// SPDX-License-Identifier: GPL-2.0
/*
* Block multiqueue core code
*
* Copyright (C) 2013-2014 Jens Axboe
* Copyright (C) 2013-2014 Christoph Hellwig
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/blk-integrity.h>
#include <linux/kmemleak.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/llist.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/topology.h>
#include <linux/sched/signal.h>
#include <linux/delay.h>
#include <linux/crash_dump.h>
#include <linux/prefetch.h>
#include <linux/blk-crypto.h>
#include <linux/part_stat.h>
#include <linux/sched/isolation.h>
#include <trace/events/block.h>
#include <linux/t10-pi.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-pm.h"
#include "blk-stat.h"
#include "blk-mq-sched.h"
#include "blk-rq-qos.h"
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
static void blk_mq_request_bypass_insert(struct request *rq,
blk_insert_t flags);
static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
struct list_head *list);
static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
struct io_comp_batch *iob, unsigned int flags);
/*
* Check if any of the ctx, dispatch list or elevator
* have pending work in this hardware queue.
*/
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
return !list_empty_careful(&hctx->dispatch) ||
sbitmap_any_bit_set(&hctx->ctx_map) ||
blk_mq_sched_has_work(hctx);
}
/*
* Mark this ctx as having pending work in this hardware queue
*/
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx)
{
const int bit = ctx->index_hw[hctx->type];
if (!sbitmap_test_bit(&hctx->ctx_map, bit))
sbitmap_set_bit(&hctx->ctx_map, bit);
}
static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx)
{
const int bit = ctx->index_hw[hctx->type];
sbitmap_clear_bit(&hctx->ctx_map, bit);
}
struct mq_inflight {
struct block_device *part;
unsigned int inflight[2];
};
static bool blk_mq_check_inflight(struct request *rq, void *priv)
{
struct mq_inflight *mi = priv;
if (rq->part && blk_do_io_stat(rq) &&
(!mi->part->bd_partno || rq->part == mi->part) &&
blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
mi->inflight[rq_data_dir(rq)]++;
return true;
}
unsigned int blk_mq_in_flight(struct request_queue *q,
struct block_device *part)
{
struct mq_inflight mi = { .part = part };
blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
return mi.inflight[0] + mi.inflight[1];
}
void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
unsigned int inflight[2])
{
struct mq_inflight mi = { .part = part };
blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
inflight[0] = mi.inflight[0];
inflight[1] = mi.inflight[1];
}
void blk_freeze_queue_start(struct request_queue *q)
{
mutex_lock(&q->mq_freeze_lock);
if (++q->mq_freeze_depth == 1) {
percpu_ref_kill(&q->q_usage_counter);
mutex_unlock(&q->mq_freeze_lock);
if (queue_is_mq(q))
blk_mq_run_hw_queues(q, false);
} else {
mutex_unlock(&q->mq_freeze_lock);
}
}
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
void blk_mq_freeze_queue_wait(struct request_queue *q)
{
wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
unsigned long timeout)
{
return wait_event_timeout(q->mq_freeze_wq,
percpu_ref_is_zero(&q->q_usage_counter),
timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
/*
* Guarantee no request is in use, so we can change any data structure of
* the queue afterward.
*/
void blk_freeze_queue(struct request_queue *q)
{
/*
* In the !blk_mq case we are only calling this to kill the
* q_usage_counter, otherwise this increases the freeze depth
* and waits for it to return to zero. For this reason there is
* no blk_unfreeze_queue(), and blk_freeze_queue() is not
* exported to drivers as the only user for unfreeze is blk_mq.
*/
blk_freeze_queue_start(q);
blk_mq_freeze_queue_wait(q);
}
void blk_mq_freeze_queue(struct request_queue *q)
{
/*
* ...just an alias to keep freeze and unfreeze actions balanced
* in the blk_mq_* namespace
*/
blk_freeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
{
mutex_lock(&q->mq_freeze_lock);
if (force_atomic)
q->q_usage_counter.data->force_atomic = true;
q->mq_freeze_depth--;
WARN_ON_ONCE(q->mq_freeze_depth < 0);
if (!q->mq_freeze_depth) {
percpu_ref_resurrect(&q->q_usage_counter);
wake_up_all(&q->mq_freeze_wq);
}
mutex_unlock(&q->mq_freeze_lock);
}
void blk_mq_unfreeze_queue(struct request_queue *q)
{
__blk_mq_unfreeze_queue(q, false);
}
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
/*
* FIXME: replace the scsi_internal_device_*block_nowait() calls in the
* mpt3sas driver such that this function can be removed.
