// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel IXP4xx NPE-C crypto driver
*
* Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/of.h>
#include <crypto/ctr.h>
#include <crypto/internal/des.h>
#include <crypto/aes.h>
#include <crypto/hmac.h>
#include <crypto/sha1.h>
#include <crypto/algapi.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <linux/soc/ixp4xx/npe.h>
#include <linux/soc/ixp4xx/qmgr.h>
/* Intermittent includes, delete this after v5.14-rc1 */
#include <linux/soc/ixp4xx/cpu.h>
#define MAX_KEYLEN 32
/* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
#define NPE_CTX_LEN 80
#define AES_BLOCK128 16
#define NPE_OP_HASH_VERIFY 0x01
#define NPE_OP_CCM_ENABLE 0x04
#define NPE_OP_CRYPT_ENABLE 0x08
#define NPE_OP_HASH_ENABLE 0x10
#define NPE_OP_NOT_IN_PLACE 0x20
#define NPE_OP_HMAC_DISABLE 0x40
#define NPE_OP_CRYPT_ENCRYPT 0x80
#define NPE_OP_CCM_GEN_MIC 0xcc
#define NPE_OP_HASH_GEN_ICV 0x50
#define NPE_OP_ENC_GEN_KEY 0xc9
#define MOD_ECB 0x0000
#define MOD_CTR 0x1000
#define MOD_CBC_ENC 0x2000
#define MOD_CBC_DEC 0x3000
#define MOD_CCM_ENC 0x4000
#define MOD_CCM_DEC 0x5000
#define KEYLEN_128 4
#define KEYLEN_192 6
#define KEYLEN_256 8
#define CIPH_DECR 0x0000
#define CIPH_ENCR 0x0400
#define MOD_DES 0x0000
#define MOD_TDEA2 0x0100
#define MOD_3DES 0x0200
#define MOD_AES 0x0800
#define MOD_AES128 (0x0800 | KEYLEN_128)
#define MOD_AES192 (0x0900 | KEYLEN_192)
#define MOD_AES256 (0x0a00 | KEYLEN_256)
#define MAX_IVLEN 16
#define NPE_QLEN 16
/* Space for registering when the first
* NPE_QLEN crypt_ctl are busy */
#define NPE_QLEN_TOTAL 64
#define CTL_FLAG_UNUSED 0x0000
#define CTL_FLAG_USED 0x1000
#define CTL_FLAG_PERFORM_ABLK 0x0001
#define CTL_FLAG_GEN_ICV 0x0002
#define CTL_FLAG_GEN_REVAES 0x0004
#define CTL_FLAG_PERFORM_AEAD 0x0008
#define CTL_FLAG_MASK 0x000f
#define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
#define MD5_DIGEST_SIZE 16
struct buffer_desc {
u32 phys_next;
#ifdef __ARMEB__
u16 buf_len;
u16 pkt_len;
#else
u16 pkt_len;
u16 buf_len;
#endif
dma_addr_t phys_addr;
u32 __reserved[4];
struct buffer_desc *next;
enum dma_data_direction dir;
};
struct crypt_ctl {
#ifdef __ARMEB__
u8 mode; /* NPE_OP_* operation mode */
u8 init_len;
u16 reserved;
#else
u16 reserved;
u8 init_len;
u8 mode; /* NPE_OP_* operation mode */
#endif
u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
dma_addr_t icv_rev_aes; /* icv or rev aes */
dma_addr_t src_buf;
dma_addr_t dst_buf;
#ifdef __ARMEB__
u16 auth_offs; /* Authentication start offset */
u16 auth_len; /* Authentication data length */
u16 crypt_offs; /* Cryption start offset */
u16 crypt_len; /* Cryption data length */
#else
u16 auth_len; /* Authentication data length */
u16 auth_offs; /* Authentication start offset */
u16 crypt_len; /* Cryption data length */
u16 crypt_offs; /* Cryption start offset */
#endif
u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
u32 crypto_ctx; /* NPE Crypto Param structure address */
/* Used by Host: 4*4 bytes*/
unsigned int ctl_flags;
union {
struct skcipher_request *ablk_req;
struct aead_request *aead_req;
struct crypto_tfm *tfm;
} data;
struct buffer_desc *regist_buf;
u8 *regist_ptr;
};
struct ablk_ctx {
struct buffer_desc *src;
struct buffer_desc *dst;
u8 iv[MAX_IVLEN];
bool encrypt;
struct skcipher_request fallback_req; // keep at the end
};
struct aead_ctx {
struct buffer_desc *src;
struct buffer_desc *dst;
struct scatterlist ivlist;
/* used when the hmac is not on one sg entry */
u8 *hmac_virt;
int encrypt;
};
struct ix_hash_algo {
u32 cfgword;
