// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Bluetooth support for Intel PCIe devices
*
* Copyright (C) 2024 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "btintel.h"
#include "btintel_pcie.h"
#define VERSION "0.1"
#define BTINTEL_PCI_DEVICE(dev, subdev) \
.vendor = PCI_VENDOR_ID_INTEL, \
.device = (dev), \
.subvendor = PCI_ANY_ID, \
.subdevice = (subdev), \
.driver_data = 0
#define POLL_INTERVAL_US 10
/* Intel Bluetooth PCIe device id table */
static const struct pci_device_id btintel_pcie_table[] = {
{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
/* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
#define BTINTEL_PCIE_HCI_TYPE_LEN 4
#define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001
#define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002
#define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003
#define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004
#define BTINTEL_PCIE_HCI_ISO_PKT 0x00000005
static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
u16 queue_num)
{
bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u",
queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
ia->tr_hia[queue_num], ia->tr_tia[queue_num],
ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
}
static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
u16 index)
{
bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
}
static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset,
u32 bits, u32 mask, int timeout_us)
{
int t = 0;
u32 reg;
do {
reg = btintel_pcie_rd_reg32(data, offset);
if ((reg & mask) == (bits & mask))
return t;
udelay(POLL_INTERVAL_US);
t += POLL_INTERVAL_US;
} while (t < timeout_us);
return -ETIMEDOUT;
}
static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
{
u8 queue = entry->entry;
struct msix_entry *entries = entry - queue;
return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
}
/* Set the doorbell for TXQ to notify the device that @index (actually index-1)
* of the TFD is updated and ready to transmit.
*/
static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
{
u32 val;
val = index;
val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
}
/* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
* descriptor) with the data length and the DMA address of the data buffer.
*/
static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
struct sk_buff *skb)
{
struct data_buf *buf;
struct tfd *tfd;
tfd = &txq->tfds[tfd_index];
memset(tfd, 0, sizeof(*tfd));
buf = &txq->bufs[tfd_index];
tfd->size = skb->len;
tfd->addr = buf->data_p_addr;
/* Copy the outgoing data to DMA buffer */
memcpy(buf->data, skb->data, tfd->size);
}
static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
struct sk_buff *skb)
{
int ret;
u16 tfd_index;
struct txq *txq = &data->txq;
tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
if (tfd_index > txq->count)
return -ERANGE;
/* Prepare for TX. It updates the TFD with the length of data and
* address of the DMA buffer, and copy the data to the DMA buffer
*/
btintel_pcie_prepare_tx(txq, tfd_index, skb);
tfd_index = (tfd_index + 1) % txq->count;
data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
/* Arm wait event condition */
data->tx_wait_done = false;
/* Set the doorbell to notify the device */
btintel_pcie_set_tx_db(data, tfd_index);
/* Wait for the complete interrupt - URBD0 */
ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
if (!ret)
return -ETIME;
return 0;
}
/* Set the doorbell for RXQ to notify the device that @index (actually index-1)
* is available to receive the data
*/
static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
{
u32 val;
val = index;
val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
}
/* Update the FRBD (free buffer descriptor) with the @frbd_index and the
* DMA address of the free buffer.
*/
static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
{
struct data_buf *buf;
struct frbd *frbd;
/* Get the buffer of the FRBD for DMA */
buf = &rxq->bufs[frbd_index];
frbd = &rxq->frbds[frbd_index];
memset(frbd, 0, sizeof(*frbd));
/* Update FRBD */
frbd->tag = frbd_index;
frbd->addr = buf->data_p_addr;
}
static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
{
u16 frbd_index;
struct rxq *rxq = &data->rxq;
frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
if (frbd_index > rxq->count)
return -ERANGE;
/* Prepare for RX submit. It updates the FRBD with the address of DMA
* buffer
*/
btintel_pcie_prepare_rx(rxq, frbd_index);
frbd_index = (frbd_index + 1) % rxq->count;
data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
/* Set the doorbell to notify the device */
btintel_pcie_set_rx_db(data, frbd_index);
return 0;
}
static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
{
int i, ret;
for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
ret = btintel_pcie_submit_rx(data);
if (ret)
return ret;
}
return 0;
}
static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
{
memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
}
static void btintel_pcie_reset_bt(struct btintel_pcie_data *data)
{
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
}
/* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
* BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
* BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
* Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
* from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
*/
static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
{
int err;
data->gp0_received = false;
/* Update the DMA address of CI struct to CSR */
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
data->ci_p_addr & 0xffffffff);
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
(u64)data->ci_p_addr >> 32);
/* Reset the cached value of boot stage. it is updated by the MSI-X
* gp0 interrupt handler.