*/
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(&q->queue_lock, flags);
if (!q->quiesce_depth++)
blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
spin_unlock_irqrestore(&q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
/**
* blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
* @set: tag_set to wait on
*
* Note: it is driver's responsibility for making sure that quiesce has
* been started on or more of the request_queues of the tag_set. This
* function only waits for the quiesce on those request_queues that had
* the quiesce flag set using blk_mq_quiesce_queue_nowait.
*/
void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
{
if (set->flags & BLK_MQ_F_BLOCKING)
synchronize_srcu(set->srcu);
else
synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
/**
* blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
* @q: request queue.
*
* Note: this function does not prevent that the struct request end_io()
* callback function is invoked. Once this function is returned, we make
* sure no dispatch can happen until the queue is unquiesced via
* blk_mq_unquiesce_queue().
*/
void blk_mq_quiesce_queue(struct request_queue *q)
{
blk_mq_quiesce_queue_nowait(q);
/* nothing to wait for non-mq queues */
if (queue_is_mq(q))
blk_mq_wait_quiesce_done(q->tag_set);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
/*
* blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
* @q: request queue.
*
* This function recovers queue into the state before quiescing
* which is done by blk_mq_quiesce_queue.
*/
void blk_mq_unquiesce_queue(struct request_queue *q)
{
unsigned long flags;
bool run_queue = false;
spin_lock_irqsave(&q->queue_lock, flags);
if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
;
} else if (!--q->quiesce_depth) {
blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
run_queue = true;
}
spin_unlock_irqrestore(&q->queue_lock, flags);
/* dispatch requests which are inserted during quiescing */
if (run_queue)
blk_mq_run_hw_queues(q, true);
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
{
struct request_queue *q;
mutex_lock(&set->tag_list_lock);
list_for_each_entry(q, &set->tag_list, tag_set_list) {
if (!blk_queue_skip_tagset_quiesce(q))
blk_mq_quiesce_queue_nowait(q);
}
blk_mq_wait_quiesce_done(set);
mutex_unlock(&set->tag_list_lock);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
{
struct request_queue *q;
mutex_lock(&set->tag_list_lock);
list_for_each_entry(q, &set->tag_list, tag_set_list) {
if (!blk_queue_skip_tagset_quiesce(q))
blk_mq_unquiesce_queue(q);
}
mutex_unlock(&set->tag_list_lock);
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
void blk_mq_wake_waiters(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i)
if (blk_mq_hw_queue_mapped(hctx))
blk_mq_tag_wakeup_all(hctx->tags, true);
}
void blk_rq_init(struct request_queue *q, struct request *rq)
{
memset(rq, 0, sizeof(*rq));
INIT_LIST_HEAD(&rq->queuelist);
rq->q = q;
rq->__sector = (sector_t) -1;
INIT_HLIST_NODE(&rq->hash);
RB_CLEAR_NODE(&rq->rb_node);
rq->tag = BLK_MQ_NO_TAG;
rq->internal_tag = BLK_MQ_NO_TAG;
rq->start_time_ns = blk_time_get_ns();
rq->part = NULL;
blk_crypto_rq_set_defaults(rq);
}
EXPORT_SYMBOL(blk_rq_init);
/* Set start and alloc time when the allocated request is actually used */
static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
{
if (blk_mq_need_time_stamp(rq))
rq->start_time_ns = blk_time_get_ns();
else
rq->start_time_ns = 0;
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
if (blk_queue_rq_alloc_time(rq->q))
rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
else
rq->alloc_time_ns = 0;
#endif
}
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
struct blk_mq_tags *tags, unsigned int tag)