unsigned char *icv;
};
struct ix_sa_dir {
unsigned char *npe_ctx;
dma_addr_t npe_ctx_phys;
int npe_ctx_idx;
u8 npe_mode;
};
struct ixp_ctx {
struct ix_sa_dir encrypt;
struct ix_sa_dir decrypt;
int authkey_len;
u8 authkey[MAX_KEYLEN];
int enckey_len;
u8 enckey[MAX_KEYLEN];
u8 salt[MAX_IVLEN];
u8 nonce[CTR_RFC3686_NONCE_SIZE];
unsigned int salted;
atomic_t configuring;
struct completion completion;
struct crypto_skcipher *fallback_tfm;
};
struct ixp_alg {
struct skcipher_alg crypto;
const struct ix_hash_algo *hash;
u32 cfg_enc;
u32 cfg_dec;
int registered;
};
struct ixp_aead_alg {
struct aead_alg crypto;
const struct ix_hash_algo *hash;
u32 cfg_enc;
u32 cfg_dec;
int registered;
};
static const struct ix_hash_algo hash_alg_md5 = {
.cfgword = 0xAA010004,
.icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
"\xFE\xDC\xBA\x98\x76\x54\x32\x10",
};
static const struct ix_hash_algo hash_alg_sha1 = {
.cfgword = 0x00000005,
.icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
"\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
};
static struct npe *npe_c;
static unsigned int send_qid;
static unsigned int recv_qid;
static struct dma_pool *buffer_pool;
static struct dma_pool *ctx_pool;
static struct crypt_ctl *crypt_virt;
static dma_addr_t crypt_phys;
static int support_aes = 1;
static struct platform_device *pdev;
static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
{
return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
}
static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
{
return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
}
static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
{
return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
}
static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
{
return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
}
static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
{
return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
}
static int setup_crypt_desc(void)
{
struct device *dev = &pdev->dev;
BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
crypt_virt = dma_alloc_coherent(dev,
NPE_QLEN * sizeof(struct crypt_ctl),
&crypt_phys, GFP_ATOMIC);
if (!crypt_virt)
return -ENOMEM;
return 0;
}
static DEFINE_SPINLOCK(desc_lock);
static struct crypt_ctl *get_crypt_desc(void)
{
int i;
static int idx;
unsigned long flags;
spin_lock_irqsave(&desc_lock, flags);
if (unlikely(!crypt_virt))
setup_crypt_desc();
if (unlikely(!crypt_virt)) {
spin_unlock_irqrestore(&desc_lock, flags);
return NULL;
}
i = idx;
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
if (++idx >= NPE_QLEN)
idx = 0;
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
spin_unlock_irqrestore(&desc_lock, flags);
return crypt_virt + i;
} else {
spin_unlock_irqrestore(&desc_lock, flags);
return NULL;
}
}
static DEFINE_SPINLOCK(emerg_lock);
static struct crypt_ctl *get_crypt_desc_emerg(void)
{
int i;
static int idx = NPE_QLEN;
struct crypt_ctl *desc;
unsigned long flags;
desc = get_crypt_desc();
if (desc)
return desc;
if (unlikely(!crypt_virt))
return NULL;
spin_lock_irqsave(&emerg_lock, flags);
i = idx;
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
if (++idx >= NPE_QLEN_TOTAL)
idx = NPE_QLEN;
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
spin_unlock_irqrestore(&emerg_lock, flags);
return crypt_virt + i;
} else {
spin_unlock_irqrestore(&emerg_lock, flags);
return NULL;
}
}
static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
dma_addr_t phys)
{
while (buf) {
struct buffer_desc *buf1;
