// SPDX-License-Identifier: GPL-2.0-or-later
/*
* drivers/ata/sata_dwc_460ex.c
*
* Synopsys DesignWare Cores (DWC) SATA host driver
*
* Author: Mark Miesfeld <mmiesfeld@amcc.com>
*
* Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
* Copyright 2008 DENX Software Engineering
*
* Based on versions provided by AMCC and Synopsys which are:
* Copyright 2006 Applied Micro Circuits Corporation
* COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/libata.h>
#include <linux/slab.h>
#include <trace/events/libata.h>
#include "libata.h"
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
/* These two are defined in "libata.h" */
#undef DRV_NAME
#undef DRV_VERSION
#define DRV_NAME "sata-dwc"
#define DRV_VERSION "1.3"
#define sata_dwc_writel(a, v) writel_relaxed(v, a)
#define sata_dwc_readl(a) readl_relaxed(a)
#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length */
enum {
SATA_DWC_MAX_PORTS = 1,
SATA_DWC_SCR_OFFSET = 0x24,
SATA_DWC_REG_OFFSET = 0x64,
};
/* DWC SATA Registers */
struct sata_dwc_regs {
u32 fptagr; /* 1st party DMA tag */
u32 fpbor; /* 1st party DMA buffer offset */
u32 fptcr; /* 1st party DMA Xfr count */
u32 dmacr; /* DMA Control */
u32 dbtsr; /* DMA Burst Transac size */
u32 intpr; /* Interrupt Pending */
u32 intmr; /* Interrupt Mask */
u32 errmr; /* Error Mask */
u32 llcr; /* Link Layer Control */
u32 phycr; /* PHY Control */
u32 physr; /* PHY Status */
u32 rxbistpd; /* Recvd BIST pattern def register */
u32 rxbistpd1; /* Recvd BIST data dword1 */
u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
u32 txbistpd; /* Trans BIST pattern def register */
u32 txbistpd1; /* Trans BIST data dword1 */
u32 txbistpd2; /* Trans BIST data dword2 */
u32 bistcr; /* BIST Control Register */
u32 bistfctr; /* BIST FIS Count Register */
u32 bistsr; /* BIST Status Register */
u32 bistdecr; /* BIST Dword Error count register */
u32 res[15]; /* Reserved locations */
u32 testr; /* Test Register */
u32 versionr; /* Version Register */
u32 idr; /* ID Register */
u32 unimpl[192]; /* Unimplemented */
u32 dmadr[256]; /* FIFO Locations in DMA Mode */
};
enum {
SCR_SCONTROL_DET_ENABLE = 0x00000001,
SCR_SSTATUS_DET_PRESENT = 0x00000001,
SCR_SERROR_DIAG_X = 0x04000000,
/* DWC SATA Register Operations */
SATA_DWC_TXFIFO_DEPTH = 0x01FF,
SATA_DWC_RXFIFO_DEPTH = 0x01FF,
SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
SATA_DWC_INTPR_DMAT = 0x00000001,
SATA_DWC_INTPR_NEWFP = 0x00000002,
SATA_DWC_INTPR_PMABRT = 0x00000004,
SATA_DWC_INTPR_ERR = 0x00000008,
SATA_DWC_INTPR_NEWBIST = 0x00000010,
SATA_DWC_INTPR_IPF = 0x10000000,
SATA_DWC_INTMR_DMATM = 0x00000001,
SATA_DWC_INTMR_NEWFPM = 0x00000002,
SATA_DWC_INTMR_PMABRTM = 0x00000004,
SATA_DWC_INTMR_ERRM = 0x00000008,
SATA_DWC_INTMR_NEWBISTM = 0x00000010,
SATA_DWC_LLCR_SCRAMEN = 0x00000001,
SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
SATA_DWC_LLCR_RPDEN = 0x00000004,
/* This is all error bits, zero's are reserved fields. */
SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
};
#define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
#define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
#define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
<< 16)
struct sata_dwc_device {
struct device *dev; /* generic device struct */
struct ata_probe_ent *pe; /* ptr to probe-ent */
struct ata_host *host;
struct sata_dwc_regs __iomem *sata_dwc_regs; /* DW SATA specific */
u32 sactive_issued;
u32 sactive_queued;
struct phy *phy;
phys_addr_t dmadr;
#ifdef CONFIG_SATA_DWC_OLD_DMA
struct dw_dma_chip *dma;
#endif
};
/*
* Allow one extra special slot for commands and DMA management
* to account for libata internal commands.