{
struct blk_mq_ctx *ctx = data->ctx;
struct blk_mq_hw_ctx *hctx = data->hctx;
struct request_queue *q = data->q;
struct request *rq = tags->static_rqs[tag];
rq->q = q;
rq->mq_ctx = ctx;
rq->mq_hctx = hctx;
rq->cmd_flags = data->cmd_flags;
if (data->flags & BLK_MQ_REQ_PM)
data->rq_flags |= RQF_PM;
if (blk_queue_io_stat(q))
data->rq_flags |= RQF_IO_STAT;
rq->rq_flags = data->rq_flags;
if (data->rq_flags & RQF_SCHED_TAGS) {
rq->tag = BLK_MQ_NO_TAG;
rq->internal_tag = tag;
} else {
rq->tag = tag;
rq->internal_tag = BLK_MQ_NO_TAG;
}
rq->timeout = 0;
rq->part = NULL;
rq->io_start_time_ns = 0;
rq->stats_sectors = 0;
rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
rq->nr_integrity_segments = 0;
#endif
rq->end_io = NULL;
rq->end_io_data = NULL;
blk_crypto_rq_set_defaults(rq);
INIT_LIST_HEAD(&rq->queuelist);
/* tag was already set */
WRITE_ONCE(rq->deadline, 0);
req_ref_set(rq, 1);
if (rq->rq_flags & RQF_USE_SCHED) {
struct elevator_queue *e = data->q->elevator;
INIT_HLIST_NODE(&rq->hash);
RB_CLEAR_NODE(&rq->rb_node);
if (e->type->ops.prepare_request)
e->type->ops.prepare_request(rq);
}
return rq;
}
static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
{
unsigned int tag, tag_offset;
struct blk_mq_tags *tags;
struct request *rq;
unsigned long tag_mask;
int i, nr = 0;
tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
if (unlikely(!tag_mask))
return NULL;
tags = blk_mq_tags_from_data(data);
for (i = 0; tag_mask; i++) {
if (!(tag_mask & (1UL << i)))
continue;
tag = tag_offset + i;
prefetch(tags->static_rqs[tag]);
tag_mask &= ~(1UL << i);
rq = blk_mq_rq_ctx_init(data, tags, tag);
rq_list_add(data->cached_rq, rq);
nr++;
}
if (!(data->rq_flags & RQF_SCHED_TAGS))
blk_mq_add_active_requests(data->hctx, nr);
/* caller already holds a reference, add for remainder */
percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
data->nr_tags -= nr;
return rq_list_pop(data->cached_rq);
}
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
{
struct request_queue *q = data->q;
u64 alloc_time_ns = 0;
struct request *rq;
unsigned int tag;
/* alloc_time includes depth and tag waits */
if (blk_queue_rq_alloc_time(q))
alloc_time_ns = blk_time_get_ns();
if (data->cmd_flags & REQ_NOWAIT)
data->flags |= BLK_MQ_REQ_NOWAIT;
if (q->elevator) {
/*
* All requests use scheduler tags when an I/O scheduler is
* enabled for the queue.
*/
data->rq_flags |= RQF_SCHED_TAGS;
/*
* Flush/passthrough requests are special and go directly to the
* dispatch list.
*/
if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
!blk_op_is_passthrough(data->cmd_flags)) {
struct elevator_mq_ops *ops = &q->elevator->type->ops;
WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
data->rq_flags |= RQF_USE_SCHED;
if (ops->limit_depth)
ops->limit_depth(data->cmd_flags, data);
}
}
retry:
data->ctx = blk_mq_get_ctx(q);
data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
if (!(data->rq_flags & RQF_SCHED_TAGS))
blk_mq_tag_busy(data->hctx);
if (data->flags & BLK_MQ_REQ_RESERVED)
data->rq_flags |= RQF_RESV;
/*
* Try batched alloc if we want more than 1 tag.
*/
if (data->nr_tags > 1) {
rq = __blk_mq_alloc_requests_batch(data);
if (rq) {
blk_mq_rq_time_init(rq, alloc_time_ns);
return rq;
}
data->nr_tags = 1;
}
/*
* Waiting allocations only fail because of an inactive hctx. In that
* case just retry the hctx assignment and tag allocation as CPU hotplug
* should have migrated us to an online CPU by now.
*/
tag = blk_mq_get_tag(data);
if (tag == BLK_MQ_NO_TAG) {
if (data->flags & BLK_MQ_REQ_NOWAIT)
return NULL;
/*
* Give up the CPU and sleep for a random short time to
* ensure that thread using a realtime scheduling class
* are migrated off the CPU, and thus off the hctx that
* is going away.
