/*
* Copyright (C) 2015 Red Hat, Inc.
* All Rights Reserved.
*
* Authors:
* Dave Airlie <airlied@redhat.com>
* Gerd Hoffmann <kraxel@redhat.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/dma-mapping.h>
#include <linux/virtio.h>
#include <linux/virtio_config.h>
#include <linux/virtio_ring.h>
#include "virtgpu_drv.h"
#include "virtgpu_trace.h"
#define MAX_INLINE_CMD_SIZE 96
#define MAX_INLINE_RESP_SIZE 24
#define VBUFFER_SIZE (sizeof(struct virtio_gpu_vbuffer) \
+ MAX_INLINE_CMD_SIZE \
+ MAX_INLINE_RESP_SIZE)
static void convert_to_hw_box(struct virtio_gpu_box *dst,
const struct drm_virtgpu_3d_box *src)
{
dst->x = cpu_to_le32(src->x);
dst->y = cpu_to_le32(src->y);
dst->z = cpu_to_le32(src->z);
dst->w = cpu_to_le32(src->w);
dst->h = cpu_to_le32(src->h);
dst->d = cpu_to_le32(src->d);
}
void virtio_gpu_ctrl_ack(struct virtqueue *vq)
{
struct drm_device *dev = vq->vdev->priv;
struct virtio_gpu_device *vgdev = dev->dev_private;
schedule_work(&vgdev->ctrlq.dequeue_work);
}
void virtio_gpu_cursor_ack(struct virtqueue *vq)
{
struct drm_device *dev = vq->vdev->priv;
struct virtio_gpu_device *vgdev = dev->dev_private;
schedule_work(&vgdev->cursorq.dequeue_work);
}
int virtio_gpu_alloc_vbufs(struct virtio_gpu_device *vgdev)
{
vgdev->vbufs = kmem_cache_create("virtio-gpu-vbufs",
VBUFFER_SIZE,
__alignof__(struct virtio_gpu_vbuffer),
0, NULL);
if (!vgdev->vbufs)
return -ENOMEM;
return 0;
}
void virtio_gpu_free_vbufs(struct virtio_gpu_device *vgdev)
{
kmem_cache_destroy(vgdev->vbufs);
vgdev->vbufs = NULL;
}
static struct virtio_gpu_vbuffer*
virtio_gpu_get_vbuf(struct virtio_gpu_device *vgdev,
int size, int resp_size, void *resp_buf,
virtio_gpu_resp_cb resp_cb)
{
struct virtio_gpu_vbuffer *vbuf;
vbuf = kmem_cache_zalloc(vgdev->vbufs, GFP_KERNEL);
if (!vbuf)
return ERR_PTR(-ENOMEM);
BUG_ON(size > MAX_INLINE_CMD_SIZE ||
size < sizeof(struct virtio_gpu_ctrl_hdr));
vbuf->buf = (void *)vbuf + sizeof(*vbuf);
vbuf->size = size;
vbuf->resp_cb = resp_cb;
vbuf->resp_size = resp_size;
if (resp_size <= MAX_INLINE_RESP_SIZE)
vbuf->resp_buf = (void *)vbuf->buf + size;
else
vbuf->resp_buf = resp_buf;
BUG_ON(!vbuf->resp_buf);
return vbuf;
}
static struct virtio_gpu_ctrl_hdr *
virtio_gpu_vbuf_ctrl_hdr(struct virtio_gpu_vbuffer *vbuf)
{
/* this assumes a vbuf contains a command that starts with a
* virtio_gpu_ctrl_hdr, which is true for both ctrl and cursor
* virtqueues.