*/
#define SATA_DWC_QCMD_MAX (ATA_MAX_QUEUE + 1)
struct sata_dwc_device_port {
struct sata_dwc_device *hsdev;
int cmd_issued[SATA_DWC_QCMD_MAX];
int dma_pending[SATA_DWC_QCMD_MAX];
/* DMA info */
struct dma_chan *chan;
struct dma_async_tx_descriptor *desc[SATA_DWC_QCMD_MAX];
u32 dma_interrupt_count;
};
/*
* Commonly used DWC SATA driver macros
*/
#define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)(host)->private_data)
#define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)(ap)->host->private_data)
#define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)(ap)->private_data)
#define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)(qc)->ap->host->private_data)
#define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)(p)->hsdev)
enum {
SATA_DWC_CMD_ISSUED_NOT = 0,
SATA_DWC_CMD_ISSUED_PEND = 1,
SATA_DWC_CMD_ISSUED_EXEC = 2,
SATA_DWC_CMD_ISSUED_NODATA = 3,
SATA_DWC_DMA_PENDING_NONE = 0,
SATA_DWC_DMA_PENDING_TX = 1,
SATA_DWC_DMA_PENDING_RX = 2,
};
/*
* Prototypes
*/
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc);
static void sata_dwc_dma_xfer_complete(struct ata_port *ap);
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
#ifdef CONFIG_SATA_DWC_OLD_DMA
#include <linux/platform_data/dma-dw.h>
#include <linux/dma/dw.h>
static struct dw_dma_slave sata_dwc_dma_dws = {
.src_id = 0,
.dst_id = 0,
.m_master = 1,
.p_master = 0,
};
static bool sata_dwc_dma_filter(struct dma_chan *chan, void *param)
{
struct dw_dma_slave *dws = &sata_dwc_dma_dws;
if (dws->dma_dev != chan->device->dev)
return false;
chan->private = dws;
return true;
}
static int sata_dwc_dma_get_channel_old(struct sata_dwc_device_port *hsdevp)
{
struct sata_dwc_device *hsdev = hsdevp->hsdev;
struct dw_dma_slave *dws = &sata_dwc_dma_dws;
struct device *dev = hsdev->dev;
dma_cap_mask_t mask;
dws->dma_dev = dev;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* Acquire DMA channel */
hsdevp->chan = dma_request_channel(mask, sata_dwc_dma_filter, hsdevp);
if (!hsdevp->chan) {
dev_err(dev, "%s: dma channel unavailable\n", __func__);
return -EAGAIN;
}
return 0;
}
static int sata_dwc_dma_init_old(struct platform_device *pdev,
struct sata_dwc_device *hsdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
hsdev->dma = devm_kzalloc(dev, sizeof(*hsdev->dma), GFP_KERNEL);
if (!hsdev->dma)
return -ENOMEM;
hsdev->dma->dev = dev;
hsdev->dma->id = pdev->id;
/* Get SATA DMA interrupt number */
hsdev->dma->irq = irq_of_parse_and_map(np, 1);
if (!hsdev->dma->irq) {
dev_err(dev, "no SATA DMA irq\n");
return -ENODEV;
}
/* Get physical SATA DMA register base address */
hsdev->dma->regs = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(hsdev->dma->regs))
return PTR_ERR(hsdev->dma->regs);
/* Initialize AHB DMAC */
return dw_dma_probe(hsdev->dma);
}
static void sata_dwc_dma_exit_old(struct sata_dwc_device *hsdev)
{
if (!hsdev->dma)
return;
dw_dma_remove(hsdev->dma);
}
#endif
static const char *get_prot_descript(u8 protocol)
{
switch (protocol) {
case ATA_PROT_NODATA:
return "ATA no data";
case ATA_PROT_PIO:
return "ATA PIO";
case ATA_PROT_DMA:
return "ATA DMA";
case ATA_PROT_NCQ:
return "ATA NCQ";
case ATA_PROT_NCQ_NODATA:
return "ATA NCQ no data";
case ATAPI_PROT_NODATA:
return "ATAPI no data";
case ATAPI_PROT_PIO:
return "ATAPI PIO";
case ATAPI_PROT_DMA:
return "ATAPI DMA";
default:
return "unknown";
}
}
static void dma_dwc_xfer_done(void *hsdev_instance)
{
unsigned long flags;
struct sata_dwc_device *hsdev = hsdev_instance;
struct ata_host *host = (struct ata_host *)hsdev->host;
struct ata_port *ap;
struct sata_dwc_device_port *hsdevp;
u8 tag = 0;
unsigned int port = 0;
spin_lock_irqsave(&host->lock, flags);
ap = host->ports[port];
hsdevp = HSDEVP_FROM_AP(ap);
tag = ap->link.active_tag;
/*
* Each DMA command produces 2 interrupts. Only
* complete the command after both interrupts have been