*/
data->boot_stage_cache = 0x0;
/* Set MAC_INIT bit to start primary bootloader */
btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
/* Wait until MAC_ACCESS is granted */
err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US);
if (err < 0)
return -ENODEV;
/* MAC is ready. Enable BT FUNC */
btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
/* wait for interrupt from the device after booting up to primary
* bootloader.
*/
err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT));
if (!err)
return -ETIME;
/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
return -ENODEV;
return 0;
}
/* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
* BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
*/
static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
{
u32 reg;
/* This interrupt is for three different causes and it is not easy to
* know what causes the interrupt. So, it compares each register value
* with cached value and update it before it wake up the queue.
*/
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
if (reg != data->boot_stage_cache)
data->boot_stage_cache = reg;
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
if (reg != data->img_resp_cache)
data->img_resp_cache = reg;
data->gp0_received = true;
/* If the boot stage is OP or IML, reset IA and start RX again */
if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW ||
data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) {
btintel_pcie_reset_ia(data);
btintel_pcie_start_rx(data);
}
wake_up(&data->gp0_wait_q);
}
/* This function handles the MSX-X interrupt for rx queue 0 which is for TX
*/
static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
{
u16 cr_tia, cr_hia;
struct txq *txq;
struct urbd0 *urbd0;
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
if (cr_tia == cr_hia)
return;
txq = &data->txq;
while (cr_tia != cr_hia) {
data->tx_wait_done = true;
wake_up(&data->tx_wait_q);
urbd0 = &txq->urbd0s[cr_tia];
if (urbd0->tfd_index > txq->count)
return;
cr_tia = (cr_tia + 1) % txq->count;
data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
}
}
/* Process the received rx data
* It check the frame header to identify the data type and create skb
* and calling HCI API
*/
static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
struct sk_buff *skb)
{
int ret;
u8 pkt_type;
u16 plen;
u32 pcie_pkt_type;
struct sk_buff *new_skb;
void *pdata;
struct hci_dev *hdev = data->hdev;
spin_lock(&data->hci_rx_lock);
/* The first 4 bytes indicates the Intel PCIe specific packet type */
pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
if (!pdata) {
bt_dev_err(hdev, "Corrupted packet received");
ret = -EILSEQ;
goto exit_error;
}
pcie_pkt_type = get_unaligned_le32(pdata);
switch (pcie_pkt_type) {
case BTINTEL_PCIE_HCI_ACL_PKT:
if (skb->len >= HCI_ACL_HDR_SIZE) {
plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
pkt_type = HCI_ACLDATA_PKT;
} else {
bt_dev_err(hdev, "ACL packet is too short");
ret = -EILSEQ;
goto exit_error;
}
break;
case BTINTEL_PCIE_HCI_SCO_PKT:
if (skb->len >= HCI_SCO_HDR_SIZE) {
plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
pkt_type = HCI_SCODATA_PKT;
} else {
bt_dev_err(hdev, "SCO packet is too short");
ret = -EILSEQ;
goto exit_error;
}
break;
case BTINTEL_PCIE_HCI_EVT_PKT:
if (skb->len >= HCI_EVENT_HDR_SIZE) {
plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
pkt_type = HCI_EVENT_PKT;
} else {
bt_dev_err(hdev, "Event packet is too short");
ret = -EILSEQ;
goto exit_error;
}
break;
case BTINTEL_PCIE_HCI_ISO_PKT:
if (skb->len >= HCI_ISO_HDR_SIZE) {
plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen);
pkt_type = HCI_ISODATA_PKT;
} else {
bt_dev_err(hdev, "ISO packet is too short");
ret = -EILSEQ;
goto exit_error;
}
break;
default:
bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
pcie_pkt_type);
ret = -EINVAL;
goto exit_error;
}
if (skb->len < plen) {
bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
pkt_type);
ret = -EILSEQ;
goto exit_error;
}
bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
new_skb = bt_skb_alloc(plen, GFP_ATOMIC);
if (!new_skb) {
bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u",
skb->len);
ret = -ENOMEM;
goto exit_error;
}
hci_skb_pkt_type(new_skb) = pkt_type;
skb_put_data(new_skb, skb->data, plen);
hdev->stat.byte_rx += plen;
if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
ret = btintel_recv_event(hdev, new_skb);
else
ret = hci_recv_frame(hdev, new_skb);
exit_error:
if (ret)
hdev->stat.err_rx++;
spin_unlock(&data->hci_rx_lock);
return ret;
}
static void btintel_pcie_rx_work(struct work_struct *work)
{
struct btintel_pcie_data *data = container_of(work,
struct btintel_pcie_data, rx_work);
struct sk_buff *skb;
int err;
struct hci_dev *hdev = data->hdev;
/* Process the sk_buf in queue and send to the HCI layer */
while ((skb = skb_dequeue(&data->rx_skb_q))) {
err = btintel_pcie_recv_frame(data, skb);
if (err)
bt_dev_err(hdev, "Failed to send received frame: %d",
err);
kfree_skb(skb);
}
}
/* create sk_buff with data and save it to queue and start RX work */
static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
void *buf)
{
int ret, len;
struct rfh_hdr *rfh_hdr;
struct sk_buff *skb;
rfh_hdr = buf;
len = rfh_hdr->packet_len;
if (len <= 0) {
ret = -EINVAL;
goto resubmit;
}
/* Remove RFH header */
buf += sizeof(*rfh_hdr);
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb) {
ret = -ENOMEM;
goto resubmit;
}
skb_put_data(skb, buf, len);
skb_queue_tail(&data->rx_skb_q, skb);
queue_work(data->workqueue, &data->rx_work);
resubmit:
ret = btintel_pcie_submit_rx(data);
return ret;
}
/* Handles the MSI-X interrupt for rx queue 1 which is for RX */
static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
{
u16 cr_hia, cr_tia;
struct rxq *rxq;
struct urbd1 *urbd1;
struct data_buf *buf;
int ret;
struct hci_dev *hdev = data->hdev;
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia);
/* Check CR_TIA and CR_HIA for change */
if (cr_tia == cr_hia) {
bt_dev_warn(hdev, "RXQ: no new CD found");
return;
}
rxq = &data->rxq;
/* The firmware sends multiple CD in a single MSI-X and it needs to
* process all received CDs in this interrupt.
*/
while (cr_tia != cr_hia) {
urbd1 = &rxq->urbd1s[cr_tia];
ipc_print_urbd1(data->hdev, urbd1, cr_tia);
buf = &rxq->bufs[urbd1->frbd_tag];
if (!buf) {
bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
urbd1->frbd_tag);
return;
}
ret = btintel_pcie_submit_rx_work(data, urbd1->status,
buf->data);
if (ret) {
bt_dev_err(hdev, "RXQ: failed to submit rx request");
return;
}
cr_tia = (cr_tia + 1) % rxq->count;
data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
}
}
static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
{
return IRQ_WAKE_THREAD;
}
static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
{
struct msix_entry *entry = dev_id;
struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
u32 intr_fh, intr_hw;
spin_lock(&data->irq_lock);
intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
/* Clear causes registers to avoid being handling the same cause */
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
spin_unlock(&data->irq_lock);
if (unlikely(!(intr_fh | intr_hw))) {
/* Ignore interrupt, inta == 0 */
return IRQ_NONE;
}
/* This interrupt is triggered by the firmware after updating
* boot_stage register and image_response register
*/
if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
btintel_pcie_msix_gp0_handler(data);
/* For TX */
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0)
btintel_pcie_msix_tx_handle(data);
/* For RX */
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1)
btintel_pcie_msix_rx_handle(data);
/*
* Before sending the interrupt the HW disables it to prevent a nested
* interrupt. This is done by writing 1 to the corresponding bit in
* the mask register. After handling the interrupt, it should be
* re-enabled by clearing this bit. This register is defined as write 1
* clear (W1C) register, meaning that it's cleared by writing 1
* to the bit.