u32 phys1;
buf1 = buf->next;
phys1 = buf->phys_next;
dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
dma_pool_free(buffer_pool, buf, phys);
buf = buf1;
phys = phys1;
}
}
static struct tasklet_struct crypto_done_tasklet;
static void finish_scattered_hmac(struct crypt_ctl *crypt)
{
struct aead_request *req = crypt->data.aead_req;
struct aead_ctx *req_ctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
int authsize = crypto_aead_authsize(tfm);
int decryptlen = req->assoclen + req->cryptlen - authsize;
if (req_ctx->encrypt) {
scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
decryptlen, authsize, 1);
}
dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
}
static void one_packet(dma_addr_t phys)
{
struct device *dev = &pdev->dev;
struct crypt_ctl *crypt;
struct ixp_ctx *ctx;
int failed;
failed = phys & 0x1 ? -EBADMSG : 0;
phys &= ~0x3;
crypt = crypt_phys2virt(phys);
switch (crypt->ctl_flags & CTL_FLAG_MASK) {
case CTL_FLAG_PERFORM_AEAD: {
struct aead_request *req = crypt->data.aead_req;
struct aead_ctx *req_ctx = aead_request_ctx(req);
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
if (req_ctx->hmac_virt)
finish_scattered_hmac(crypt);
req->base.complete(&req->base, failed);
break;
}
case CTL_FLAG_PERFORM_ABLK: {
struct skcipher_request *req = crypt->data.ablk_req;
struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
unsigned int offset;
if (ivsize > 0) {
offset = req->cryptlen - ivsize;
if (req_ctx->encrypt) {
scatterwalk_map_and_copy(req->iv, req->dst,
offset, ivsize, 0);
} else {
memcpy(req->iv, req_ctx->iv, ivsize);
memzero_explicit(req_ctx->iv, ivsize);
}
}
if (req_ctx->dst)
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
req->base.complete(&req->base, failed);
break;
}
case CTL_FLAG_GEN_ICV:
ctx = crypto_tfm_ctx(crypt->data.tfm);
dma_pool_free(ctx_pool, crypt->regist_ptr,
crypt->regist_buf->phys_addr);
dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
if (atomic_dec_and_test(&ctx->configuring))
complete(&ctx->completion);
break;
case CTL_FLAG_GEN_REVAES:
ctx = crypto_tfm_ctx(crypt->data.tfm);
*(__be32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
if (atomic_dec_and_test(&ctx->configuring))
complete(&ctx->completion);
break;
default:
BUG();
}
crypt->ctl_flags = CTL_FLAG_UNUSED;
}
static void irqhandler(void *_unused)
{
tasklet_schedule(&crypto_done_tasklet);
}
static void crypto_done_action(unsigned long arg)
{
int i;
for (i = 0; i < 4; i++) {
dma_addr_t phys = qmgr_get_entry(recv_qid);
if (!phys)
return;
one_packet(phys);
}
tasklet_schedule(&crypto_done_tasklet);
}
static int init_ixp_crypto(struct device *dev)
{
struct device_node *np = dev->of_node;
u32 msg[2] = { 0, 0 };
int ret = -ENODEV;
u32 npe_id;
dev_info(dev, "probing...\n");
/* Locate the NPE and queue manager to use from device tree */
if (IS_ENABLED(CONFIG_OF) && np) {
struct of_phandle_args queue_spec;
struct of_phandle_args npe_spec;
ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
1, 0, &npe_spec);
if (ret) {
dev_err(dev, "no NPE engine specified\n");
return -ENODEV;
}
npe_id = npe_spec.args[0];
ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
&queue_spec);
if (ret) {
dev_err(dev, "no rx queue phandle\n");
return -ENODEV;
}
recv_qid = queue_spec.args[0];
ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
&queue_spec);
if (ret) {
dev_err(dev, "no txready queue phandle\n");
return -ENODEV;
}
send_qid = queue_spec.args[0];
} else {
/*
* Hardcoded engine when using platform data, this goes away
* when we switch to using DT only.