* seen. (See sata_dwc_isr())
*/
hsdevp->dma_interrupt_count++;
sata_dwc_clear_dmacr(hsdevp, tag);
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev, "DMA not pending tag=0x%02x pending=%d\n",
tag, hsdevp->dma_pending[tag]);
}
if ((hsdevp->dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap);
spin_unlock_irqrestore(&host->lock, flags);
}
static struct dma_async_tx_descriptor *dma_dwc_xfer_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
struct dma_slave_config sconf;
struct dma_async_tx_descriptor *desc;
if (qc->dma_dir == DMA_DEV_TO_MEM) {
sconf.src_addr = hsdev->dmadr;
sconf.device_fc = false;
} else { /* DMA_MEM_TO_DEV */
sconf.dst_addr = hsdev->dmadr;
sconf.device_fc = false;
}
sconf.direction = qc->dma_dir;
sconf.src_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */
sconf.dst_maxburst = AHB_DMA_BRST_DFLT / 4; /* in items */
sconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
sconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dmaengine_slave_config(hsdevp->chan, &sconf);
/* Convert SG list to linked list of items (LLIs) for AHB DMA */
desc = dmaengine_prep_slave_sg(hsdevp->chan, qc->sg, qc->n_elem,
qc->dma_dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc)
return NULL;
desc->callback = dma_dwc_xfer_done;
desc->callback_param = hsdev;
dev_dbg(hsdev->dev, "%s sg: 0x%p, count: %d addr: %pa\n", __func__,
qc->sg, qc->n_elem, &hsdev->dmadr);
return desc;
}
static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
{
if (scr > SCR_NOTIFICATION) {
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
__func__, scr);
return -EINVAL;
}
*val = sata_dwc_readl(link->ap->ioaddr.scr_addr + (scr * 4));
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__,
link->ap->print_id, scr, *val);
return 0;
}
static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
{
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=0x%08x\n", __func__,
link->ap->print_id, scr, val);
if (scr > SCR_NOTIFICATION) {
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
__func__, scr);
return -EINVAL;
}
sata_dwc_writel(link->ap->ioaddr.scr_addr + (scr * 4), val);
return 0;
}
static void clear_serror(struct ata_port *ap)
{
u32 val;
sata_dwc_scr_read(&ap->link, SCR_ERROR, &val);
sata_dwc_scr_write(&ap->link, SCR_ERROR, val);
}
static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
{
sata_dwc_writel(&hsdev->sata_dwc_regs->intpr,
sata_dwc_readl(&hsdev->sata_dwc_regs->intpr));
}
static u32 qcmd_tag_to_mask(u8 tag)
{
return 0x00000001 << (tag & 0x1f);
}
/* See ahci.c */
static void sata_dwc_error_intr(struct ata_port *ap,
struct sata_dwc_device *hsdev, uint intpr)
{
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct ata_eh_info *ehi = &ap->link.eh_info;
unsigned int err_mask = 0, action = 0;
struct ata_queued_cmd *qc;
u32 serror;
u8 status, tag;
ata_ehi_clear_desc(ehi);
sata_dwc_scr_read(&ap->link, SCR_ERROR, &serror);
status = ap->ops->sff_check_status(ap);
tag = ap->link.active_tag;
dev_err(ap->dev,
"%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x dma_intp=%d pending=%d issued=%d",
__func__, serror, intpr, status, hsdevp->dma_interrupt_count,
hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag]);
/* Clear error register and interrupt bit */
clear_serror(ap);
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
/* This is the only error happening now. TODO check for exact error */
err_mask |= AC_ERR_HOST_BUS;
action |= ATA_EH_RESET;
/* Pass this on to EH */
ehi->serror |= serror;
ehi->action |= action;
qc = ata_qc_from_tag(ap, tag);
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
ata_port_abort(ap);
}
/*
* Function : sata_dwc_isr
* arguments : irq, void *dev_instance, struct pt_regs *regs
* Return value : irqreturn_t - status of IRQ
* This Interrupt handler called via port ops registered function.