*/
return (struct virtio_gpu_ctrl_hdr *)vbuf->buf;
}
static void *virtio_gpu_alloc_cmd(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer **vbuffer_p,
int size)
{
struct virtio_gpu_vbuffer *vbuf;
vbuf = virtio_gpu_get_vbuf(vgdev, size,
sizeof(struct virtio_gpu_ctrl_hdr),
NULL, NULL);
if (IS_ERR(vbuf)) {
*vbuffer_p = NULL;
return ERR_CAST(vbuf);
}
*vbuffer_p = vbuf;
return vbuf->buf;
}
static struct virtio_gpu_update_cursor*
virtio_gpu_alloc_cursor(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer **vbuffer_p)
{
struct virtio_gpu_vbuffer *vbuf;
vbuf = virtio_gpu_get_vbuf
(vgdev, sizeof(struct virtio_gpu_update_cursor),
0, NULL, NULL);
if (IS_ERR(vbuf)) {
*vbuffer_p = NULL;
return ERR_CAST(vbuf);
}
*vbuffer_p = vbuf;
return (struct virtio_gpu_update_cursor *)vbuf->buf;
}
static void *virtio_gpu_alloc_cmd_resp(struct virtio_gpu_device *vgdev,
virtio_gpu_resp_cb cb,
struct virtio_gpu_vbuffer **vbuffer_p,
int cmd_size, int resp_size,
void *resp_buf)
{
struct virtio_gpu_vbuffer *vbuf;
vbuf = virtio_gpu_get_vbuf(vgdev, cmd_size,
resp_size, resp_buf, cb);
if (IS_ERR(vbuf)) {
*vbuffer_p = NULL;
return ERR_CAST(vbuf);
}
*vbuffer_p = vbuf;
return (struct virtio_gpu_command *)vbuf->buf;
}
static void free_vbuf(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf)
{
if (vbuf->resp_size > MAX_INLINE_RESP_SIZE)
kfree(vbuf->resp_buf);
kvfree(vbuf->data_buf);
kmem_cache_free(vgdev->vbufs, vbuf);
}
static void reclaim_vbufs(struct virtqueue *vq, struct list_head *reclaim_list)
{
struct virtio_gpu_vbuffer *vbuf;
unsigned int len;
int freed = 0;
while ((vbuf = virtqueue_get_buf(vq, &len))) {
list_add_tail(&vbuf->list, reclaim_list);
freed++;
}
if (freed == 0)
DRM_DEBUG("Huh? zero vbufs reclaimed");
}
void virtio_gpu_dequeue_ctrl_func(struct work_struct *work)
{
struct virtio_gpu_device *vgdev =
container_of(work, struct virtio_gpu_device,
ctrlq.dequeue_work);
struct list_head reclaim_list;
struct virtio_gpu_vbuffer *entry, *tmp;
struct virtio_gpu_ctrl_hdr *resp;
u64 fence_id = 0;
INIT_LIST_HEAD(&reclaim_list);
spin_lock(&vgdev->ctrlq.qlock);
do {
virtqueue_disable_cb(vgdev->ctrlq.vq);
reclaim_vbufs(vgdev->ctrlq.vq, &reclaim_list);
} while (!virtqueue_enable_cb(vgdev->ctrlq.vq));
spin_unlock(&vgdev->ctrlq.qlock);
list_for_each_entry(entry, &reclaim_list, list) {
resp = (struct virtio_gpu_ctrl_hdr *)entry->resp_buf;
trace_virtio_gpu_cmd_response(vgdev->ctrlq.vq, resp);
if (resp->type != cpu_to_le32(VIRTIO_GPU_RESP_OK_NODATA)) {
if (resp->type >= cpu_to_le32(VIRTIO_GPU_RESP_ERR_UNSPEC)) {
struct virtio_gpu_ctrl_hdr *cmd;
cmd = virtio_gpu_vbuf_ctrl_hdr(entry);
DRM_ERROR_RATELIMITED("response 0x%x (command 0x%x)\n",
le32_to_cpu(resp->type),
le32_to_cpu(cmd->type));
} else
DRM_DEBUG("response 0x%x\n", le32_to_cpu(resp->type));
}
if (resp->flags & cpu_to_le32(VIRTIO_GPU_FLAG_FENCE)) {
u64 f = le64_to_cpu(resp->fence_id);
if (fence_id > f) {
DRM_ERROR("%s: Oops: fence %llx -> %llx\n",
__func__, fence_id, f);
} else {
fence_id = f;
}
}
if (entry->resp_cb)
entry->resp_cb(vgdev, entry);
}
wake_up(&vgdev->ctrlq.ack_queue);
if (fence_id)
virtio_gpu_fence_event_process(vgdev, fence_id);
list_for_each_entry_safe(entry, tmp, &reclaim_list, list) {
if (entry->objs)
virtio_gpu_array_put_free_delayed(vgdev, entry->objs);
list_del(&entry->list);
free_vbuf(vgdev, entry);
}
}
void virtio_gpu_dequeue_cursor_func(struct work_struct *work)
{
struct virtio_gpu_device *vgdev =
container_of(work, struct virtio_gpu_device,
cursorq.dequeue_work);
struct list_head reclaim_list;
struct virtio_gpu_vbuffer *entry, *tmp;
INIT_LIST_HEAD(&reclaim_list);
spin_lock(&vgdev->cursorq.qlock);
do {
virtqueue_disable_cb(vgdev->cursorq.vq);
reclaim_vbufs(vgdev->cursorq.vq, &reclaim_list);
} while (!virtqueue_enable_cb(vgdev->cursorq.vq));
spin_unlock(&vgdev->cursorq.qlock);
list_for_each_entry_safe(entry, tmp, &reclaim_list, list) {
list_del(&entry->list);
free_vbuf(vgdev, entry);
}
wake_up(&vgdev->cursorq.ack_queue);
}
/* Create sg_table from a vmalloc'd buffer. */
static struct sg_table *vmalloc_to_sgt(char *data, uint32_t size, int *sg_ents)
{
int ret, s, i;