*/
msleep(3);
goto retry;
}
if (!(data->rq_flags & RQF_SCHED_TAGS))
blk_mq_inc_active_requests(data->hctx);
rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
blk_mq_rq_time_init(rq, alloc_time_ns);
return rq;
}
static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
struct blk_plug *plug,
blk_opf_t opf,
blk_mq_req_flags_t flags)
{
struct blk_mq_alloc_data data = {
.q = q,
.flags = flags,
.cmd_flags = opf,
.nr_tags = plug->nr_ios,
.cached_rq = &plug->cached_rq,
};
struct request *rq;
if (blk_queue_enter(q, flags))
return NULL;
plug->nr_ios = 1;
rq = __blk_mq_alloc_requests(&data);
if (unlikely(!rq))
blk_queue_exit(q);
return rq;
}
static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
blk_opf_t opf,
blk_mq_req_flags_t flags)
{
struct blk_plug *plug = current->plug;
struct request *rq;
if (!plug)
return NULL;
if (rq_list_empty(plug->cached_rq)) {
if (plug->nr_ios == 1)
return NULL;
rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
if (!rq)
return NULL;
} else {
rq = rq_list_peek(&plug->cached_rq);
if (!rq || rq->q != q)
return NULL;
if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
return NULL;
if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
return NULL;
plug->cached_rq = rq_list_next(rq);
blk_mq_rq_time_init(rq, 0);
}
rq->cmd_flags = opf;
INIT_LIST_HEAD(&rq->queuelist);
return rq;
}
struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
blk_mq_req_flags_t flags)
{
struct request *rq;
rq = blk_mq_alloc_cached_request(q, opf, flags);
if (!rq) {
struct blk_mq_alloc_data data = {
.q = q,
.flags = flags,
.cmd_flags = opf,
.nr_tags = 1,
};
int ret;
ret = blk_queue_enter(q, flags);
if (ret)
return ERR_PTR(ret);
rq = __blk_mq_alloc_requests(&data);
if (!rq)
goto out_queue_exit;
}
rq->__data_len = 0;
rq->__sector = (sector_t) -1;
rq->bio = rq->biotail = NULL;
return rq;
out_queue_exit:
blk_queue_exit(q);
return ERR_PTR(-EWOULDBLOCK);
}
EXPORT_SYMBOL(blk_mq_alloc_request);
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
{
struct blk_mq_alloc_data data = {
.q = q,
.flags = flags,
.cmd_flags = opf,
.nr_tags = 1,
};
u64 alloc_time_ns = 0;
struct request *rq;
unsigned int cpu;
unsigned int tag;
int ret;
/* alloc_time includes depth and tag waits */
if (blk_queue_rq_alloc_time(q))
alloc_time_ns = blk_time_get_ns();
/*
* If the tag allocator sleeps we could get an allocation for a
* different hardware context. No need to complicate the low level
* allocator for this for the rare use case of a command tied to
* a specific queue.
*/
if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
return ERR_PTR(-EINVAL);
if (hctx_idx >= q->nr_hw_queues)
return ERR_PTR(-EIO);
ret = blk_queue_enter(q, flags);
if (ret)
return ERR_PTR(ret);
/*
* Check if the hardware context is actually mapped to anything.
* If not tell the caller that it should skip this queue.
*/
ret = -EXDEV;
data.hctx = xa_load(&q->hctx_table, hctx_idx);
if (!blk_mq_hw_queue_mapped(data.hctx))
goto out_queue_exit;
cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
if (cpu >= nr_cpu_ids)
goto out_queue_exit;
data.ctx = __blk_mq_get_ctx(q, cpu);
if (q->elevator)
data.rq_flags |= RQF_SCHED_TAGS;
else
blk_mq_tag_busy(data.hctx);
if (flags & BLK_MQ_REQ_RESERVED)
data.rq_flags |= RQF_RESV;
ret = -EWOULDBLOCK;
tag = blk_mq_get_tag(&data);
if (tag == BLK_MQ_NO_TAG)
goto out_queue_exit;
if (!(data.rq_flags & RQF_SCHED_TAGS))
blk_mq_inc_active_requests(data.hctx);
rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
blk_mq_rq_time_init(rq, alloc_time_ns);
rq->__data_len = 0;
rq->__sector = (sector_t) -1;
rq->bio = rq->biotail = NULL;
return rq;
out_queue_exit:
blk_queue_exit(q);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
static void blk_mq_finish_request(struct request *rq)
{
struct request_queue *q = rq->q;
if (rq->rq_flags & RQF_USE_SCHED) {
q->elevator->type->ops.finish_request(rq);
/*
* For postflush request that may need to be
* completed twice, we should clear this flag
* to avoid double finish_request() on the rq.