* .irq_handler = sata_dwc_isr
*/
static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
{
struct ata_host *host = (struct ata_host *)dev_instance;
struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
struct ata_port *ap;
struct ata_queued_cmd *qc;
unsigned long flags;
u8 status, tag;
int handled, port = 0;
uint intpr, sactive, sactive2, tag_mask;
struct sata_dwc_device_port *hsdevp;
hsdev->sactive_issued = 0;
spin_lock_irqsave(&host->lock, flags);
/* Read the interrupt register */
intpr = sata_dwc_readl(&hsdev->sata_dwc_regs->intpr);
ap = host->ports[port];
hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
ap->link.active_tag);
/* Check for error interrupt */
if (intpr & SATA_DWC_INTPR_ERR) {
sata_dwc_error_intr(ap, hsdev, intpr);
handled = 1;
goto DONE;
}
/* Check for DMA SETUP FIS (FP DMA) interrupt */
if (intpr & SATA_DWC_INTPR_NEWFP) {
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
tag = (u8)(sata_dwc_readl(&hsdev->sata_dwc_regs->fptagr));
dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
hsdev->sactive_issued |= qcmd_tag_to_mask(tag);
qc = ata_qc_from_tag(ap, tag);
if (unlikely(!qc)) {
dev_err(ap->dev, "failed to get qc");
handled = 1;
goto DONE;
}
/*
* Start FP DMA for NCQ command. At this point the tag is the
* active tag. It is the tag that matches the command about to
* be completed.
*/
trace_ata_bmdma_start(ap, &qc->tf, tag);
qc->ap->link.active_tag = tag;
sata_dwc_bmdma_start_by_tag(qc, tag);
handled = 1;
goto DONE;
}
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
tag_mask = (hsdev->sactive_issued | sactive) ^ sactive;
/* If no sactive issued and tag_mask is zero then this is not NCQ */
if (hsdev->sactive_issued == 0 && tag_mask == 0) {
if (ap->link.active_tag == ATA_TAG_POISON)
tag = 0;
else
tag = ap->link.active_tag;
qc = ata_qc_from_tag(ap, tag);
/* DEV interrupt w/ no active qc? */
if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
dev_err(ap->dev,
"%s interrupt with no active qc qc=%p\n",
__func__, qc);
ap->ops->sff_check_status(ap);
handled = 1;
goto DONE;
}
status = ap->ops->sff_check_status(ap);
qc->ap->link.active_tag = tag;
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
if (status & ATA_ERR) {
dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
sata_dwc_qc_complete(ap, qc);
handled = 1;
goto DONE;
}
dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
__func__, get_prot_descript(qc->tf.protocol));
DRVSTILLBUSY:
if (ata_is_dma(qc->tf.protocol)) {
/*
* Each DMA transaction produces 2 interrupts. The DMAC
* transfer complete interrupt and the SATA controller
* operation done interrupt. The command should be
* completed only after both interrupts are seen.
*/
hsdevp->dma_interrupt_count++;
if (hsdevp->dma_pending[tag] == \
SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev,
"%s: DMA not pending intpr=0x%08x status=0x%08x pending=%d\n",
__func__, intpr, status,
hsdevp->dma_pending[tag]);
}
if ((hsdevp->dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap);
} else if (ata_is_pio(qc->tf.protocol)) {
ata_sff_hsm_move(ap, qc, status, 0);
handled = 1;
goto DONE;
} else {
if (unlikely(sata_dwc_qc_complete(ap, qc)))
goto DRVSTILLBUSY;
}
handled = 1;
goto DONE;
}
/*
* This is a NCQ command. At this point we need to figure out for which
* tags we have gotten a completion interrupt. One interrupt may serve
* as completion for more than one operation when commands are queued
* (NCQ). We need to process each completed command.
