suspend` and `xe_pm_resume`. They
* are the main point for the suspend to and resume from these states.
*
* PCI Device Suspend (D-States) - This is the opportunistic PCIe device low power
* state D3, controlled by the PCI subsystem and ACPI with the help from the
* runtime_pm infrastructure.
* PCI D3 is special and can mean D3hot, where Vcc power is on for keeping memory
* alive and quicker low latency resume or D3Cold where Vcc power is off for
* better power savings.
* The Vcc control of PCI hierarchy can only be controlled at the PCI root port
* level, while the device driver can be behind multiple bridges/switches and
* paired with other devices. For this reason, the PCI subsystem cannot perform
* the transition towards D3Cold. The lowest runtime PM possible from the PCI
* subsystem is D3hot. Then, if all these paired devices in the same root port
* are in D3hot, ACPI will assist here and run its own methods (_PR3 and _OFF)
* to perform the transition from D3hot to D3cold. Xe may disallow this
* transition by calling pci_d3cold_disable(root_pdev) before going to runtime
* suspend. It will be based on runtime conditions such as VRAM usage for a
* quick and low latency resume for instance.
*
* Runtime PM - This infrastructure provided by the Linux kernel allows the
* device drivers to indicate when the can be runtime suspended, so the device
* could be put at D3 (if supported), or allow deeper package sleep states
* (PC-states), and/or other low level power states. Xe PM component provides
* `xe_pm_runtime_suspend` and `xe_pm_runtime_resume` functions that PCI
* subsystem will call before transition to/from runtime suspend.
*
* Also, Xe PM provides get and put functions that Xe driver will use to
* indicate activity. In order to avoid locking complications with the memory
* management, whenever possible, these get and put functions needs to be called
* from the higher/outer levels.
* The main cases that need to be protected from the outer levels are: IOCTL,
* sysfs, debugfs, dma-buf sharing, GPU execution.
*
* This component is not responsible for GT idleness (RC6) nor GT frequency
* management (RPS).
*/
#ifdef CONFIG_LOCKDEP
static struct lockdep_map xe_pm_runtime_lockdep_map = {
.name = "xe_pm_runtime_lockdep_map"
};
#endif
/**
* xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle
* @xe: xe device instance
*
* Return: 0 on success
*/
int xe_pm_suspend(struct xe_device *xe)
{
struct xe_gt *gt;
u8 id;
int err;
drm_dbg(&xe->drm, "Suspending device\n");
for_each_gt(gt, xe, id)
xe_gt_suspend_prepare(gt);
xe_display_pm_suspend(xe, false);
/* FIXME: Super racey... */
err = xe_bo_evict_all(xe);
if (err)
goto err;
for_each_gt(gt, xe, id) {
err = xe_gt_suspend(gt);
if (err) {
xe_display_pm_resume(xe, false);
goto err;
}
}
xe_irq_suspend(xe);
xe_display_pm_suspend_late(xe);
drm_dbg(&xe->drm, "Device suspended\n");
return 0;
err:
drm_dbg(&xe->drm, "Device suspend failed %d\n", err);
return err;
}
/**
* xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0
* @xe: xe device instance
*
* Return: 0 on success
*/
int xe_pm_resume(struct xe_device *xe)
{
struct xe_tile *tile;
struct xe_gt *gt;
u8 id;
int err;
drm_dbg(&xe->drm, "Resuming device\n");
for_each_tile(tile, xe, id)
xe_wa_apply_tile_workarounds(tile);
err = xe_pcode_ready(xe, true);
if (err)
return err;
xe_display_pm_resume_early(xe);
/*
* This only restores pinned memory which is the memory required for the
* GT(s) to resume.
*/
err = xe_bo_restore_kernel(xe);
if (err)
goto err;
xe_irq_resume(xe);
for_each_gt(gt, xe, id)
xe_gt_resume(gt);
xe_display_pm_resume(xe, false);
err = xe_bo_restore_user(xe);
if (err)
goto err;
drm_dbg(&xe->drm, "Device resumed\n");
return 0;
err:
drm_dbg(&xe->drm, "Device resume failed %d\n", err);
return err;
}
static bool xe_pm_pci_d3cold_capable(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
struct pci_dev *root_pdev;
root_pdev = pcie_find_root_port(pdev);
if (!root_pdev)
return false;
/* D3Cold requires PME capability */
if (!pci_pme_capable(root_pdev, PCI_D3cold)) {
drm_dbg(&xe->drm, "d3cold: PME# not supported\n");
return false;
}
/* D3Cold requires _PR3 power resource */
if (!pci_pr3_present(root_pdev)) {
drm_dbg(&xe->drm, "d3cold: ACPI _PR3 not present\n");
return false;
}
return true;
}
static void xe_pm_runtime_init(struct xe_device *xe)
{
struct device *dev = xe->drm.dev;
/*
* Disable the system suspend direct complete optimization.