struct sg_table *sgt;
struct scatterlist *sg;
struct page *pg;
if (WARN_ON(!PAGE_ALIGNED(data)))
return NULL;
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
if (!sgt)
return NULL;
*sg_ents = DIV_ROUND_UP(size, PAGE_SIZE);
ret = sg_alloc_table(sgt, *sg_ents, GFP_KERNEL);
if (ret) {
kfree(sgt);
return NULL;
}
for_each_sg(sgt->sgl, sg, *sg_ents, i) {
pg = vmalloc_to_page(data);
if (!pg) {
sg_free_table(sgt);
kfree(sgt);
return NULL;
}
s = min_t(int, PAGE_SIZE, size);
sg_set_page(sg, pg, s, 0);
size -= s;
data += s;
}
return sgt;
}
static bool virtio_gpu_queue_ctrl_sgs(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf,
struct virtio_gpu_fence *fence,
int elemcnt,
struct scatterlist **sgs,
int outcnt,
int incnt)
{
struct virtqueue *vq = vgdev->ctrlq.vq;
bool notify = false;
int ret;
again:
spin_lock(&vgdev->ctrlq.qlock);
if (vq->num_free < elemcnt) {
spin_unlock(&vgdev->ctrlq.qlock);
wait_event(vgdev->ctrlq.ack_queue, vq->num_free >= elemcnt);
goto again;
}
/* now that the position of the vbuf in the virtqueue is known, we can
* finally set the fence id
*/
if (fence) {
virtio_gpu_fence_emit(vgdev, virtio_gpu_vbuf_ctrl_hdr(vbuf),
fence);
if (vbuf->objs) {
virtio_gpu_array_add_fence(vbuf->objs, &fence->f);
virtio_gpu_array_unlock_resv(vbuf->objs);
}
}
if (!vgdev->vqs_ready) {
spin_unlock(&vgdev->ctrlq.qlock);
return notify;
}
ret = virtqueue_add_sgs(vq, sgs, outcnt, incnt, vbuf, GFP_ATOMIC);
WARN_ON(ret);
trace_virtio_gpu_cmd_queue(vq, virtio_gpu_vbuf_ctrl_hdr(vbuf));
notify = virtqueue_kick_prepare(vq);
spin_unlock(&vgdev->ctrlq.qlock);
return notify;
}
static void virtio_gpu_queue_fenced_ctrl_buffer(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf,
struct virtio_gpu_fence *fence)
{
struct scatterlist *sgs[3], vcmd, vout, vresp;
struct sg_table *sgt = NULL;
int elemcnt = 0, outcnt = 0, incnt = 0;
bool notify;
/* set up vcmd */
sg_init_one(&vcmd, vbuf->buf, vbuf->size);
elemcnt++;
sgs[outcnt] = &vcmd;
outcnt++;
/* set up vout */
if (vbuf->data_size) {
if (is_vmalloc_addr(vbuf->data_buf)) {
int sg_ents;
sgt = vmalloc_to_sgt(vbuf->data_buf, vbuf->data_size,
&sg_ents);
if (!sgt) {
if (fence && vbuf->objs)
virtio_gpu_array_unlock_resv(vbuf->objs);
return;
}
elemcnt += sg_ents;
sgs[outcnt] = sgt->sgl;
} else {
sg_init_one(&vout, vbuf->data_buf, vbuf->data_size);
elemcnt++;
sgs[outcnt] = &vout;
}
outcnt++;
}
/* set up vresp */
if (vbuf->resp_size) {
sg_init_one(&vresp, vbuf->resp_buf, vbuf->resp_size);
elemcnt++;
sgs[outcnt + incnt] = &vresp;
incnt++;
}
notify = virtio_gpu_queue_ctrl_sgs(vgdev, vbuf, fence, elemcnt, sgs,
outcnt, incnt);
if (notify) {
if (vgdev->disable_notify)
vgdev->pending_notify = true;
else
virtqueue_notify(vgdev->ctrlq.vq);
}
if (sgt) {
sg_free_table(sgt);
kfree(sgt);
}
}
void virtio_gpu_disable_notify(struct virtio_gpu_device *vgdev)
{
vgdev->disable_notify = true;
}
void virtio_gpu_enable_notify(struct virtio_gpu_device *vgdev)
{
vgdev->disable_notify = false;
if (!vgdev->pending_notify)
return;
vgdev->pending_notify = false;
virtqueue_notify(vgdev->ctrlq.vq);
}
static void virtio_gpu_queue_ctrl_buffer(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf)
{
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, NULL);
}
static void virtio_gpu_queue_cursor(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf)
{
struct virtqueue *vq = vgdev->cursorq.vq;
struct scatterlist *sgs[1], ccmd;
bool notify;
int ret;
int outcnt;
if (!vgdev->vqs_ready)
return;
sg_init_one(&ccmd, vbuf->buf, vbuf->size);
sgs[0] = &ccmd;
outcnt = 1;
spin_lock(&vgdev->cursorq.qlock);
retry:
ret = virtqueue_add_sgs(vq, sgs, outcnt, 0, vbuf, GFP_ATOMIC);
if (ret == -ENOSPC) {
spin_unlock(&vgdev->cursorq.qlock);
wait_event(vgdev->cursorq.ack_queue, vq->num_free >= outcnt);
spin_lock(&vgdev->cursorq.qlock);
goto retry;
} else {
trace_virtio_gpu_cmd_queue(vq,
virtio_gpu_vbuf_ctrl_hdr(vbuf));
notify = virtqueue_kick_prepare(vq);
}
spin_unlock(&vgdev->cursorq.qlock);
if (notify)
virtqueue_notify(vq);
}
/* just create gem objects for userspace and long lived objects,
* just use dma_alloced pages for the queue objects?