*/
/* process completed commands */
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
tag_mask = (hsdev->sactive_issued | sactive) ^ sactive;
if (sactive != 0 || hsdev->sactive_issued > 1 || tag_mask > 1) {
dev_dbg(ap->dev,
"%s NCQ:sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n",
__func__, sactive, hsdev->sactive_issued, tag_mask);
}
if ((tag_mask | hsdev->sactive_issued) != hsdev->sactive_issued) {
dev_warn(ap->dev,
"Bad tag mask? sactive=0x%08x sactive_issued=0x%08x tag_mask=0x%08x\n",
sactive, hsdev->sactive_issued, tag_mask);
}
/* read just to clear ... not bad if currently still busy */
status = ap->ops->sff_check_status(ap);
dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
tag = 0;
while (tag_mask) {
while (!(tag_mask & 0x00000001)) {
tag++;
tag_mask <<= 1;
}
tag_mask &= (~0x00000001);
qc = ata_qc_from_tag(ap, tag);
if (unlikely(!qc)) {
dev_err(ap->dev, "failed to get qc");
handled = 1;
goto DONE;
}
/* To be picked up by completion functions */
qc->ap->link.active_tag = tag;
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
/* Let libata/scsi layers handle error */
if (status & ATA_ERR) {
dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
status);
sata_dwc_qc_complete(ap, qc);
handled = 1;
goto DONE;
}
/* Process completed command */
dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
get_prot_descript(qc->tf.protocol));
if (ata_is_dma(qc->tf.protocol)) {
hsdevp->dma_interrupt_count++;
if (hsdevp->dma_pending[tag] == \
SATA_DWC_DMA_PENDING_NONE)
dev_warn(ap->dev, "%s: DMA not pending?\n",
__func__);
if ((hsdevp->dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap);
} else {
if (unlikely(sata_dwc_qc_complete(ap, qc)))
goto STILLBUSY;
}
continue;
STILLBUSY:
ap->stats.idle_irq++;
dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
ap->print_id);
} /* while tag_mask */
/*
* Check to see if any commands completed while we were processing our
* initial set of completed commands (read status clears interrupts,
* so we might miss a completed command interrupt if one came in while
* we were processing --we read status as part of processing a completed
* command).
*/
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive2);
if (sactive2 != sactive) {
dev_dbg(ap->dev,
"More completed - sactive=0x%x sactive2=0x%x\n",
sactive, sactive2);
}
handled = 1;
DONE:
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
{
struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
u32 dmacr = sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr);
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
dmacr = SATA_DWC_DMACR_RX_CLEAR(dmacr);
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr);
} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
dmacr = SATA_DWC_DMACR_TX_CLEAR(dmacr);
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr, dmacr);
} else {
/*
* This should not happen, it indicates the driver is out of
* sync. If it does happen, clear dmacr anyway.
*/
dev_err(hsdev->dev,
"%s DMA protocol RX and TX DMA not pending tag=0x%02x pending=%d dmacr: 0x%08x\n",
__func__, tag, hsdevp->dma_pending[tag], dmacr);
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXRXCH_CLEAR);
}
}
static void sata_dwc_dma_xfer_complete(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
u8 tag = 0;
tag = ap->link.active_tag;
qc = ata_qc_from_tag(ap, tag);
if (!qc) {
dev_err(ap->dev, "failed to get qc");
return;
}
if (ata_is_dma(qc->tf.protocol)) {
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev,
"%s DMA protocol RX and TX DMA not pending dmacr: 0x%08x\n",
__func__,
sata_dwc_readl(&hsdev->sata_dwc_regs->dmacr));
}
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
sata_dwc_qc_complete(ap, qc);
ap->link.active_tag = ATA_TAG_POISON;
} else {
sata_dwc_qc_complete(ap, qc);
}
}
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc)
{
u8 status = 0;
u32 mask = 0x0;
u8 tag = qc->hw_tag;
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
hsdev->sactive_queued = 0;
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
dev_err(ap->dev, "TX DMA PENDING\n");
else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
dev_err(ap->dev, "RX DMA PENDING\n");
dev_dbg(ap->dev,
"QC complete cmd=0x%02x status=0x%02x ata%u: protocol=%d\n",
qc->tf.command, status, ap->print_id, qc->tf.protocol);
/* clear active bit */
mask = (~(qcmd_tag_to_mask(tag)));
hsdev->sactive_queued = hsdev->sactive_queued & mask;
hsdev->sactive_issued = hsdev->sactive_issued & mask;
ata_qc_complete(qc);
return 0;
}
static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
{
/* Enable selective interrupts by setting the interrupt maskregister*/
sata_dwc_writel(&hsdev->sata_dwc_regs->intmr,
SATA_DWC_INTMR_ERRM |
SATA_DWC_INTMR_NEWFPM |
SATA_DWC_INTMR_PMABRTM |
SATA_DWC_INTMR_DMATM);
/*
* Unmask the error bits that should trigger an error interrupt by
* setting the error mask register.