* We need to ensure that the regular device suspend/resume functions
* are called since our runtime_pm cannot guarantee local memory
* eviction for d3cold.
* TODO: Check HDA audio dependencies claimed by i915, and then enforce
* this option to integrated graphics as well.
*/
if (IS_DGFX(xe))
dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, 1000);
pm_runtime_set_active(dev);
pm_runtime_allow(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put(dev);
}
int xe_pm_init_early(struct xe_device *xe)
{
int err;
INIT_LIST_HEAD(&xe->mem_access.vram_userfault.list);
err = drmm_mutex_init(&xe->drm, &xe->mem_access.vram_userfault.lock);
if (err)
return err;
err = drmm_mutex_init(&xe->drm, &xe->d3cold.lock);
if (err)
return err;
return 0;
}
/**
* xe_pm_init - Initialize Xe Power Management
* @xe: xe device instance
*
* This component is responsible for System and Device sleep states.
*
* Returns 0 for success, negative error code otherwise.
*/
int xe_pm_init(struct xe_device *xe)
{
int err;
/* For now suspend/resume is only allowed with GuC */
if (!xe_device_uc_enabled(xe))
return 0;
xe->d3cold.capable = xe_pm_pci_d3cold_capable(xe);
if (xe->d3cold.capable) {
err = xe_device_sysfs_init(xe);
if (err)
return err;
err = xe_pm_set_vram_threshold(xe, DEFAULT_VRAM_THRESHOLD);
if (err)
return err;
}
xe_pm_runtime_init(xe);
return 0;
}
/**
* xe_pm_runtime_fini - Finalize Runtime PM
* @xe: xe device instance
*/
void xe_pm_runtime_fini(struct xe_device *xe)
{
struct device *dev = xe->drm.dev;
pm_runtime_get_sync(dev);
pm_runtime_forbid(dev);
}
static void xe_pm_write_callback_task(struct xe_device *xe,
struct task_struct *task)
{
WRITE_ONCE(xe->pm_callback_task, task);
/*
* Just in case it's somehow possible for our writes to be reordered to
* the extent that something else re-uses the task written in
* pm_callback_task. For example after returning from the callback, but
* before the reordered write that resets pm_callback_task back to NULL.
*/
smp_mb(); /* pairs with xe_pm_read_callback_task */
}
struct task_struct *xe_pm_read_callback_task(struct xe_device *xe)
{
smp_mb(); /* pairs with xe_pm_write_callback_task */
return READ_ONCE(xe->pm_callback_task);
}
/**
* xe_pm_runtime_suspended - Check if runtime_pm state is suspended
* @xe: xe device instance
*
* This does not provide any guarantee that the device is going to remain
* suspended as it might be racing with the runtime state transitions.
* It can be used only as a non-reliable assertion, to ensure that we are not in
* the sleep state while trying to access some memory for instance.
*
* Returns true if PCI device is suspended, false otherwise.
*/
bool xe_pm_runtime_suspended(struct xe_device *xe)
{
return pm_runtime_suspended(xe->drm.dev);
}
/**
* xe_pm_runtime_suspend - Prepare our device for D3hot/D3Cold
* @xe: xe device instance
*
* Returns 0 for success, negative error code otherwise.
*/
int xe_pm_runtime_suspend(struct xe_device *xe)
{
struct xe_bo *bo, *on;
struct xe_gt *gt;
u8 id;
int err = 0;
/* Disable access_ongoing asserts and prevent recursive pm calls */
xe_pm_write_callback_task(xe, current);
/*
* The actual xe_pm_runtime_put() is always async underneath, so
* exactly where that is called should makes no difference to us. However
* we still need to be very careful with the locks that this callback
* acquires and the locks that are acquired and held by any callers of
* xe_runtime_pm_get(). We already have the matching annotation
* on that side, but we also need it here. For example lockdep should be
* able to tell us if the following scenario is in theory possible:
*
* CPU0 | CPU1 (kworker)
* lock(A) |
* | xe_pm_runtime_suspend()
* | lock(A)
* xe_pm_runtime_get() |
*
* This will clearly deadlock since rpm core needs to wait for
* xe_pm_runtime_suspend() to complete, but here we are holding lock(A)
* on CPU0 which prevents CPU1 making forward progress. With the
* annotation here and in xe_pm_runtime_get() lockdep will see
* the potential lock inversion and give us a nice splat.
