/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2021 Intel Corporation
*/
#ifndef _XE_BO_H_
#define _XE_BO_H_
#include "xe_bo_types.h"
#include "xe_macros.h"
#include "xe_vm_types.h"
#define XE_DEFAULT_GTT_SIZE_MB 3072ULL /* 3GB by default */
#define XE_BO_CREATE_USER_BIT BIT(1)
#define XE_BO_CREATE_SYSTEM_BIT BIT(2)
#define XE_BO_CREATE_VRAM0_BIT BIT(3)
#define XE_BO_CREATE_VRAM1_BIT BIT(4)
#define XE_BO_CREATE_VRAM_IF_DGFX(gt) \
(IS_DGFX(gt_to_xe(gt)) ? XE_BO_CREATE_VRAM0_BIT << gt->info.vram_id : \
XE_BO_CREATE_SYSTEM_BIT)
#define XE_BO_CREATE_GGTT_BIT BIT(5)
#define XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT BIT(6)
#define XE_BO_CREATE_PINNED_BIT BIT(7)
#define XE_BO_DEFER_BACKING BIT(8)
#define XE_BO_SCANOUT_BIT BIT(9)
/* this one is trigger internally only */
#define XE_BO_INTERNAL_TEST BIT(30)
#define XE_BO_INTERNAL_64K BIT(31)
#define PPAT_UNCACHED GENMASK_ULL(4, 3)
#define PPAT_CACHED_PDE 0
#define PPAT_CACHED BIT_ULL(7)
#define PPAT_DISPLAY_ELLC BIT_ULL(4)
#define GEN8_PTE_SHIFT 12
#define GEN8_PAGE_SIZE (1 << GEN8_PTE_SHIFT)
#define GEN8_PTE_MASK (GEN8_PAGE_SIZE - 1)
#define GEN8_PDE_SHIFT (GEN8_PTE_SHIFT - 3)
#define GEN8_PDES (1 << GEN8_PDE_SHIFT)
#define GEN8_PDE_MASK (GEN8_PDES - 1)
#define GEN8_64K_PTE_SHIFT 16
#define GEN8_64K_PAGE_SIZE (1 << GEN8_64K_PTE_SHIFT)
#define GEN8_64K_PTE_MASK (GEN8_64K_PAGE_SIZE - 1)
#define GEN8_64K_PDE_MASK (GEN8_PDE_MASK >> 4)
#define GEN8_PDE_PS_2M BIT_ULL(7)
#define GEN8_PDPE_PS_1G BIT_ULL(7)
#define GEN8_PDE_IPS_64K BIT_ULL(11)
#define GEN12_GGTT_PTE_LM BIT_ULL(1)
#define GEN12_USM_PPGTT_PTE_AE BIT_ULL(10)
#define GEN12_PPGTT_PTE_LM BIT_ULL(11)
#define GEN12_PDE_64K BIT_ULL(6)
#define GEN12_PTE_PS64 BIT_ULL(8)
#define GEN8_PAGE_PRESENT BIT_ULL(0)
#define GEN8_PAGE_RW BIT_ULL(1)
#define PTE_READ_ONLY BIT(0)
#define XE_PL_SYSTEM TTM_PL_SYSTEM
#define XE_PL_TT TTM_PL_TT
#define XE_PL_VRAM0 TTM_PL_VRAM
#define XE_PL_VRAM1 (XE_PL_VRAM0 + 1)
#define XE_BO_PROPS_INVALID (-1)
struct sg_table;
struct xe_bo *xe_bo_alloc(void);
void xe_bo_free(struct xe_bo *bo);
struct xe_bo *__xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
struct xe_gt *gt, struct dma_resv *resv,
size_t size, enum ttm_bo_type type,
u32 flags);
struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_gt *gt,
struct xe_vm *vm, size_t size,
enum ttm_bo_type type, u32 flags);
struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_gt *gt,
struct xe_vm *vm, size_t size,
enum ttm_bo_type type, u32 flags);
struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_gt *gt,
struct xe_vm *vm, size_t size,
enum ttm_bo_type type, u32 flags);
struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_gt *gt,
const void *data, size_t size,
enum ttm_bo_type type, u32 flags);
int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
u32 bo_flags);
static inline struct xe_bo *ttm_to_xe_bo(const struct ttm_buffer_object *bo)
{
return container_of(bo, struct xe_bo, ttm);
}
static inline struct xe_bo *gem_to_xe_bo(const struct drm_gem_object *obj)
{
return container_of(obj, struct xe_bo, ttm.base);
}
#define xe_bo_device(bo) ttm_to_xe_device((bo)->ttm.bdev)
static inline struct xe_bo *xe_bo_get(struct xe_bo *bo)
{
if (bo)
drm_gem_object_get(&bo->ttm.base);
return bo;
}
static inline void xe_bo_put(struct xe_bo *bo)
{
if (bo)
drm_gem_object_put(&bo->ttm.base);
}
static inline void xe_bo_assert_held(struct xe_bo *bo)
{
if (bo)
dma_resv_assert_held((bo)->ttm.base.resv);
}
int xe_bo_lock(struct xe_bo *bo, struct ww_acquire_ctx *ww,
int num_resv, bool intr);
void xe_bo_unlock(struct xe_bo *bo, struct ww_acquire_ctx *ww);
static inline void xe_bo_unlock_vm_held(struct xe_bo *bo)
{
if (bo) {
XE_BUG_ON(bo->vm && bo->ttm.base.resv != &bo->vm->resv);
if (bo->vm)
xe_vm_assert_held(bo->vm);
else
dma_resv_unlock(bo->ttm.base.resv);
}
}
static inline void xe_bo_lock_no_vm(struct xe_bo *bo,
struct ww_acquire_ctx *ctx)
{
if (bo) {