*/
sata_dwc_writel(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
dev_dbg(hsdev->dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
__func__, sata_dwc_readl(&hsdev->sata_dwc_regs->intmr),
sata_dwc_readl(&hsdev->sata_dwc_regs->errmr));
}
static void sata_dwc_setup_port(struct ata_ioports *port, void __iomem *base)
{
port->cmd_addr = base + 0x00;
port->data_addr = base + 0x00;
port->error_addr = base + 0x04;
port->feature_addr = base + 0x04;
port->nsect_addr = base + 0x08;
port->lbal_addr = base + 0x0c;
port->lbam_addr = base + 0x10;
port->lbah_addr = base + 0x14;
port->device_addr = base + 0x18;
port->command_addr = base + 0x1c;
port->status_addr = base + 0x1c;
port->altstatus_addr = base + 0x20;
port->ctl_addr = base + 0x20;
}
static int sata_dwc_dma_get_channel(struct sata_dwc_device_port *hsdevp)
{
struct sata_dwc_device *hsdev = hsdevp->hsdev;
struct device *dev = hsdev->dev;
#ifdef CONFIG_SATA_DWC_OLD_DMA
if (!of_property_present(dev->of_node, "dmas"))
return sata_dwc_dma_get_channel_old(hsdevp);
#endif
hsdevp->chan = dma_request_chan(dev, "sata-dma");
if (IS_ERR(hsdevp->chan)) {
dev_err(dev, "failed to allocate dma channel: %ld\n",
PTR_ERR(hsdevp->chan));
return PTR_ERR(hsdevp->chan);
}
return 0;
}
/*
* Function : sata_dwc_port_start
* arguments : struct ata_ioports *port
* Return value : returns 0 if success, error code otherwise
* This function allocates the scatter gather LLI table for AHB DMA
*/
static int sata_dwc_port_start(struct ata_port *ap)
{
int err = 0;
struct sata_dwc_device *hsdev;
struct sata_dwc_device_port *hsdevp = NULL;
struct device *pdev;
int i;
hsdev = HSDEV_FROM_AP(ap);
dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
hsdev->host = ap->host;
pdev = ap->host->dev;
if (!pdev) {
dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
err = -ENODEV;
goto CLEANUP;
}
/* Allocate Port Struct */
hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
if (!hsdevp) {
err = -ENOMEM;
goto CLEANUP;
}
hsdevp->hsdev = hsdev;
err = sata_dwc_dma_get_channel(hsdevp);
if (err)
goto CLEANUP_ALLOC;
err = phy_power_on(hsdev->phy);
if (err)
goto CLEANUP_ALLOC;
for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
ap->bmdma_prd = NULL; /* set these so libata doesn't use them */
ap->bmdma_prd_dma = 0;
if (ap->port_no == 0) {
dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
__func__);
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXRXCH_CLEAR);
dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
__func__);
sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr,
(SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
}
/* Clear any error bits before libata starts issuing commands */
clear_serror(ap);
ap->private_data = hsdevp;
dev_dbg(ap->dev, "%s: done\n", __func__);
return 0;
CLEANUP_ALLOC:
kfree(hsdevp);
CLEANUP:
dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
return err;
}
static void sata_dwc_port_stop(struct ata_port *ap)
{
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
dmaengine_terminate_sync(hsdevp->chan);
dma_release_channel(hsdevp->chan);
phy_power_off(hsdev->phy);
kfree(hsdevp);
ap->private_data = NULL;
}
/*
* Function : sata_dwc_exec_command_by_tag
* arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
* Return value : None
* This function keeps track of individual command tag ids and calls
* ata_exec_command in libata
*/
static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
struct ata_taskfile *tf,
u8 tag, u32 cmd_issued)
{
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
hsdevp->cmd_issued[tag] = cmd_issued;
/*
* Clear SError before executing a new command.