*/
/* create a basic resource */
void virtio_gpu_cmd_create_resource(struct virtio_gpu_device *vgdev,
struct virtio_gpu_object *bo,
struct virtio_gpu_object_params *params,
struct virtio_gpu_object_array *objs,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_resource_create_2d *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_CREATE_2D);
cmd_p->resource_id = cpu_to_le32(bo->hw_res_handle);
cmd_p->format = cpu_to_le32(params->format);
cmd_p->width = cpu_to_le32(params->width);
cmd_p->height = cpu_to_le32(params->height);
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
bo->created = true;
}
void virtio_gpu_cmd_unref_resource(struct virtio_gpu_device *vgdev,
uint32_t resource_id)
{
struct virtio_gpu_resource_unref *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_UNREF);
cmd_p->resource_id = cpu_to_le32(resource_id);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
static void virtio_gpu_cmd_resource_inval_backing(struct virtio_gpu_device *vgdev,
uint32_t resource_id,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_resource_detach_backing *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_DETACH_BACKING);
cmd_p->resource_id = cpu_to_le32(resource_id);
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
}
void virtio_gpu_cmd_set_scanout(struct virtio_gpu_device *vgdev,
uint32_t scanout_id, uint32_t resource_id,
uint32_t width, uint32_t height,
uint32_t x, uint32_t y)
{
struct virtio_gpu_set_scanout *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_SET_SCANOUT);
cmd_p->resource_id = cpu_to_le32(resource_id);
cmd_p->scanout_id = cpu_to_le32(scanout_id);
cmd_p->r.width = cpu_to_le32(width);
cmd_p->r.height = cpu_to_le32(height);
cmd_p->r.x = cpu_to_le32(x);
cmd_p->r.y = cpu_to_le32(y);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
void virtio_gpu_cmd_resource_flush(struct virtio_gpu_device *vgdev,
uint32_t resource_id,
uint32_t x, uint32_t y,
uint32_t width, uint32_t height)
{
struct virtio_gpu_resource_flush *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_FLUSH);
cmd_p->resource_id = cpu_to_le32(resource_id);
cmd_p->r.width = cpu_to_le32(width);
cmd_p->r.height = cpu_to_le32(height);
cmd_p->r.x = cpu_to_le32(x);
cmd_p->r.y = cpu_to_le32(y);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
void virtio_gpu_cmd_transfer_to_host_2d(struct virtio_gpu_device *vgdev,
uint64_t offset,
uint32_t width, uint32_t height,
uint32_t x, uint32_t y,
struct virtio_gpu_object_array *objs,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_object *bo = gem_to_virtio_gpu_obj(objs->objs[0]);
struct virtio_gpu_transfer_to_host_2d *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
bool use_dma_api = !virtio_has_iommu_quirk(vgdev->vdev);
if (use_dma_api)
dma_sync_sg_for_device(vgdev->vdev->dev.parent,
bo->pages->sgl, bo->pages->nents,
DMA_TO_DEVICE);
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_TRANSFER_TO_HOST_2D);
cmd_p->resource_id = cpu_to_le32(bo->hw_res_handle);
cmd_p->offset = cpu_to_le64(offset);
cmd_p->r.width = cpu_to_le32(width);
cmd_p->r.height = cpu_to_le32(height);
cmd_p->r.x = cpu_to_le32(x);
cmd_p->r.y = cpu_to_le32(y);
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
}
static void
virtio_gpu_cmd_resource_attach_backing(struct virtio_gpu_device *vgdev,
uint32_t resource_id,
struct virtio_gpu_mem_entry *ents,
uint32_t nents,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_resource_attach_backing *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_ATTACH_BACKING);
cmd_p->resource_id = cpu_to_le32(resource_id);
cmd_p->nr_entries = cpu_to_le32(nents);