*/
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
BIT(entry->entry));
return IRQ_HANDLED;
}
/* This function requests the irq for MSI-X and registers the handlers per irq.
* Currently, it requests only 1 irq for all interrupt causes.
*/
static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
{
int err;
int num_irqs, i;
for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
data->msix_entries[i].entry = i;
num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
if (num_irqs < 0)
return num_irqs;
data->alloc_vecs = num_irqs;
data->msix_enabled = 1;
data->def_irq = 0;
/* setup irq handler */
for (i = 0; i < data->alloc_vecs; i++) {
struct msix_entry *msix_entry;
msix_entry = &data->msix_entries[i];
msix_entry->vector = pci_irq_vector(data->pdev, i);
err = devm_request_threaded_irq(&data->pdev->dev,
msix_entry->vector,
btintel_pcie_msix_isr,
btintel_pcie_irq_msix_handler,
IRQF_SHARED,
KBUILD_MODNAME,
msix_entry);
if (err) {
pci_free_irq_vectors(data->pdev);
data->alloc_vecs = 0;
return err;
}
}
return 0;
}
struct btintel_pcie_causes_list {
u32 cause;
u32 mask_reg;
u8 cause_num;
};
static struct btintel_pcie_causes_list causes_list[] = {
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 },
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 },
{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 },
};
/* This function configures the interrupt masks for both HW_INT_CAUSES and
* FH_INT_CAUSES which are meaningful to us.
*
* After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
* need to call this function again to configure since the masks
* are reset to 0xFFFFFFFF after reset.
*/
static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
{
int i;
int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
/* Set Non Auto Clear Cause */
for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
btintel_pcie_wr_reg8(data,
BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
val);
btintel_pcie_clr_reg_bits(data,
causes_list[i].mask_reg,
causes_list[i].cause);
}
/* Save the initial interrupt mask */
data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
}
static int btintel_pcie_config_pcie(struct pci_dev *pdev,
struct btintel_pcie_data *data)
{
int err;
err = pcim_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err)
return err;
}
err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
if (err)
return err;
data->base_addr = pcim_iomap_table(pdev)[0];
if (!data->base_addr)
return -ENODEV;
err = btintel_pcie_setup_irq(data);
if (err)
return err;
/* Configure MSI-X with causes list */
btintel_pcie_config_msix(data);
return 0;
}
static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
struct ctx_info *ci)
{
ci->version = 0x1;
ci->size = sizeof(*ci);
ci->config = 0x0000;
ci->addr_cr_hia = data->ia.cr_hia_p_addr;
ci->addr_tr_tia = data->ia.tr_tia_p_addr;
ci->addr_cr_tia = data->ia.cr_tia_p_addr;
ci->addr_tr_hia = data->ia.tr_hia_p_addr;
ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
ci->addr_tfdq = data->txq.tfds_p_addr;
ci->num_tfdq = data->txq.count;
ci->num_urbdq0 = data->txq.count;
ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
ci->addr_frbdq = data->rxq.frbds_p_addr;
ci->num_frbdq = data->rxq.count;
ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
ci->num_urbdq1 = data->rxq.count;
ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
}
static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
struct txq *txq)
{
/* Free data buffers first */
dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
txq->buf_v_addr, txq->buf_p_addr);
kfree(txq->bufs);
}
static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
struct txq *txq)
{
int i;
struct data_buf *buf;
/* Allocate the same number of buffers as the descriptor */
txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
if (!txq->bufs)
return -ENOMEM;
/* Allocate full chunk of data buffer for DMA first and do indexing and
* initialization next, so it can be freed easily
*/
txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
txq->count * BTINTEL_PCIE_BUFFER_SIZE,
&txq->buf_p_addr,
GFP_KERNEL | __GFP_NOWARN);
if (!txq->buf_v_addr) {
kfree(txq->bufs);
return -ENOMEM;
}
/* Setup the allocated DMA buffer to bufs. Each data_buf should