* sata_dwc_scr_write and read can not be used here. Clearing the PM
* managed SError register for the disk needs to be done before the
* task file is loaded.
*/
clear_serror(ap);
ata_sff_exec_command(ap, tf);
}
static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
SATA_DWC_CMD_ISSUED_PEND);
}
static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
{
u8 tag = qc->hw_tag;
if (!ata_is_ncq(qc->tf.protocol))
tag = 0;
sata_dwc_bmdma_setup_by_tag(qc, tag);
}
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
int start_dma;
u32 reg;
struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
struct ata_port *ap = qc->ap;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct dma_async_tx_descriptor *desc = hsdevp->desc[tag];
int dir = qc->dma_dir;
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
start_dma = 1;
if (dir == DMA_TO_DEVICE)
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
else
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
} else {
dev_err(ap->dev,
"%s: Command not pending cmd_issued=%d (tag=%d) DMA NOT started\n",
__func__, hsdevp->cmd_issued[tag], tag);
start_dma = 0;
}
if (start_dma) {
sata_dwc_scr_read(&ap->link, SCR_ERROR, ®);
if (reg & SATA_DWC_SERROR_ERR_BITS) {
dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
__func__, reg);
}
if (dir == DMA_TO_DEVICE)
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXCHEN);
else
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_RXCHEN);
/* Enable AHB DMA transfer on the specified channel */
dmaengine_submit(desc);
dma_async_issue_pending(hsdevp->chan);
}
}
static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
{
u8 tag = qc->hw_tag;
if (!ata_is_ncq(qc->tf.protocol))
tag = 0;
sata_dwc_bmdma_start_by_tag(qc, tag);
}
static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
{
u32 sactive;
u8 tag = qc->hw_tag;
struct ata_port *ap = qc->ap;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
if (!ata_is_ncq(qc->tf.protocol))
tag = 0;
if (ata_is_dma(qc->tf.protocol)) {
hsdevp->desc[tag] = dma_dwc_xfer_setup(qc);
if (!hsdevp->desc[tag])
return AC_ERR_SYSTEM;
} else {
hsdevp->desc[tag] = NULL;
}
if (ata_is_ncq(qc->tf.protocol)) {
sata_dwc_scr_read(&ap->link, SCR_ACTIVE, &sactive);
sactive |= (0x00000001 << tag);
sata_dwc_scr_write(&ap->link, SCR_ACTIVE, sactive);
trace_ata_tf_load(ap, &qc->tf);
ap->ops->sff_tf_load(ap, &qc->tf);
trace_ata_exec_command(ap, &qc->tf, tag);
sata_dwc_exec_command_by_tag(ap, &qc->tf, tag,
SATA_DWC_CMD_ISSUED_PEND);
} else {
return ata_bmdma_qc_issue(qc);
}
return 0;
}
static void sata_dwc_error_handler(struct ata_port *ap)
{
ata_sff_error_handler(ap);
}
static int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
int ret;
ret = sata_sff_hardreset(link, class, deadline);
sata_dwc_enable_interrupts(hsdev);
/* Reconfigure the DMA control register */
sata_dwc_writel(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXRXCH_CLEAR);
/* Reconfigure the DMA Burst Transaction Size register */
sata_dwc_writel(&hsdev->sata_dwc_regs->dbtsr,
SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
return ret;
}
static void sata_dwc_dev_select(struct ata_port *ap, unsigned int device)
{
/* SATA DWC is master only */
}
/*
* scsi mid-layer and libata interface structures
*/
static const struct scsi_host_template sata_dwc_sht = {
ATA_NCQ_SHT(DRV_NAME),
/*
* test-only: Currently this driver doesn't handle NCQ
* correctly. We enable NCQ but set the queue depth to a
* max of 1. This will get fixed in in a future release.
*/
.sg_tablesize = LIBATA_MAX_PRD,
/* .can_queue = ATA_MAX_QUEUE, */
/*
* Make sure a LLI block is not created that will span 8K max FIS
* boundary. If the block spans such a FIS boundary, there is a chance
* that a DMA burst will cross that boundary -- this results in an
* error in the host controller.