*/
lock_map_acquire(&xe_pm_runtime_lockdep_map);
/*
* Applying lock for entire list op as xe_ttm_bo_destroy and xe_bo_move_notify
* also checks and delets bo entry from user fault list.
*/
mutex_lock(&xe->mem_access.vram_userfault.lock);
list_for_each_entry_safe(bo, on,
&xe->mem_access.vram_userfault.list, vram_userfault_link)
xe_bo_runtime_pm_release_mmap_offset(bo);
mutex_unlock(&xe->mem_access.vram_userfault.lock);
if (xe->d3cold.allowed) {
xe_display_pm_suspend(xe, true);
err = xe_bo_evict_all(xe);
if (err)
goto out;
}
for_each_gt(gt, xe, id) {
err = xe_gt_suspend(gt);
if (err)
goto out;
}
xe_irq_suspend(xe);
if (xe->d3cold.allowed)
xe_display_pm_suspend_late(xe);
out:
if (err)
xe_display_pm_resume(xe, true);
lock_map_release(&xe_pm_runtime_lockdep_map);
xe_pm_write_callback_task(xe, NULL);
return err;
}
/**
* xe_pm_runtime_resume - Waking up from D3hot/D3Cold
* @xe: xe device instance
*
* Returns 0 for success, negative error code otherwise.
*/
int xe_pm_runtime_resume(struct xe_device *xe)
{
struct xe_gt *gt;
u8 id;
int err = 0;
/* Disable access_ongoing asserts and prevent recursive pm calls */
xe_pm_write_callback_task(xe, current);
lock_map_acquire(&xe_pm_runtime_lockdep_map);
if (xe->d3cold.allowed) {
err = xe_pcode_ready(xe, true);
if (err)
goto out;
xe_display_pm_resume_early(xe);
/*
* This only restores pinned memory which is the memory
* required for the GT(s) to resume.
*/
err = xe_bo_restore_kernel(xe);
if (err)
goto out;
}
xe_irq_resume(xe);
for_each_gt(gt, xe, id)
xe_gt_resume(gt);
if (xe->d3cold.allowed) {
xe_display_pm_resume(xe, true);
err = xe_bo_restore_user(xe);
if (err)
goto out;
}
out:
lock_map_release(&xe_pm_runtime_lockdep_map);
xe_pm_write_callback_task(xe, NULL);
return err;
}
/*
* For places where resume is synchronous it can be quite easy to deadlock
* if we are not careful. Also in practice it might be quite timing
* sensitive to ever see the 0 -> 1 transition with the callers locks
* held, so deadlocks might exist but are hard for lockdep to ever see.
* With this in mind, help lockdep learn about the potentially scary
* stuff that can happen inside the runtime_resume callback by acquiring
* a dummy lock (it doesn't protect anything and gets compiled out on
* non-debug builds). Lockdep then only needs to see the
* xe_pm_runtime_lockdep_map -> runtime_resume callback once, and then can
* hopefully validate all the (callers_locks) -> xe_pm_runtime_lockdep_map.
* For example if the (callers_locks) are ever grabbed in the
* runtime_resume callback, lockdep should give us a nice splat.
*/
static void pm_runtime_lockdep_prime(void)
{
lock_map_acquire(&xe_pm_runtime_lockdep_map);
lock_map_release(&xe_pm_runtime_lockdep_map);
}
/**
* xe_pm_runtime_get - Get a runtime_pm reference and resume synchronously
* @xe: xe device instance
*/
void xe_pm_runtime_get(struct xe_device *xe)
{
pm_runtime_get_noresume(xe->drm.dev);
if (xe_pm_read_callback_task(xe) == current)
return;
pm_runtime_lockdep_prime();
pm_runtime_resume(xe->drm.dev);
}
/**
* xe_pm_runtime_put - Put the runtime_pm reference back and mark as idle
* @xe: xe device instance
*/
void xe_pm_runtime_put(struct xe_device *xe)
{
if (xe_pm_read_callback_task(xe) == current) {
pm_runtime_put_noidle(xe->drm.dev);
} else {
pm_runtime_mark_last_busy(xe->drm.dev);
pm_runtime_put(xe->drm.dev);
}
}
/**
* xe_pm_runtime_get_ioctl - Get a runtime_pm reference before ioctl
* @xe: xe device instance
*
* Returns: Any number greater than or equal to 0 for success, negative error
* code otherwise.