*/
rq->rq_flags &= ~RQF_USE_SCHED;
}
}
static void __blk_mq_free_request(struct request *rq)
{
struct request_queue *q = rq->q;
struct blk_mq_ctx *ctx = rq->mq_ctx;
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
const int sched_tag = rq->internal_tag;
blk_crypto_free_request(rq);
blk_pm_mark_last_busy(rq);
rq->mq_hctx = NULL;
if (rq->tag != BLK_MQ_NO_TAG) {
blk_mq_dec_active_requests(hctx);
blk_mq_put_tag(hctx->tags, ctx, rq->tag);
}
if (sched_tag != BLK_MQ_NO_TAG)
blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
blk_mq_sched_restart(hctx);
blk_queue_exit(q);
}
void blk_mq_free_request(struct request *rq)
{
struct request_queue *q = rq->q;
blk_mq_finish_request(rq);
if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
laptop_io_completion(q->disk->bdi);
rq_qos_done(q, rq);
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
if (req_ref_put_and_test(rq))
__blk_mq_free_request(rq);
}
EXPORT_SYMBOL_GPL(blk_mq_free_request);
void blk_mq_free_plug_rqs(struct blk_plug *plug)
{
struct request *rq;
while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
blk_mq_free_request(rq);
}
void blk_dump_rq_flags(struct request *rq, char *msg)
{
printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
rq->q->disk ? rq->q->disk->disk_name : "?",
(__force unsigned long long) rq->cmd_flags);
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
(unsigned long long)blk_rq_pos(rq),
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
printk(KERN_INFO " bio %p, biotail %p, len %u\n",
rq->bio, rq->biotail, blk_rq_bytes(rq));
}
EXPORT_SYMBOL(blk_dump_rq_flags);
static void blk_account_io_completion(struct request *req, unsigned int bytes)
{
if (req->part && blk_do_io_stat(req)) {
const int sgrp = op_stat_group(req_op(req));
part_stat_lock();
part_stat_add(req->part, sectors[sgrp], bytes >> 9);
part_stat_unlock();
}
}
static void blk_print_req_error(struct request *req, blk_status_t status)
{
printk_ratelimited(KERN_ERR
"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
"phys_seg %u prio class %u\n",
blk_status_to_str(status),
req->q->disk ? req->q->disk->disk_name : "?",
blk_rq_pos(req), (__force u32)req_op(req),
blk_op_str(req_op(req)),
(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
req->nr_phys_segments,
IOPRIO_PRIO_CLASS(req->ioprio));
}
/*
* Fully end IO on a request. Does not support partial completions, or
* errors.
*/
static void blk_complete_request(struct request *req)
{
const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
int total_bytes = blk_rq_bytes(req);
struct bio *bio = req->bio;
trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
if (!bio)
return;
#ifdef CONFIG_BLK_DEV_INTEGRITY
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
req->q->integrity.profile->complete_fn(req, total_bytes);
#endif
/*
* Upper layers may call blk_crypto_evict_key() anytime after the last
* bio_endio(). Therefore, the keyslot must be released before that.
*/
blk_crypto_rq_put_keyslot(req);
blk_account_io_completion(req, total_bytes);
do {
struct bio *next = bio->bi_next;
/* Completion has already been traced */
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
blk_zone_update_request_bio(req, bio);
if (!is_flush)
bio_endio(bio);
bio = next;
} while (bio);
blk_zone_complete_request(req);
/*
* Reset counters so that the request stacking driver
* can find how many bytes remain in the request
* later.
*/
if (!req->end_io) {
req->bio = NULL;
req->__data_len = 0;
}
}
/**
* blk_update_request - Complete multiple bytes without completing the request
* @req: the request being processed
* @error: block status code
* @nr_bytes: number of bytes to complete for @req
*
* Description:
* Ends I/O on a number of bytes attached to @req, but doesn't complete
* the request structure even if @req doesn't have leftover.
* If @req has leftover, sets it up for the next range of segments.
*
* Passing the result of blk_rq_bytes() as @nr_bytes guarantees
* %false return from this function.
*
* Note:
* The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
* except in the consistency check at the end of this function.
*
* Return:
* %false - this request doesn't have any more data
* %true - this request has more data
**/
bool blk_update_request(struct request *req, blk_status_t error,
unsigned int nr_bytes)
{
bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
bool quiet = req->rq_flags & RQF_QUIET;
int total_bytes;
trace_block_rq_complete(req, error, nr_bytes);
if (!req->bio)
return false;
#ifdef CONFIG_BLK_DEV_INTEGRITY
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
error == BLK_STS_OK)
req->q->integrity.profile->complete_fn(req, nr_bytes);
#endif
/*
* Upper layers may call blk_crypto_evict_key() anytime after the last
* bio_endio(). Therefore, the keyslot must be released before that.