*/
npe_id = 2;
send_qid = 29;
recv_qid = 30;
}
npe_c = npe_request(npe_id);
if (!npe_c)
return ret;
if (!npe_running(npe_c)) {
ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
if (ret)
goto npe_release;
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
goto npe_error;
} else {
if (npe_send_message(npe_c, msg, "STATUS_MSG"))
goto npe_error;
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
goto npe_error;
}
switch ((msg[1] >> 16) & 0xff) {
case 3:
dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
support_aes = 0;
break;
case 4:
case 5:
support_aes = 1;
break;
default:
dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
ret = -ENODEV;
goto npe_release;
}
/* buffer_pool will also be used to sometimes store the hmac,
* so assure it is large enough
*/
BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
32, 0);
ret = -ENOMEM;
if (!buffer_pool)
goto err;
ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
if (!ctx_pool)
goto err;
ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
"ixp_crypto:out", NULL);
if (ret)
goto err;
ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
"ixp_crypto:in", NULL);
if (ret) {
qmgr_release_queue(send_qid);
goto err;
}
qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
qmgr_enable_irq(recv_qid);
return 0;
npe_error:
dev_err(dev, "%s not responding\n", npe_name(npe_c));
ret = -EIO;
err:
dma_pool_destroy(ctx_pool);
dma_pool_destroy(buffer_pool);
npe_release:
npe_release(npe_c);
return ret;
}
static void release_ixp_crypto(struct device *dev)
{
qmgr_disable_irq(recv_qid);
tasklet_kill(&crypto_done_tasklet);
qmgr_release_queue(send_qid);
qmgr_release_queue(recv_qid);
dma_pool_destroy(ctx_pool);
dma_pool_destroy(buffer_pool);
npe_release(npe_c);
if (crypt_virt)
dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
crypt_virt, crypt_phys);
}
static void reset_sa_dir(struct ix_sa_dir *dir)
{
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
dir->npe_ctx_idx = 0;
dir->npe_mode = 0;
}
static int init_sa_dir(struct ix_sa_dir *dir)
{
dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
if (!dir->npe_ctx)
return -ENOMEM;
reset_sa_dir(dir);
return 0;
}
static void free_sa_dir(struct ix_sa_dir *dir)
{
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
}
static int init_tfm(struct crypto_tfm *tfm)
{
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
int ret;
atomic_set(&ctx->configuring, 0);
ret = init_sa_dir(&ctx->encrypt);
if (ret)
return ret;
ret = init_sa_dir(&ctx->decrypt);
if (ret)
free_sa_dir(&ctx->encrypt);
return ret;
}
static int init_tfm_ablk(struct crypto_skcipher *tfm)
{
struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
const char *name = crypto_tfm_alg_name(ctfm);
ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm)) {
pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(ctx->fallback_tfm));
return PTR_ERR(ctx->fallback_tfm);
}
pr_info("Fallback for %s is %s\n",
crypto_tfm_alg_driver_name(&tfm->base),
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
);
crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
return init_tfm(crypto_skcipher_tfm(tfm));
}
static int init_tfm_aead(struct crypto_aead *tfm)
{
crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
return init_tfm(crypto_aead_tfm(tfm));
}
static void exit_tfm(struct crypto_tfm *tfm)
{
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
free_sa_dir(&ctx->encrypt);
free_sa_dir(&ctx->decrypt);
}
static void exit_tfm_ablk(struct crypto_skcipher *tfm)
{
struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
crypto_free_skcipher(ctx->fallback_tfm);
exit_tfm(crypto_skcipher_tfm(tfm));
}
static void exit_tfm_aead(struct crypto_aead *tfm)
{
exit_tfm(crypto_aead_tfm(tfm));
}
static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
int init_len, u32 ctx_addr, const u8 *key,
int key_len)
{
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypt_ctl *crypt;
struct buffer_desc *buf;
int i;
u8 *pad;
dma_addr_t pad_phys, buf_phys;
BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
if (!pad)
return -ENOMEM;
buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
if (!buf) {
dma_pool_free(ctx_pool, pad, pad_phys);
return -ENOMEM;
}
crypt = get_crypt_desc_emerg();
if (!crypt) {
dma_pool_free(ctx_pool, pad, pad_phys);
dma_pool_free(buffer_pool, buf, buf_phys);
return -EAGAIN;
}
memcpy(pad, key, key_len);
memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
pad[i] ^= xpad;
crypt->data.tfm = tfm;
crypt->regist_ptr = pad;
crypt->regist_buf = buf;
crypt->auth_offs = 0;
crypt->auth_len = HMAC_PAD_BLOCKLEN;