* have virtual address and physical address
*/
for (i = 0; i < txq->count; i++) {
buf = &txq->bufs[i];
buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
}
return 0;
}
static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
struct rxq *rxq)
{
/* Free data buffers first */
dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
rxq->buf_v_addr, rxq->buf_p_addr);
kfree(rxq->bufs);
}
static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
struct rxq *rxq)
{
int i;
struct data_buf *buf;
/* Allocate the same number of buffers as the descriptor */
rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
if (!rxq->bufs)
return -ENOMEM;
/* Allocate full chunk of data buffer for DMA first and do indexing and
* initialization next, so it can be freed easily
*/
rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
&rxq->buf_p_addr,
GFP_KERNEL | __GFP_NOWARN);
if (!rxq->buf_v_addr) {
kfree(rxq->bufs);
return -ENOMEM;
}
/* Setup the allocated DMA buffer to bufs. Each data_buf should
* have virtual address and physical address
*/
for (i = 0; i < rxq->count; i++) {
buf = &rxq->bufs[i];
buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
}
return 0;
}
static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
dma_addr_t p_addr, void *v_addr,
struct ia *ia)
{
/* TR Head Index Array */
ia->tr_hia_p_addr = p_addr;
ia->tr_hia = v_addr;
/* TR Tail Index Array */
ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
/* CR Head index Array */
ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
/* CR Tail Index Array */
ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
}
static void btintel_pcie_free(struct btintel_pcie_data *data)
{
btintel_pcie_free_rxq_bufs(data, &data->rxq);
btintel_pcie_free_txq_bufs(data, &data->txq);
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
dma_pool_destroy(data->dma_pool);
}
/* Allocate tx and rx queues, any related data structures and buffers.
*/
static int btintel_pcie_alloc(struct btintel_pcie_data *data)
{
int err = 0;
size_t total;
dma_addr_t p_addr;
void *v_addr;
/* Allocate the chunk of DMA memory for descriptors, index array, and
* context information, instead of allocating individually.
* The DMA memory for data buffer is allocated while setting up the
* each queue.
*
* Total size is sum of the following
* + size of TFD * Number of descriptors in queue
* + size of URBD0 * Number of descriptors in queue
* + size of FRBD * Number of descriptors in queue
* + size of URBD1 * Number of descriptors in queue
* + size of index * Number of queues(2) * type of index array(4)
* + size of context information
*/
total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
/* Add the sum of size of index array and size of ci struct */
total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
/* Allocate DMA Pool */
data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
if (!data->dma_pool) {
err = -ENOMEM;
goto exit_error;
}
v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
&p_addr);
if (!v_addr) {
dma_pool_destroy(data->dma_pool);
err = -ENOMEM;
goto exit_error;
}
data->dma_p_addr = p_addr;
data->dma_v_addr = v_addr;
/* Setup descriptor count */
data->txq.count = BTINTEL_DESCS_COUNT;
data->rxq.count = BTINTEL_DESCS_COUNT;
/* Setup tfds */
data->txq.tfds_p_addr = p_addr;
data->txq.tfds = v_addr;
p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
/* Setup urbd0 */
data->txq.urbd0s_p_addr = p_addr;
data->txq.urbd0s = v_addr;
p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
/* Setup FRBD*/
data->rxq.frbds_p_addr = p_addr;
data->rxq.frbds = v_addr;
p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
/* Setup urbd1 */
data->rxq.urbd1s_p_addr = p_addr;
data->rxq.urbd1s = v_addr;
p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
/* Setup data buffers for txq */
err = btintel_pcie_setup_txq_bufs(data, &data->txq);
if (err)
goto exit_error_pool;
/* Setup data buffers for rxq */
err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
if (err)
goto exit_error_txq;
/* Setup Index Array */
btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
/* Setup Context Information */
p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
data->ci = v_addr;
data->ci_p_addr = p_addr;