*/
if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
__blk_crypto_rq_put_keyslot(req);
if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
!test_bit(GD_DEAD, &req->q->disk->state)) {
blk_print_req_error(req, error);
trace_block_rq_error(req, error, nr_bytes);
}
blk_account_io_completion(req, nr_bytes);
total_bytes = 0;
while (req->bio) {
struct bio *bio = req->bio;
unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
if (unlikely(error))
bio->bi_status = error;
if (bio_bytes == bio->bi_iter.bi_size) {
req->bio = bio->bi_next;
} else if (req_op(req) == REQ_OP_ZONE_APPEND &&
error == BLK_STS_OK) {
/*
* Partial zone append completions cannot be supported
* as the BIO fragments may end up not being written
* sequentially.
*/
bio->bi_status = BLK_STS_IOERR;
}
/* Completion has already been traced */
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
if (unlikely(quiet))
bio_set_flag(bio, BIO_QUIET);
bio_advance(bio, bio_bytes);
/* Don't actually finish bio if it's part of flush sequence */
if (!bio->bi_iter.bi_size) {
blk_zone_update_request_bio(req, bio);
if (!is_flush)
bio_endio(bio);
}
total_bytes += bio_bytes;
nr_bytes -= bio_bytes;
if (!nr_bytes)
break;
}
/*
* completely done
*/
if (!req->bio) {
blk_zone_complete_request(req);
/*
* Reset counters so that the request stacking driver
* can find how many bytes remain in the request
* later.
*/
req->__data_len = 0;
return false;
}
req->__data_len -= total_bytes;
/* update sector only for requests with clear definition of sector */
if (!blk_rq_is_passthrough(req))
req->__sector += total_bytes >> 9;
/* mixed attributes always follow the first bio */
if (req->rq_flags & RQF_MIXED_MERGE) {
req->cmd_flags &= ~REQ_FAILFAST_MASK;
req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
}
if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
/*
* If total number of sectors is less than the first segment
* size, something has gone terribly wrong.
*/
if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
blk_dump_rq_flags(req, "request botched");
req->__data_len = blk_rq_cur_bytes(req);
}
/* recalculate the number of segments */
req->nr_phys_segments = blk_recalc_rq_segments(req);
}
return true;
}
EXPORT_SYMBOL_GPL(blk_update_request);
static inline void blk_account_io_done(struct request *req, u64 now)
{
trace_block_io_done(req);
/*
* Account IO completion. flush_rq isn't accounted as a
* normal IO on queueing nor completion. Accounting the
* containing request is enough.
*/
if (blk_do_io_stat(req) && req->part &&
!(req->rq_flags & RQF_FLUSH_SEQ)) {
const int sgrp = op_stat_group(req_op(req));
part_stat_lock();
update_io_ticks(req->part, jiffies, true);
part_stat_inc(req->part, ios[sgrp]);
part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
part_stat_unlock();
}
}
static inline void blk_account_io_start(struct request *req)
{
trace_block_io_start(req);
if (blk_do_io_stat(req)) {
/*
* All non-passthrough requests are created from a bio with one
* exception: when a flush command that is part of a flush sequence
* generated by the state machine in blk-flush.c is cloned onto the
* lower device by dm-multipath we can get here without a bio.