crypt->crypto_ctx = ctx_addr;
crypt->src_buf = buf_phys;
crypt->icv_rev_aes = target;
crypt->mode = NPE_OP_HASH_GEN_ICV;
crypt->init_len = init_len;
crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
buf->next = NULL;
buf->buf_len = HMAC_PAD_BLOCKLEN;
buf->pkt_len = 0;
buf->phys_addr = pad_phys;
atomic_inc(&ctx->configuring);
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(send_qid));
return 0;
}
static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
const u8 *key, int key_len, unsigned int digest_len)
{
u32 itarget, otarget, npe_ctx_addr;
unsigned char *cinfo;
int init_len, ret = 0;
u32 cfgword;
struct ix_sa_dir *dir;
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
const struct ix_hash_algo *algo;
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
cinfo = dir->npe_ctx + dir->npe_ctx_idx;
algo = ix_hash(tfm);
/* write cfg word to cryptinfo */
cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
#ifndef __ARMEB__
cfgword ^= 0xAA000000; /* change the "byte swap" flags */
#endif
*(__be32 *)cinfo = cpu_to_be32(cfgword);
cinfo += sizeof(cfgword);
/* write ICV to cryptinfo */
memcpy(cinfo, algo->icv, digest_len);
cinfo += digest_len;
itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
+ sizeof(algo->cfgword);
otarget = itarget + digest_len;
init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
dir->npe_ctx_idx += init_len;
dir->npe_mode |= NPE_OP_HASH_ENABLE;
if (!encrypt)
dir->npe_mode |= NPE_OP_HASH_VERIFY;
ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
init_len, npe_ctx_addr, key, key_len);
if (ret)
return ret;
return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
init_len, npe_ctx_addr, key, key_len);
}
static int gen_rev_aes_key(struct crypto_tfm *tfm)
{
struct crypt_ctl *crypt;
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
struct ix_sa_dir *dir = &ctx->decrypt;
crypt = get_crypt_desc_emerg();
if (!crypt)
return -EAGAIN;
*(__be32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
crypt->data.tfm = tfm;
crypt->crypt_offs = 0;
crypt->crypt_len = AES_BLOCK128;
crypt->src_buf = 0;
crypt->crypto_ctx = dir->npe_ctx_phys;
crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
crypt->mode = NPE_OP_ENC_GEN_KEY;
crypt->init_len = dir->npe_ctx_idx;
crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
atomic_inc(&ctx->configuring);
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(send_qid));
return 0;
}
static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
int key_len)
{
u8 *cinfo;
u32 cipher_cfg;
u32 keylen_cfg = 0;
struct ix_sa_dir *dir;
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
int err;
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
cinfo = dir->npe_ctx;
if (encrypt) {
cipher_cfg = cipher_cfg_enc(tfm);
dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
} else {
cipher_cfg = cipher_cfg_dec(tfm);
}
if (cipher_cfg & MOD_AES) {
switch (key_len) {
case 16:
keylen_cfg = MOD_AES128;
break;
case 24:
keylen_cfg = MOD_AES192;
break;
case 32:
keylen_cfg = MOD_AES256;
break;
default:
return -EINVAL;
}
cipher_cfg |= keylen_cfg;
} else {
err = crypto_des_verify_key(tfm, key);
if (err)
return err;
}
/* write cfg word to cryptinfo */
*(__be32 *)cinfo = cpu_to_be32(cipher_cfg);
cinfo += sizeof(cipher_cfg);
/* write cipher key to cryptinfo */
memcpy(cinfo, key, key_len);
/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
key_len = DES3_EDE_KEY_SIZE;
}
dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
if ((cipher_cfg & MOD_AES) && !encrypt)
return gen_rev_aes_key(tfm);
return 0;
}
static struct buffer_desc *chainup_buffers(struct device *dev,
struct scatterlist *sg, unsigned int nbytes,
struct buffer_desc *buf, gfp_t flags,
enum dma_data_direction dir)
{
for (; nbytes > 0; sg = sg_next(sg)) {
unsigned int len = min(nbytes, sg->length);
struct buffer_desc *next_buf;
dma_addr_t next_buf_phys;
void *ptr;
nbytes -= len;
ptr = sg_virt(sg);
next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
if (!next_buf) {
buf = NULL;
break;
}
sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
buf->next = next_buf;
buf->phys_next = next_buf_phys;
buf = next_buf;
buf->phys_addr = sg_dma_address(sg);
buf->buf_len = len;
buf->dir = dir;
}
buf->next = NULL;
buf->phys_next = 0;
return buf;
}
static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
init_completion(&ctx->completion);
atomic_inc(&ctx->configuring);
reset_sa_dir(&ctx->encrypt);
reset_sa_dir(&ctx->decrypt);
ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
ret = setup_cipher(&tfm->base, 0, key, key_len);