vbuf->data_buf = ents;
vbuf->data_size = sizeof(*ents) * nents;
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
}
static void virtio_gpu_cmd_get_display_info_cb(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf)
{
struct virtio_gpu_resp_display_info *resp =
(struct virtio_gpu_resp_display_info *)vbuf->resp_buf;
int i;
spin_lock(&vgdev->display_info_lock);
for (i = 0; i < vgdev->num_scanouts; i++) {
vgdev->outputs[i].info = resp->pmodes[i];
if (resp->pmodes[i].enabled) {
DRM_DEBUG("output %d: %dx%d+%d+%d", i,
le32_to_cpu(resp->pmodes[i].r.width),
le32_to_cpu(resp->pmodes[i].r.height),
le32_to_cpu(resp->pmodes[i].r.x),
le32_to_cpu(resp->pmodes[i].r.y));
} else {
DRM_DEBUG("output %d: disabled", i);
}
}
vgdev->display_info_pending = false;
spin_unlock(&vgdev->display_info_lock);
wake_up(&vgdev->resp_wq);
if (!drm_helper_hpd_irq_event(vgdev->ddev))
drm_kms_helper_hotplug_event(vgdev->ddev);
}
static void virtio_gpu_cmd_get_capset_info_cb(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf)
{
struct virtio_gpu_get_capset_info *cmd =
(struct virtio_gpu_get_capset_info *)vbuf->buf;
struct virtio_gpu_resp_capset_info *resp =
(struct virtio_gpu_resp_capset_info *)vbuf->resp_buf;
int i = le32_to_cpu(cmd->capset_index);
spin_lock(&vgdev->display_info_lock);
vgdev->capsets[i].id = le32_to_cpu(resp->capset_id);
vgdev->capsets[i].max_version = le32_to_cpu(resp->capset_max_version);
vgdev->capsets[i].max_size = le32_to_cpu(resp->capset_max_size);
spin_unlock(&vgdev->display_info_lock);
wake_up(&vgdev->resp_wq);
}
static void virtio_gpu_cmd_capset_cb(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf)
{
struct virtio_gpu_get_capset *cmd =
(struct virtio_gpu_get_capset *)vbuf->buf;
struct virtio_gpu_resp_capset *resp =
(struct virtio_gpu_resp_capset *)vbuf->resp_buf;
struct virtio_gpu_drv_cap_cache *cache_ent;
spin_lock(&vgdev->display_info_lock);
list_for_each_entry(cache_ent, &vgdev->cap_cache, head) {
if (cache_ent->version == le32_to_cpu(cmd->capset_version) &&
cache_ent->id == le32_to_cpu(cmd->capset_id)) {
memcpy(cache_ent->caps_cache, resp->capset_data,
cache_ent->size);
/* Copy must occur before is_valid is signalled. */
smp_wmb();
atomic_set(&cache_ent->is_valid, 1);
break;
}
}
spin_unlock(&vgdev->display_info_lock);
wake_up_all(&vgdev->resp_wq);
}
static int virtio_get_edid_block(void *data, u8 *buf,
unsigned int block, size_t len)
{
struct virtio_gpu_resp_edid *resp = data;
size_t start = block * EDID_LENGTH;
if (start + len > le32_to_cpu(resp->size))
return -1;
memcpy(buf, resp->edid + start, len);
return 0;
}
static void virtio_gpu_cmd_get_edid_cb(struct virtio_gpu_device *vgdev,
struct virtio_gpu_vbuffer *vbuf)
{
struct virtio_gpu_cmd_get_edid *cmd =
(struct virtio_gpu_cmd_get_edid *)vbuf->buf;
struct virtio_gpu_resp_edid *resp =
(struct virtio_gpu_resp_edid *)vbuf->resp_buf;
uint32_t scanout = le32_to_cpu(cmd->scanout);
struct virtio_gpu_output *output;
struct edid *new_edid, *old_edid;
if (scanout >= vgdev->num_scanouts)
return;
output = vgdev->outputs + scanout;
new_edid = drm_do_get_edid(&output->conn, virtio_get_edid_block, resp);
drm_connector_update_edid_property(&output->conn, new_edid);
spin_lock(&vgdev->display_info_lock);
old_edid = output->edid;
output->edid = new_edid;
spin_unlock(&vgdev->display_info_lock);
kfree(old_edid);
wake_up(&vgdev->resp_wq);
}
int virtio_gpu_cmd_get_display_info(struct virtio_gpu_device *vgdev)
{
struct virtio_gpu_ctrl_hdr *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
void *resp_buf;
resp_buf = kzalloc(sizeof(struct virtio_gpu_resp_display_info),
GFP_KERNEL);
if (!resp_buf)