*/
int xe_pm_runtime_get_ioctl(struct xe_device *xe)
{
if (WARN_ON(xe_pm_read_callback_task(xe) == current))
return -ELOOP;
pm_runtime_lockdep_prime();
return pm_runtime_get_sync(xe->drm.dev);
}
/**
* xe_pm_runtime_get_if_active - Get a runtime_pm reference if device active
* @xe: xe device instance
*
* Return: True if device is awake (regardless the previous number of references)
* and a new reference was taken, false otherwise.
*/
bool xe_pm_runtime_get_if_active(struct xe_device *xe)
{
return pm_runtime_get_if_active(xe->drm.dev) > 0;
}
/**
* xe_pm_runtime_get_if_in_use - Get a new reference if device is active with previous ref taken
* @xe: xe device instance
*
* Return: True if device is awake, a previous reference had been already taken,
* and a new reference was now taken, false otherwise.
*/
bool xe_pm_runtime_get_if_in_use(struct xe_device *xe)
{
if (xe_pm_read_callback_task(xe) == current) {
/* The device is awake, grab the ref and move on */
pm_runtime_get_noresume(xe->drm.dev);
return true;
}
return pm_runtime_get_if_in_use(xe->drm.dev) > 0;
}
/**
* xe_pm_runtime_get_noresume - Bump runtime PM usage counter without resuming
* @xe: xe device instance
*
* This function should be used in inner places where it is surely already
* protected by outer-bound callers of `xe_pm_runtime_get`.
* It will warn if not protected.
* The reference should be put back after this function regardless, since it
* will always bump the usage counter, regardless.
*/
void xe_pm_runtime_get_noresume(struct xe_device *xe)
{
bool ref;
ref = xe_pm_runtime_get_if_in_use(xe);
if (drm_WARN(&xe->drm, !ref, "Missing outer runtime PM protection\n"))
pm_runtime_get_noresume(xe->drm.dev);
}
/**
* xe_pm_runtime_resume_and_get - Resume, then get a runtime_pm ref if awake.
* @xe: xe device instance
*
* Returns: True if device is awake and the reference was taken, false otherwise.
*/
bool xe_pm_runtime_resume_and_get(struct xe_device *xe)
{
if (xe_pm_read_callback_task(xe) == current) {
/* The device is awake, grab the ref and move on */
pm_runtime_get_noresume(xe->drm.dev);
return true;
}
pm_runtime_lockdep_prime();
return pm_runtime_resume_and_get(xe->drm.dev) >= 0;
}
/**
* xe_pm_assert_unbounded_bridge - Disable PM on unbounded pcie parent bridge
* @xe: xe device instance
*/
void xe_pm_assert_unbounded_bridge(struct xe_device *xe)
{
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
struct pci_dev *bridge = pci_upstream_bridge(pdev);
if (!bridge)
return;
if (!bridge->driver) {
drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n");
device_set_pm_not_required(&pdev->dev);
}
}
/**
* xe_pm_set_vram_threshold - Set a vram threshold for allowing/blocking D3Cold
* @xe: xe device instance
* @threshold: VRAM size in bites for the D3cold threshold
*
* Returns 0 for success, negative error code otherwise.
*/
int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold)
{
struct ttm_resource_manager *man;
u32 vram_total_mb = 0;
int i;
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
man = ttm_manager_type(&xe->ttm, i);
if (man)
vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024);
}
drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb);
if (threshold > vram_total_mb)
return -EINVAL;
mutex_lock(&xe->d3cold.lock);
xe->d3cold.vram_threshold = threshold;
mutex_unlock(&xe->d3cold.lock);
return 0;
}
/**
* xe_pm_d3cold_allowed_toggle - Check conditions to toggle d3cold.allowed
* @xe: xe device instance
*
* To be called during runtime_pm idle callback.
* Check for all the D3Cold conditions ahead of runtime suspend.
*/
void xe_pm_d3cold_allowed_toggle(struct xe_device *xe)
{
struct ttm_resource_manager *man;
u32 total_vram_used_mb = 0;
u64 vram_used;
int i;
if (!xe->d3cold.capable) {
xe->d3cold.allowed = false;
return;
}
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
man = ttm_manager_type(&xe->ttm, i);
if (man) {
vram_used = ttm_resource_manager_usage(man);
total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024);
}
}
mutex_lock(&xe->d3cold.lock);
if (total_vram_used_mb < xe->d3cold.vram_threshold)
xe->d3cold.allowed = true;
else
xe->d3cold.allowed = false;
mutex_unlock(&xe->d3cold.lock);
drm_dbg(&xe->drm,
"d3cold: allowed=%s\n", str_yes_no(xe->d3cold.allowed));
}