/* Initialize the CI */
btintel_pcie_init_ci(data, data->ci);
return 0;
exit_error_txq:
btintel_pcie_free_txq_bufs(data, &data->txq);
exit_error_pool:
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
dma_pool_destroy(data->dma_pool);
exit_error:
return err;
}
static int btintel_pcie_open(struct hci_dev *hdev)
{
bt_dev_dbg(hdev, "");
return 0;
}
static int btintel_pcie_close(struct hci_dev *hdev)
{
bt_dev_dbg(hdev, "");
return 0;
}
static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
{
struct sk_buff *skb;
struct hci_event_hdr *hdr;
struct hci_ev_cmd_complete *evt;
skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
if (!skb)
return -ENOMEM;
hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
hdr->evt = HCI_EV_CMD_COMPLETE;
hdr->plen = sizeof(*evt) + 1;
evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
evt->ncmd = 0x01;
evt->opcode = cpu_to_le16(opcode);
*(u8 *)skb_put(skb, 1) = 0x00;
hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
return hci_recv_frame(hdev, skb);
}
static int btintel_pcie_send_frame(struct hci_dev *hdev,
struct sk_buff *skb)
{
struct btintel_pcie_data *data = hci_get_drvdata(hdev);
int ret;
u32 type;
/* Due to the fw limitation, the type header of the packet should be
* 4 bytes unlike 1 byte for UART. In UART, the firmware can read
* the first byte to get the packet type and redirect the rest of data
* packet to the right handler.
*
* But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
* from DMA memory and by the time it reads the first 4 bytes, it has
* already consumed some part of packet. Thus the packet type indicator
* for iBT PCIe is 4 bytes.
*
* Luckily, when HCI core creates the skb, it allocates 8 bytes of
* head room for profile and driver use, and before sending the data
* to the device, append the iBT PCIe packet type in the front.
*/
switch (hci_skb_pkt_type(skb)) {
case HCI_COMMAND_PKT:
type = BTINTEL_PCIE_HCI_CMD_PKT;
if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
struct hci_command_hdr *cmd = (void *)skb->data;
__u16 opcode = le16_to_cpu(cmd->opcode);
/* When the 0xfc01 command is issued to boot into
* the operational firmware, it will actually not
* send a command complete event. To keep the flow
* control working inject that event here.
*/
if (opcode == 0xfc01)
btintel_pcie_inject_cmd_complete(hdev, opcode);
}
hdev->stat.cmd_tx++;
break;
case HCI_ACLDATA_PKT:
type = BTINTEL_PCIE_HCI_ACL_PKT;
hdev->stat.acl_tx++;
break;
case HCI_SCODATA_PKT:
type = BTINTEL_PCIE_HCI_SCO_PKT;
hdev->stat.sco_tx++;
break;
case HCI_ISODATA_PKT:
type = BTINTEL_PCIE_HCI_ISO_PKT;
break;
default:
bt_dev_err(hdev, "Unknown HCI packet type");
return -EILSEQ;
}
memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type,
BTINTEL_PCIE_HCI_TYPE_LEN);
ret = btintel_pcie_send_sync(data, skb);
if (ret) {
hdev->stat.err_tx++;
bt_dev_err(hdev, "Failed to send frame (%d)", ret);
goto exit_error;
}
hdev->stat.byte_tx += skb->len;
kfree_skb(skb);
exit_error:
return ret;
}
static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
{
struct hci_dev *hdev;
hdev = data->hdev;
hci_unregister_dev(hdev);
hci_free_dev(hdev);
data->hdev = NULL;
}
static int btintel_pcie_setup(struct hci_dev *hdev)
{
const u8 param[1] = { 0xFF };
struct intel_version_tlv ver_tlv;
struct sk_buff *skb;
int err;
BT_DBG("%s", hdev->name);
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
/* Check the status */
if (skb->data[0]) {
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
skb->data[0]);
err = -EIO;
goto exit_error;
}
/* Apply the common HCI quirks for Intel device */
set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
/* Set up the quality report callback for Intel devices */
hdev->set_quality_report = btintel_set_quality_report;
memset(&ver_tlv, 0, sizeof(ver_tlv));
/* For TLV type device, parse the tlv data */
err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
if (err) {
bt_dev_err(hdev, "Failed to parse TLV version information");
goto exit_error;
}
switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
case 0x37:
break;
default:
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
err = -EINVAL;
goto exit_error;
}
/* Check for supported iBT hardware variants of this firmware
* loading method.