return -ENOMEM;
cmd_p = virtio_gpu_alloc_cmd_resp
(vgdev, &virtio_gpu_cmd_get_display_info_cb, &vbuf,
sizeof(*cmd_p), sizeof(struct virtio_gpu_resp_display_info),
resp_buf);
memset(cmd_p, 0, sizeof(*cmd_p));
vgdev->display_info_pending = true;
cmd_p->type = cpu_to_le32(VIRTIO_GPU_CMD_GET_DISPLAY_INFO);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
return 0;
}
int virtio_gpu_cmd_get_capset_info(struct virtio_gpu_device *vgdev, int idx)
{
struct virtio_gpu_get_capset_info *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
void *resp_buf;
resp_buf = kzalloc(sizeof(struct virtio_gpu_resp_capset_info),
GFP_KERNEL);
if (!resp_buf)
return -ENOMEM;
cmd_p = virtio_gpu_alloc_cmd_resp
(vgdev, &virtio_gpu_cmd_get_capset_info_cb, &vbuf,
sizeof(*cmd_p), sizeof(struct virtio_gpu_resp_capset_info),
resp_buf);
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_GET_CAPSET_INFO);
cmd_p->capset_index = cpu_to_le32(idx);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
return 0;
}
int virtio_gpu_cmd_get_capset(struct virtio_gpu_device *vgdev,
int idx, int version,
struct virtio_gpu_drv_cap_cache **cache_p)
{
struct virtio_gpu_get_capset *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
int max_size;
struct virtio_gpu_drv_cap_cache *cache_ent;
struct virtio_gpu_drv_cap_cache *search_ent;
void *resp_buf;
*cache_p = NULL;
if (idx >= vgdev->num_capsets)
return -EINVAL;
if (version > vgdev->capsets[idx].max_version)
return -EINVAL;
cache_ent = kzalloc(sizeof(*cache_ent), GFP_KERNEL);
if (!cache_ent)
return -ENOMEM;
max_size = vgdev->capsets[idx].max_size;
cache_ent->caps_cache = kmalloc(max_size, GFP_KERNEL);
if (!cache_ent->caps_cache) {
kfree(cache_ent);
return -ENOMEM;
}
resp_buf = kzalloc(sizeof(struct virtio_gpu_resp_capset) + max_size,
GFP_KERNEL);
if (!resp_buf) {
kfree(cache_ent->caps_cache);
kfree(cache_ent);
return -ENOMEM;
}
cache_ent->version = version;
cache_ent->id = vgdev->capsets[idx].id;
atomic_set(&cache_ent->is_valid, 0);
cache_ent->size = max_size;
spin_lock(&vgdev->display_info_lock);
/* Search while under lock in case it was added by another task. */
list_for_each_entry(search_ent, &vgdev->cap_cache, head) {
if (search_ent->id == vgdev->capsets[idx].id &&
search_ent->version == version) {
*cache_p = search_ent;
break;
}
}
if (!*cache_p)
list_add_tail(&cache_ent->head, &vgdev->cap_cache);
spin_unlock(&vgdev->display_info_lock);
if (*cache_p) {
/* Entry was found, so free everything that was just created. */
kfree(resp_buf);
kfree(cache_ent->caps_cache);
kfree(cache_ent);
return 0;
}
cmd_p = virtio_gpu_alloc_cmd_resp
(vgdev, &virtio_gpu_cmd_capset_cb, &vbuf, sizeof(*cmd_p),
sizeof(struct virtio_gpu_resp_capset) + max_size,
resp_buf);
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_GET_CAPSET);
cmd_p->capset_id = cpu_to_le32(vgdev->capsets[idx].id);
cmd_p->capset_version = cpu_to_le32(version);
*cache_p = cache_ent;
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
return 0;
}
int virtio_gpu_cmd_get_edids(struct virtio_gpu_device *vgdev)
{
struct virtio_gpu_cmd_get_edid *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
void *resp_buf;
int scanout;
if (WARN_ON(!vgdev->has_edid))
return -EINVAL;
for (scanout = 0; scanout < vgdev->num_scanouts; scanout++) {
resp_buf = kzalloc(sizeof(struct virtio_gpu_resp_edid),
GFP_KERNEL);
if (!resp_buf)
return -ENOMEM;
cmd_p = virtio_gpu_alloc_cmd_resp
(vgdev, &virtio_gpu_cmd_get_edid_cb, &vbuf,
sizeof(*cmd_p), sizeof(struct virtio_gpu_resp_edid),
resp_buf);
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_GET_EDID);
cmd_p->scanout = cpu_to_le32(scanout);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