*/
if (req->bio)
req->part = req->bio->bi_bdev;
else
req->part = req->q->disk->part0;
part_stat_lock();
update_io_ticks(req->part, jiffies, false);
part_stat_unlock();
}
}
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
{
if (rq->rq_flags & RQF_STATS)
blk_stat_add(rq, now);
blk_mq_sched_completed_request(rq, now);
blk_account_io_done(rq, now);
}
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
{
if (blk_mq_need_time_stamp(rq))
__blk_mq_end_request_acct(rq, blk_time_get_ns());
blk_mq_finish_request(rq);
if (rq->end_io) {
rq_qos_done(rq->q, rq);
if (rq->end_io(rq, error) == RQ_END_IO_FREE)
blk_mq_free_request(rq);
} else {
blk_mq_free_request(rq);
}
}
EXPORT_SYMBOL(__blk_mq_end_request);
void blk_mq_end_request(struct request *rq, blk_status_t error)
{
if (blk_update_request(rq, error, blk_rq_bytes(rq)))
BUG();
__blk_mq_end_request(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_request);
#define TAG_COMP_BATCH 32
static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
int *tag_array, int nr_tags)
{
struct request_queue *q = hctx->queue;
blk_mq_sub_active_requests(hctx, nr_tags);
blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
percpu_ref_put_many(&q->q_usage_counter, nr_tags);
}
void blk_mq_end_request_batch(struct io_comp_batch *iob)
{
int tags[TAG_COMP_BATCH], nr_tags = 0;
struct blk_mq_hw_ctx *cur_hctx = NULL;
struct request *rq;
u64 now = 0;
if (iob->need_ts)
now = blk_time_get_ns();
while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
prefetch(rq->bio);
prefetch(rq->rq_next);
blk_complete_request(rq);
if (iob->need_ts)
__blk_mq_end_request_acct(rq, now);
blk_mq_finish_request(rq);
rq_qos_done(rq->q, rq);
/*
* If end_io handler returns NONE, then it still has
* ownership of the request.
*/
if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
continue;
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
if (!req_ref_put_and_test(rq))
continue;
blk_crypto_free_request(rq);
blk_pm_mark_last_busy(rq);
if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
if (cur_hctx)
blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
nr_tags = 0;
cur_hctx = rq->mq_hctx;
}
tags[nr_tags++] = rq->tag;
}
if (nr_tags)
blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
}
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
static void blk_complete_reqs(struct llist_head *list)
{
struct llist_node *entry = llist_reverse_order(llist_del_all(list));
struct request *rq, *next;
llist_for_each_entry_safe(rq, next, entry, ipi_list)
rq->q->mq_ops->complete(rq);
}
static __latent_entropy void blk_done_softirq(struct softirq_action *h)
{
blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
}
static int blk_softirq_cpu_dead(unsigned int cpu)
{
blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
return 0;
}
static void __blk_mq_complete_request_remote(void *data)
{
__raise_softirq_irqoff(BLOCK_SOFTIRQ);
}
static inline bool blk_mq_complete_need_ipi(struct request *rq)
{
int cpu = raw_smp_processor_id();
if (!IS_ENABLED(CONFIG_SMP) ||
!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
return false;
/*
* With force threaded interrupts enabled, raising softirq from an SMP
* function call will always result in waking the ksoftirqd thread.
* This is probably worse than completing the request on a different
* cache domain.
*/
if (force_irqthreads())
return false;
/* same CPU or cache domain and capacity? Complete locally */
if (cpu == rq->mq_ctx->cpu ||
(!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
return false;
/* don't try to IPI to an offline CPU */
return cpu_online(rq->mq_ctx->cpu);
}
static void blk_mq_complete_send_ipi(struct request *rq)
{
unsigned int cpu;
cpu = rq->mq_ctx->cpu;
if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
}
static void blk_mq_raise_softirq(struct request *rq)
{
struct llist_head *list;
preempt_disable();
list = this_cpu_ptr(&blk_cpu_done);
if (llist_add(&rq->ipi_list, list))
raise_softirq(BLOCK_SOFTIRQ);
preempt_enable();
}
bool blk_mq_complete_request_remote(struct request *rq)
{
WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
/*
* For request which hctx has only one ctx mapping,
* or a polled request, always complete locally,
* it's pointless to redirect the completion.
*/
if ((rq->mq_hctx->nr_ctx == 1 &&
rq->mq_ctx->cpu == raw_smp_processor_id()) ||
rq->cmd_flags & REQ_POLLED)
return false;
if (blk_mq_complete_need_ipi(rq)) {
blk_mq_complete_send_ipi(rq);
return true;
}
if (rq->q->nr_hw_queues == 1) {
blk_mq_raise_softirq(rq);
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
/**
* blk_mq_complete_request - end I/O on a request
* @rq: the request being processed
*
* Description:
* Complete a request by scheduling the ->complete_rq operation.
**/
void blk_mq_complete_request(struct request *rq)
{
if (!blk_mq_complete_request_remote(rq))
rq->q->mq_ops->complete(rq);
}
EXPORT_SYMBOL(blk_mq_complete_request);
/**
* blk_mq_start_request - Start processing a request
* @rq: Pointer to request to be started
*
* Function used by device drivers to notify the block layer that a request
* is going to be processed now, so blk layer can do proper initializations
* such as starting the timeout timer.