XE_BUG_ON(bo->vm || (bo->ttm.type != ttm_bo_type_sg &&
bo->ttm.base.resv != &bo->ttm.base._resv));
dma_resv_lock(bo->ttm.base.resv, ctx);
}
}
static inline void xe_bo_unlock_no_vm(struct xe_bo *bo)
{
if (bo) {
XE_BUG_ON(bo->vm || (bo->ttm.type != ttm_bo_type_sg &&
bo->ttm.base.resv != &bo->ttm.base._resv));
dma_resv_unlock(bo->ttm.base.resv);
}
}
int xe_bo_pin_external(struct xe_bo *bo);
int xe_bo_pin(struct xe_bo *bo);
void xe_bo_unpin_external(struct xe_bo *bo);
void xe_bo_unpin(struct xe_bo *bo);
int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict);
static inline bool xe_bo_is_pinned(struct xe_bo *bo)
{
return bo->ttm.pin_count;
}
static inline void xe_bo_unpin_map_no_vm(struct xe_bo *bo)
{
if (likely(bo)) {
xe_bo_lock_no_vm(bo, NULL);
xe_bo_unpin(bo);
xe_bo_unlock_no_vm(bo);
xe_bo_put(bo);
}
}
bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo);
dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset,
size_t page_size, bool *is_lmem);
static inline dma_addr_t
xe_bo_main_addr(struct xe_bo *bo, size_t page_size)
{
bool is_lmem;
return xe_bo_addr(bo, 0, page_size, &is_lmem);
}
static inline u32
xe_bo_ggtt_addr(struct xe_bo *bo)
{
XE_BUG_ON(bo->ggtt_node.size > bo->size);
XE_BUG_ON(bo->ggtt_node.start + bo->ggtt_node.size > (1ull << 32));
return bo->ggtt_node.start;
}
int xe_bo_vmap(struct xe_bo *bo);
void xe_bo_vunmap(struct xe_bo *bo);
bool mem_type_is_vram(u32 mem_type);
bool xe_bo_is_vram(struct xe_bo *bo);
bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type);
int xe_bo_migrate(struct xe_bo *bo, u32 mem_type);
int xe_bo_evict(struct xe_bo *bo, bool force_alloc);
extern struct ttm_device_funcs xe_ttm_funcs;
int xe_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
struct drm_file *file);
int xe_bo_dumb_create(struct drm_file *file_priv,
struct drm_device *dev,
struct drm_mode_create_dumb *args);
bool xe_bo_needs_ccs_pages(struct xe_bo *bo);
static inline size_t xe_bo_ccs_pages_start(struct xe_bo *bo)
{
return PAGE_ALIGN(bo->ttm.base.size);
}
void __xe_bo_release_dummy(struct kref *kref);
/**
* xe_bo_put_deferred() - Put a buffer object with delayed final freeing
* @bo: The bo to put.
* @deferred: List to which to add the buffer object if we cannot put, or
* NULL if the function is to put unconditionally.
*
* Since the final freeing of an object includes both sleeping and (!)
* memory allocation in the dma_resv individualization, it's not ok
* to put an object from atomic context nor from within a held lock
* tainted by reclaim. In such situations we want to defer the final
* freeing until we've exited the restricting context, or in the worst
* case to a workqueue.
* This function either puts the object if possible without the refcount
* reaching zero, or adds it to the @deferred list if that was not possible.
* The caller needs to follow up with a call to xe_bo_put_commit() to actually
* put the bo iff this function returns true. It's safe to always
* follow up with a call to xe_bo_put_commit().
* TODO: It's TTM that is the villain here. Perhaps TTM should add an
* interface like this.
*
* Return: true if @bo was the first object put on the @freed list,
* false otherwise.
*/
static inline bool
xe_bo_put_deferred(struct xe_bo *bo, struct llist_head *deferred)
{
if (!deferred) {
xe_bo_put(bo);
return false;
}
if (!kref_put(&bo->ttm.base.refcount, __xe_bo_release_dummy))
return false;
return llist_add(&bo->freed, deferred);
}
void xe_bo_put_commit(struct llist_head *deferred);
struct sg_table *xe_bo_get_sg(struct xe_bo *bo);
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
/**
* xe_bo_is_mem_type - Whether the bo currently resides in the given
* TTM memory type
* @bo: The bo to check.
* @mem_type: The TTM memory type.
*
* Return: true iff the bo resides in @mem_type, false otherwise.
*/
static inline bool xe_bo_is_mem_type(struct xe_bo *bo, u32 mem_type)
{
xe_bo_assert_held(bo);
return bo->ttm.resource->mem_type == mem_type;
}
#endif
#endif