*
* This check has been put in place to ensure correct forward
* compatibility options when newer hardware variants come
* along.
*/
switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
case 0x1e: /* BzrI */
/* Display version information of TLV type */
btintel_version_info_tlv(hdev, &ver_tlv);
/* Apply the device specific HCI quirks for TLV based devices
*
* All TLV based devices support WBS
*/
set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
/* Setup MSFT Extension support */
btintel_set_msft_opcode(hdev,
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
if (err)
goto exit_error;
break;
default:
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
err = -EINVAL;
goto exit_error;
break;
}
btintel_print_fseq_info(hdev);
exit_error:
kfree_skb(skb);
return err;
}
static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
{
int err;
struct hci_dev *hdev;
hdev = hci_alloc_dev_priv(sizeof(struct btintel_data));
if (!hdev)
return -ENOMEM;
hdev->bus = HCI_PCI;
hci_set_drvdata(hdev, data);
data->hdev = hdev;
SET_HCIDEV_DEV(hdev, &data->pdev->dev);
hdev->manufacturer = 2;
hdev->open = btintel_pcie_open;
hdev->close = btintel_pcie_close;
hdev->send = btintel_pcie_send_frame;
hdev->setup = btintel_pcie_setup;
hdev->shutdown = btintel_shutdown_combined;
hdev->hw_error = btintel_hw_error;
hdev->set_diag = btintel_set_diag;
hdev->set_bdaddr = btintel_set_bdaddr;
err = hci_register_dev(hdev);
if (err < 0) {
BT_ERR("Failed to register to hdev (%d)", err);
goto exit_error;
}
return 0;
exit_error:
hci_free_dev(hdev);
return err;
}
static int btintel_pcie_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err;
struct btintel_pcie_data *data;
if (!pdev)
return -ENODEV;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->pdev = pdev;
spin_lock_init(&data->irq_lock);
spin_lock_init(&data->hci_rx_lock);
init_waitqueue_head(&data->gp0_wait_q);
data->gp0_received = false;
init_waitqueue_head(&data->tx_wait_q);
data->tx_wait_done = false;
data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
if (!data->workqueue)
return -ENOMEM;
skb_queue_head_init(&data->rx_skb_q);
INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
data->boot_stage_cache = 0x00;
data->img_resp_cache = 0x00;
err = btintel_pcie_config_pcie(pdev, data);
if (err)
goto exit_error;
pci_set_drvdata(pdev, data);
err = btintel_pcie_alloc(data);
if (err)
goto exit_error;
err = btintel_pcie_enable_bt(data);
if (err)
goto exit_error;
/* CNV information (CNVi and CNVr) is in CSR */
data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
err = btintel_pcie_start_rx(data);
if (err)
goto exit_error;
err = btintel_pcie_setup_hdev(data);
if (err)
goto exit_error;
bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
data->cnvr);
return 0;
exit_error:
/* reset device before exit */
btintel_pcie_reset_bt(data);
pci_clear_master(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void btintel_pcie_remove(struct pci_dev *pdev)
{
struct btintel_pcie_data *data;
data = pci_get_drvdata(pdev);
btintel_pcie_reset_bt(data);
for (int i = 0; i < data->alloc_vecs; i++) {
struct msix_entry *msix_entry;
msix_entry = &data->msix_entries[i];
free_irq(msix_entry->vector, msix_entry);
}
pci_free_irq_vectors(pdev);
btintel_pcie_release_hdev(data);
flush_work(&data->rx_work);
destroy_workqueue(data->workqueue);
btintel_pcie_free(data);
pci_clear_master(pdev);
pci_set_drvdata(pdev, NULL);
}
static struct pci_driver btintel_pcie_driver = {
.name = KBUILD_MODNAME,
.id_table = btintel_pcie_table,
.probe = btintel_pcie_probe,
.remove = btintel_pcie_remove,
};
module_pci_driver(btintel_pcie_driver);
MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");