if (ret)
goto out;
ret = setup_cipher(&tfm->base, 1, key, key_len);
out:
if (!atomic_dec_and_test(&ctx->configuring))
wait_for_completion(&ctx->completion);
if (ret)
return ret;
crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
}
static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int key_len)
{
return verify_skcipher_des3_key(tfm, key) ?:
ablk_setkey(tfm, key, key_len);
}
static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
/* the nonce is stored in bytes at end of key */
if (key_len < CTR_RFC3686_NONCE_SIZE)
return -EINVAL;
memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
CTR_RFC3686_NONCE_SIZE);
key_len -= CTR_RFC3686_NONCE_SIZE;
return ablk_setkey(tfm, key, key_len);
}
static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
struct ablk_ctx *rctx = skcipher_request_ctx(areq);
int err;
skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
areq->base.complete, areq->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (encrypt)
err = crypto_skcipher_encrypt(&rctx->fallback_req);
else
err = crypto_skcipher_decrypt(&rctx->fallback_req);
return err;
}
static int ablk_perform(struct skcipher_request *req, int encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
struct ix_sa_dir *dir;
struct crypt_ctl *crypt;
unsigned int nbytes = req->cryptlen;
enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
struct buffer_desc src_hook;
struct device *dev = &pdev->dev;
unsigned int offset;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
return ixp4xx_cipher_fallback(req, encrypt);
if (qmgr_stat_full(send_qid))
return -EAGAIN;
if (atomic_read(&ctx->configuring))
return -EAGAIN;
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
req_ctx->encrypt = encrypt;
crypt = get_crypt_desc();
if (!crypt)
return -ENOMEM;
crypt->data.ablk_req = req;
crypt->crypto_ctx = dir->npe_ctx_phys;
crypt->mode = dir->npe_mode;
crypt->init_len = dir->npe_ctx_idx;
crypt->crypt_offs = 0;
crypt->crypt_len = nbytes;
BUG_ON(ivsize && !req->iv);
memcpy(crypt->iv, req->iv, ivsize);
if (ivsize > 0 && !encrypt) {
offset = req->cryptlen - ivsize;
scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
}
if (req->src != req->dst) {
struct buffer_desc dst_hook;
crypt->mode |= NPE_OP_NOT_IN_PLACE;
/* This was never tested by Intel
* for more than one dst buffer, I think. */
req_ctx->dst = NULL;
if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
flags, DMA_FROM_DEVICE))
goto free_buf_dest;
src_direction = DMA_TO_DEVICE;
req_ctx->dst = dst_hook.next;
crypt->dst_buf = dst_hook.phys_next;
} else {
req_ctx->dst = NULL;
}
req_ctx->src = NULL;
if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
src_direction))
goto free_buf_src;
req_ctx->src = src_hook.next;
crypt->src_buf = src_hook.phys_next;
crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(send_qid));
return -EINPROGRESS;
free_buf_src:
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
free_buf_dest:
if (req->src != req->dst)
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
crypt->ctl_flags = CTL_FLAG_UNUSED;
return -ENOMEM;
}
static int ablk_encrypt(struct skcipher_request *req)
{
return ablk_perform(req, 1);
}
static int ablk_decrypt(struct skcipher_request *req)
{
return ablk_perform(req, 0);
}
static int ablk_rfc3686_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
u8 iv[CTR_RFC3686_BLOCK_SIZE];
u8 *info = req->iv;
int ret;
/* set up counter block */
memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
/* initialize counter portion of counter block */
*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
cpu_to_be32(1);
req->iv = iv;
ret = ablk_perform(req, 1);
req->iv = info;
return ret;
}
static int aead_perform(struct aead_request *req, int encrypt,
int cryptoffset, int eff_cryptlen, u8 *iv)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
unsigned int ivsize = crypto_aead_ivsize(tfm);
unsigned int authsize = crypto_aead_authsize(tfm);
struct ix_sa_dir *dir;
struct crypt_ctl *crypt;
unsigned int cryptlen;
struct buffer_desc *buf, src_hook;
struct aead_ctx *req_ctx = aead_request_ctx(req);
struct device *dev = &pdev->dev;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
unsigned int lastlen;
if (qmgr_stat_full(send_qid))
return -EAGAIN;
if (atomic_read(&ctx->configuring))
return -EAGAIN;
if (encrypt) {
dir = &ctx->encrypt;
cryptlen = req->cryptlen;
} else {
dir = &ctx->decrypt;
/* req->cryptlen includes the authsize when decrypting */
cryptlen = req->cryptlen - authsize;
eff_cryptlen -= authsize;
}
crypt = get_crypt_desc();