return 0;
}
void virtio_gpu_cmd_context_create(struct virtio_gpu_device *vgdev, uint32_t id,
uint32_t nlen, const char *name)
{
struct virtio_gpu_ctx_create *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_CTX_CREATE);
cmd_p->hdr.ctx_id = cpu_to_le32(id);
cmd_p->nlen = cpu_to_le32(nlen);
strncpy(cmd_p->debug_name, name, sizeof(cmd_p->debug_name) - 1);
cmd_p->debug_name[sizeof(cmd_p->debug_name) - 1] = 0;
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
void virtio_gpu_cmd_context_destroy(struct virtio_gpu_device *vgdev,
uint32_t id)
{
struct virtio_gpu_ctx_destroy *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_CTX_DESTROY);
cmd_p->hdr.ctx_id = cpu_to_le32(id);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
void virtio_gpu_cmd_context_attach_resource(struct virtio_gpu_device *vgdev,
uint32_t ctx_id,
struct virtio_gpu_object_array *objs)
{
struct virtio_gpu_object *bo = gem_to_virtio_gpu_obj(objs->objs[0]);
struct virtio_gpu_ctx_resource *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_CTX_ATTACH_RESOURCE);
cmd_p->hdr.ctx_id = cpu_to_le32(ctx_id);
cmd_p->resource_id = cpu_to_le32(bo->hw_res_handle);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
void virtio_gpu_cmd_context_detach_resource(struct virtio_gpu_device *vgdev,
uint32_t ctx_id,
struct virtio_gpu_object_array *objs)
{
struct virtio_gpu_object *bo = gem_to_virtio_gpu_obj(objs->objs[0]);
struct virtio_gpu_ctx_resource *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_CTX_DETACH_RESOURCE);
cmd_p->hdr.ctx_id = cpu_to_le32(ctx_id);
cmd_p->resource_id = cpu_to_le32(bo->hw_res_handle);
virtio_gpu_queue_ctrl_buffer(vgdev, vbuf);
}
void
virtio_gpu_cmd_resource_create_3d(struct virtio_gpu_device *vgdev,
struct virtio_gpu_object *bo,
struct virtio_gpu_object_params *params,
struct virtio_gpu_object_array *objs,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_resource_create_3d *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_RESOURCE_CREATE_3D);
cmd_p->resource_id = cpu_to_le32(bo->hw_res_handle);
cmd_p->format = cpu_to_le32(params->format);
cmd_p->width = cpu_to_le32(params->width);
cmd_p->height = cpu_to_le32(params->height);
cmd_p->target = cpu_to_le32(params->target);
cmd_p->bind = cpu_to_le32(params->bind);
cmd_p->depth = cpu_to_le32(params->depth);
cmd_p->array_size = cpu_to_le32(params->array_size);
cmd_p->last_level = cpu_to_le32(params->last_level);
cmd_p->nr_samples = cpu_to_le32(params->nr_samples);
cmd_p->flags = cpu_to_le32(params->flags);
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
bo->created = true;
}
void virtio_gpu_cmd_transfer_to_host_3d(struct virtio_gpu_device *vgdev,
uint32_t ctx_id,
uint64_t offset, uint32_t level,
struct drm_virtgpu_3d_box *box,
struct virtio_gpu_object_array *objs,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_object *bo = gem_to_virtio_gpu_obj(objs->objs[0]);
struct virtio_gpu_transfer_host_3d *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
bool use_dma_api = !virtio_has_iommu_quirk(vgdev->vdev);
if (use_dma_api)
dma_sync_sg_for_device(vgdev->vdev->dev.parent,
bo->pages->sgl, bo->pages->nents,
DMA_TO_DEVICE);
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_TRANSFER_TO_HOST_3D);
cmd_p->hdr.ctx_id = cpu_to_le32(ctx_id);
cmd_p->resource_id = cpu_to_le32(bo->hw_res_handle);
convert_to_hw_box(&cmd_p->box, box);
cmd_p->offset = cpu_to_le64(offset);
cmd_p->level = cpu_to_le32(level);
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
}
void virtio_gpu_cmd_transfer_from_host_3d(struct virtio_gpu_device *vgdev,
uint32_t ctx_id,