*/
.dma_boundary = 0x1fff /* ATA_DMA_BOUNDARY */,
};
static struct ata_port_operations sata_dwc_ops = {
.inherits = &ata_sff_port_ops,
.error_handler = sata_dwc_error_handler,
.hardreset = sata_dwc_hardreset,
.qc_issue = sata_dwc_qc_issue,
.scr_read = sata_dwc_scr_read,
.scr_write = sata_dwc_scr_write,
.port_start = sata_dwc_port_start,
.port_stop = sata_dwc_port_stop,
.sff_dev_select = sata_dwc_dev_select,
.bmdma_setup = sata_dwc_bmdma_setup,
.bmdma_start = sata_dwc_bmdma_start,
};
static const struct ata_port_info sata_dwc_port_info[] = {
{
.flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &sata_dwc_ops,
},
};
static int sata_dwc_probe(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct device_node *np = dev->of_node;
struct sata_dwc_device *hsdev;
u32 idr, versionr;
char *ver = (char *)&versionr;
void __iomem *base;
int err = 0;
int irq;
struct ata_host *host;
struct ata_port_info pi = sata_dwc_port_info[0];
const struct ata_port_info *ppi[] = { &pi, NULL };
struct resource *res;
/* Allocate DWC SATA device */
host = ata_host_alloc_pinfo(dev, ppi, SATA_DWC_MAX_PORTS);
hsdev = devm_kzalloc(dev, sizeof(*hsdev), GFP_KERNEL);
if (!host || !hsdev)
return -ENOMEM;
host->private_data = hsdev;
/* Ioremap SATA registers */
base = devm_platform_get_and_ioremap_resource(ofdev, 0, &res);
if (IS_ERR(base))
return PTR_ERR(base);
dev_dbg(dev, "ioremap done for SATA register address\n");
/* Synopsys DWC SATA specific Registers */
hsdev->sata_dwc_regs = base + SATA_DWC_REG_OFFSET;
hsdev->dmadr = res->start + SATA_DWC_REG_OFFSET + offsetof(struct sata_dwc_regs, dmadr);
/* Setup port */
host->ports[0]->ioaddr.cmd_addr = base;
host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
sata_dwc_setup_port(&host->ports[0]->ioaddr, base);
/* Read the ID and Version Registers */
idr = sata_dwc_readl(&hsdev->sata_dwc_regs->idr);
versionr = sata_dwc_readl(&hsdev->sata_dwc_regs->versionr);
dev_notice(dev, "id %d, controller version %c.%c%c\n", idr, ver[0], ver[1], ver[2]);
/* Save dev for later use in dev_xxx() routines */
hsdev->dev = dev;
/* Enable SATA Interrupts */
sata_dwc_enable_interrupts(hsdev);
/* Get SATA interrupt number */
irq = irq_of_parse_and_map(np, 0);
if (!irq) {
dev_err(dev, "no SATA DMA irq\n");
return -ENODEV;
}
#ifdef CONFIG_SATA_DWC_OLD_DMA
if (!of_property_present(np, "dmas")) {
err = sata_dwc_dma_init_old(ofdev, hsdev);
if (err)
return err;
}
#endif
hsdev->phy = devm_phy_optional_get(dev, "sata-phy");
if (IS_ERR(hsdev->phy))
return PTR_ERR(hsdev->phy);
err = phy_init(hsdev->phy);
if (err)
goto error_out;
/*
* Now, register with libATA core, this will also initiate the
* device discovery process, invoking our port_start() handler &
* error_handler() to execute a dummy Softreset EH session
*/
err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
if (err)
dev_err(dev, "failed to activate host");
return 0;
error_out:
phy_exit(hsdev->phy);
return err;
}
static void sata_dwc_remove(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct ata_host *host = dev_get_drvdata(dev);
struct sata_dwc_device *hsdev = host->private_data;
ata_host_detach(host);
phy_exit(hsdev->phy);
#ifdef CONFIG_SATA_DWC_OLD_DMA
/* Free SATA DMA resources */
sata_dwc_dma_exit_old(hsdev);
#endif
dev_dbg(dev, "done\n");
}
static const struct of_device_id sata_dwc_match[] = {
{ .compatible = "amcc,sata-460ex", },
{}
};
MODULE_DEVICE_TABLE(of, sata_dwc_match);
static struct platform_driver sata_dwc_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = sata_dwc_match,
},
.probe = sata_dwc_probe,
.remove = sata_dwc_remove,
};
module_platform_driver(sata_dwc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
MODULE_DESCRIPTION("DesignWare Cores SATA controller low level driver");
MODULE_VERSION(DRV_VERSION);