if (!crypt)
return -ENOMEM;
crypt->data.aead_req = req;
crypt->crypto_ctx = dir->npe_ctx_phys;
crypt->mode = dir->npe_mode;
crypt->init_len = dir->npe_ctx_idx;
crypt->crypt_offs = cryptoffset;
crypt->crypt_len = eff_cryptlen;
crypt->auth_offs = 0;
crypt->auth_len = req->assoclen + cryptlen;
BUG_ON(ivsize && !req->iv);
memcpy(crypt->iv, req->iv, ivsize);
buf = chainup_buffers(dev, req->src, crypt->auth_len,
&src_hook, flags, src_direction);
req_ctx->src = src_hook.next;
crypt->src_buf = src_hook.phys_next;
if (!buf)
goto free_buf_src;
lastlen = buf->buf_len;
if (lastlen >= authsize)
crypt->icv_rev_aes = buf->phys_addr +
buf->buf_len - authsize;
req_ctx->dst = NULL;
if (req->src != req->dst) {
struct buffer_desc dst_hook;
crypt->mode |= NPE_OP_NOT_IN_PLACE;
src_direction = DMA_TO_DEVICE;
buf = chainup_buffers(dev, req->dst, crypt->auth_len,
&dst_hook, flags, DMA_FROM_DEVICE);
req_ctx->dst = dst_hook.next;
crypt->dst_buf = dst_hook.phys_next;
if (!buf)
goto free_buf_dst;
if (encrypt) {
lastlen = buf->buf_len;
if (lastlen >= authsize)
crypt->icv_rev_aes = buf->phys_addr +
buf->buf_len - authsize;
}
}
if (unlikely(lastlen < authsize)) {
/* The 12 hmac bytes are scattered,
* we need to copy them into a safe buffer */
req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
&crypt->icv_rev_aes);
if (unlikely(!req_ctx->hmac_virt))
goto free_buf_dst;
if (!encrypt) {
scatterwalk_map_and_copy(req_ctx->hmac_virt,
req->src, cryptlen, authsize, 0);
}
req_ctx->encrypt = encrypt;
} else {
req_ctx->hmac_virt = NULL;
}
crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(send_qid));
return -EINPROGRESS;
free_buf_dst:
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
free_buf_src:
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
crypt->ctl_flags = CTL_FLAG_UNUSED;
return -ENOMEM;
}
static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
{
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
unsigned int digest_len = crypto_aead_maxauthsize(tfm);
int ret;
if (!ctx->enckey_len && !ctx->authkey_len)
return 0;
init_completion(&ctx->completion);
atomic_inc(&ctx->configuring);
reset_sa_dir(&ctx->encrypt);
reset_sa_dir(&ctx->decrypt);
ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
if (ret)
goto out;
ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
if (ret)
goto out;
ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
ctx->authkey_len, digest_len);
if (ret)
goto out;
ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
ctx->authkey_len, digest_len);
out:
if (!atomic_dec_and_test(&ctx->configuring))
wait_for_completion(&ctx->completion);
return ret;
}
static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
int max = crypto_aead_maxauthsize(tfm) >> 2;
if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
return -EINVAL;
return aead_setup(tfm, authsize);
}
static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_authenc_keys keys;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
if (keys.authkeylen > sizeof(ctx->authkey))
goto badkey;
if (keys.enckeylen > sizeof(ctx->enckey))
goto badkey;
memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
ctx->authkey_len = keys.authkeylen;
ctx->enckey_len = keys.enckeylen;
memzero_explicit(&keys, sizeof(keys));
return aead_setup(tfm, crypto_aead_authsize(tfm));
badkey:
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_authenc_keys keys;
int err;
err = crypto_authenc_extractkeys(&keys, key, keylen);
if (unlikely(err))
goto badkey;
err = -EINVAL;
if (keys.authkeylen > sizeof(ctx->authkey))
goto badkey;
err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
if (err)
goto badkey;
memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
ctx->authkey_len = keys.authkeylen;
ctx->enckey_len = keys.enckeylen;
memzero_explicit(&keys, sizeof(keys));
return aead_setup(tfm, crypto_aead_authsize(tfm));
badkey:
memzero_explicit(&keys, sizeof(keys));
return err;
}
static int aead_encrypt(struct aead_request *req)
{
return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
}
static int aead_decrypt(struct aead_request *req)
{
return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
}
static struct ixp_alg ixp4xx_algos[] = {
{
.crypto = {
.base.cra_name = "cbc(des)",
.base.cra_blocksize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.base.cra_name = "ecb(des)",
.base.cra_blocksize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
}, {
.crypto = {
.base.cra_name = "cbc(des3_ede)",
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = ablk_des3_setkey,
},