uint64_t offset, uint32_t level,
struct drm_virtgpu_3d_box *box,
struct virtio_gpu_object_array *objs,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_object *bo = gem_to_virtio_gpu_obj(objs->objs[0]);
struct virtio_gpu_transfer_host_3d *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_TRANSFER_FROM_HOST_3D);
cmd_p->hdr.ctx_id = cpu_to_le32(ctx_id);
cmd_p->resource_id = cpu_to_le32(bo->hw_res_handle);
convert_to_hw_box(&cmd_p->box, box);
cmd_p->offset = cpu_to_le64(offset);
cmd_p->level = cpu_to_le32(level);
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
}
void virtio_gpu_cmd_submit(struct virtio_gpu_device *vgdev,
void *data, uint32_t data_size,
uint32_t ctx_id,
struct virtio_gpu_object_array *objs,
struct virtio_gpu_fence *fence)
{
struct virtio_gpu_cmd_submit *cmd_p;
struct virtio_gpu_vbuffer *vbuf;
cmd_p = virtio_gpu_alloc_cmd(vgdev, &vbuf, sizeof(*cmd_p));
memset(cmd_p, 0, sizeof(*cmd_p));
vbuf->data_buf = data;
vbuf->data_size = data_size;
vbuf->objs = objs;
cmd_p->hdr.type = cpu_to_le32(VIRTIO_GPU_CMD_SUBMIT_3D);
cmd_p->hdr.ctx_id = cpu_to_le32(ctx_id);
cmd_p->size = cpu_to_le32(data_size);
virtio_gpu_queue_fenced_ctrl_buffer(vgdev, vbuf, fence);
}
int virtio_gpu_object_attach(struct virtio_gpu_device *vgdev,
struct virtio_gpu_object *obj,
struct virtio_gpu_fence *fence)
{
bool use_dma_api = !virtio_has_iommu_quirk(vgdev->vdev);
struct virtio_gpu_mem_entry *ents;
struct scatterlist *sg;
int si, nents, ret;
if (WARN_ON_ONCE(!obj->created))
return -EINVAL;
if (WARN_ON_ONCE(obj->pages))
return -EINVAL;
ret = drm_gem_shmem_pin(&obj->base.base);
if (ret < 0)
return -EINVAL;
obj->pages = drm_gem_shmem_get_sg_table(&obj->base.base);
if (obj->pages == NULL) {
drm_gem_shmem_unpin(&obj->base.base);
return -EINVAL;
}
if (use_dma_api) {
obj->mapped = dma_map_sg(vgdev->vdev->dev.parent,
obj->pages->sgl, obj->pages->nents,
DMA_TO_DEVICE);
nents = obj->mapped;
} else {
nents = obj->pages->nents;
}
/* gets freed when the ring has consumed it */
ents = kmalloc_array(nents, sizeof(struct virtio_gpu_mem_entry),
GFP_KERNEL);
if (!ents) {
DRM_ERROR("failed to allocate ent list\n");
return -ENOMEM;
}
for_each_sg(obj->pages->sgl, sg, nents, si) {
ents[si].addr = cpu_to_le64(use_dma_api
? sg_dma_address(sg)
: sg_phys(sg));
ents[si].length = cpu_to_le32(sg->length);
ents[si].padding = 0;
}
virtio_gpu_cmd_resource_attach_backing(vgdev, obj->hw_res_handle,
ents, nents,
fence);
return 0;
}
void virtio_gpu_object_detach(struct virtio_gpu_device *vgdev,
struct virtio_gpu_object *obj)
{
bool use_dma_api = !virtio_has_iommu_quirk(vgdev->vdev);
if (WARN_ON_ONCE(!obj->pages))
return;
if (use_dma_api && obj->mapped) {
struct virtio_gpu_fence *fence = virtio_gpu_fence_alloc(vgdev);
/* detach backing and wait for the host process it ... */
virtio_gpu_cmd_resource_inval_backing(vgdev, obj->hw_res_handle, fence);
dma_fence_wait(&fence->f, true);
dma_fence_put(&fence->f);
/* ... then tear down iommu mappings */
dma_unmap_sg(vgdev->vdev->dev.parent,
obj->pages->sgl, obj->mapped,
DMA_TO_DEVICE);
obj->mapped = 0;
} else {
virtio_gpu_cmd_resource_inval_backing(vgdev, obj->hw_res_handle, NULL);
}
sg_free_table(obj->pages);
obj->pages = NULL;
drm_gem_shmem_unpin(&obj->base.base);
}
void virtio_gpu_cursor_ping(struct virtio_gpu_device *vgdev,
struct virtio_gpu_output *output)
{
struct virtio_gpu_vbuffer *vbuf;
struct virtio_gpu_update_cursor *cur_p;
output->cursor.pos.scanout_id = cpu_to_le32(output->index);
cur_p = virtio_gpu_alloc_cursor(vgdev, &vbuf);
memcpy(cur_p, &output->cursor, sizeof(output->cursor));
virtio_gpu_queue_cursor(vgdev, vbuf);
}