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.base.cra_name = "ecb(des3_ede)",
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = ablk_des3_setkey,
},
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
}, {
.crypto = {
.base.cra_name = "cbc(aes)",
.base.cra_blocksize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
}, {
.crypto = {
.base.cra_name = "ecb(aes)",
.base.cra_blocksize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
}, {
.crypto = {
.base.cra_name = "ctr(aes)",
.base.cra_blocksize = 1,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
}, {
.crypto = {
.base.cra_name = "rfc3686(ctr(aes))",
.base.cra_blocksize = 1,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_rfc3686_setkey,
.encrypt = ablk_rfc3686_crypt,
.decrypt = ablk_rfc3686_crypt,
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
} };
static struct ixp_aead_alg ixp4xx_aeads[] = {
{
.crypto = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_blocksize = DES_BLOCK_SIZE,
},
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.hash = &hash_alg_md5,
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
.setkey = des3_aead_setkey,
},
.hash = &hash_alg_md5,
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_blocksize = DES_BLOCK_SIZE,
},
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.hash = &hash_alg_sha1,
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = des3_aead_setkey,
},
.hash = &hash_alg_sha1,
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_blocksize = AES_BLOCK_SIZE,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.hash = &hash_alg_md5,
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
}, {
.crypto = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_blocksize = AES_BLOCK_SIZE,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.hash = &hash_alg_sha1,
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
} };
#define IXP_POSTFIX "-ixp4xx"
static int ixp_crypto_probe(struct platform_device *_pdev)
{
struct device *dev = &_pdev->dev;
int num = ARRAY_SIZE(ixp4xx_algos);
int i, err;
pdev = _pdev;
err = init_ixp_crypto(dev);
if (err)
return err;
for (i = 0; i < num; i++) {
struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"%s"IXP_POSTFIX, cra->base.cra_name) >=
CRYPTO_MAX_ALG_NAME)
continue;
if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
continue;
/* block ciphers */
cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_NEED_FALLBACK;
if (!cra->setkey)
cra->setkey = ablk_setkey;
if (!cra->encrypt)
cra->encrypt = ablk_encrypt;
if (!cra->decrypt)
cra->decrypt = ablk_decrypt;
cra->init = init_tfm_ablk;
cra->exit = exit_tfm_ablk;
cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
cra->base.cra_module = THIS_MODULE;
cra->base.cra_alignmask = 3;
cra->base.cra_priority = 300;
if (crypto_register_skcipher(cra))
dev_err(&pdev->dev, "Failed to register '%s'\n",
cra->base.cra_name);
else
ixp4xx_algos[i].registered = 1;
}
for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"%s"IXP_POSTFIX, cra->base.cra_name) >=
CRYPTO_MAX_ALG_NAME)
continue;
if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
continue;
/* authenc */
cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY;
cra->setkey = cra->setkey ?: aead_setkey;
cra->setauthsize = aead_setauthsize;
cra->encrypt = aead_encrypt;
cra->decrypt = aead_decrypt;
cra->init = init_tfm_aead;
cra->exit = exit_tfm_aead;
cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
cra->base.cra_module = THIS_MODULE;
cra->base.cra_alignmask = 3;
cra->base.cra_priority = 300;
if (crypto_register_aead(cra))
dev_err(&pdev->dev, "Failed to register '%s'\n",
cra->base.cra_driver_name);
else
ixp4xx_aeads[i].registered = 1;
}
return 0;
}
static int ixp_crypto_remove(struct platform_device *pdev)
{
int num = ARRAY_SIZE(ixp4xx_algos);
int i;
for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
if (ixp4xx_aeads[i].registered)
crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
}
for (i = 0; i < num; i++) {
if (ixp4xx_algos[i].registered)
crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
}
release_ixp_crypto(&pdev->dev);
return 0;
}
static const struct of_device_id ixp4xx_crypto_of_match[] = {
{
.compatible = "intel,ixp4xx-crypto",
},
{},
};
static struct platform_driver ixp_crypto_driver = {
.probe = ixp_crypto_probe,
.remove = ixp_crypto_remove,
.driver = {
.name = "ixp4xx_crypto",
.of_match_table = ixp4xx_crypto_of_match,
},
};
module_platform_driver(ixp_crypto_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
MODULE_DESCRIPTION("IXP4xx hardware crypto");