*/
void blk_mq_start_request(struct request *rq)
{
struct request_queue *q = rq->q;
trace_block_rq_issue(rq);
if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
!blk_rq_is_passthrough(rq)) {
rq->io_start_time_ns = blk_time_get_ns();
rq->stats_sectors = blk_rq_sectors(rq);
rq->rq_flags |= RQF_STATS;
rq_qos_issue(q, rq);
}
WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
blk_add_timer(rq);
WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
rq->mq_hctx->tags->rqs[rq->tag] = rq;
#ifdef CONFIG_BLK_DEV_INTEGRITY
if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
q->integrity.profile->prepare_fn(rq);
#endif
if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
}
EXPORT_SYMBOL(blk_mq_start_request);
/*
* Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
* queues. This is important for md arrays to benefit from merging
* requests.
*/
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
{
if (plug->multiple_queues)
return BLK_MAX_REQUEST_COUNT * 2;
return BLK_MAX_REQUEST_COUNT;
}
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
struct request *last = rq_list_peek(&plug->mq_list);
if (!plug->rq_count) {
trace_block_plug(rq->q);
} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
(!blk_queue_nomerges(rq->q) &&
blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
blk_mq_flush_plug_list(plug, false);
last = NULL;
trace_block_plug(rq->q);
}
if (!plug->multiple_queues && last && last->q != rq->q)
plug->multiple_queues = true;
/*
* Any request allocated from sched tags can't be issued to
* ->queue_rqs() directly
*/
if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
plug->has_elevator = true;
rq->rq_next = NULL;
rq_list_add(&plug->mq_list, rq);
plug->rq_count++;
}
/**
* blk_execute_rq_nowait - insert a request to I/O scheduler for execution
* @rq: request to insert
* @at_head: insert request at head or tail of queue
*
* Description:
* Insert a fully prepared request at the back of the I/O scheduler queue
* for execution. Don't wait for completion.
*
* Note:
* This function will invoke @done directly if the queue is dead.
*/
void blk_execute_rq_nowait(struct request *rq, bool at_head)
{
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
WARN_ON(irqs_disabled());
WARN_ON(!blk_rq_is_passthrough(rq));
blk_account_io_start(rq);
/*
* As plugging can be enabled for passthrough requests on a zoned
* device, directly accessing the plug instead of using blk_mq_plug()
* should not have any consequences.
*/
if (current->plug && !at_head) {
blk_add_rq_to_plug(current->plug, rq);
return;
}
blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
}
EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
struct blk_rq_wait {
struct completion done;
blk_status_t ret;
};
static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
{
struct blk_rq_wait *wait = rq->end_io_data;
wait->ret = ret;
complete(&wait->done);
return RQ_END_IO_NONE;
}
bool blk_rq_is_poll(struct request *rq)
{
if (!rq->mq_hctx)
return false;
if (rq->mq_hctx->type != HCTX_TYPE_POLL)
return false;
return true;
}
EXPORT_SYMBOL_GPL(blk_rq_is_poll);
static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
{
do {
blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
cond_resched();
} while (!completion_done(wait));
}
/**
* blk_execute_rq - insert a request into queue for execution
* @rq: request to insert
* @at_head: insert request at head or tail of queue
*
* Description:
* Insert a fully prepared request at the back of the I/O scheduler queue
* for execution and wait for completion.
* Return: The blk_status_t result provided to blk_mq_end_request().
*/
blk_status_t blk_execute_rq(struct request *rq, bool at_head)
{
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
struct blk_rq_wait wait = {
.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
};
WARN_ON(irqs_disabled());
WARN_ON(!blk_rq_is_passthrough(rq));
rq->end_io_data = &wait;
rq->end_io = blk_end_sync_rq;
blk_account_io_start(rq);
blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
blk_mq_run_hw_queue(hctx, false);
if (blk_rq_is_poll(rq))
blk_rq_poll_completion(rq, &wait.done);
else
blk_wait_io(&wait.done);
return wait.ret;
}
EXPORT_SYMBOL(blk_execute_rq);
static void __blk_mq_requeue_request(struct request *rq)
{
struct request_queue *q = rq->q;
blk_mq_put_driver_tag(rq);
trace_block_rq_requeue(rq);
rq_qos_requeue(q, rq);
if (blk_mq_request_started(rq)) {
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
rq->rq_flags &= ~RQF_TIMED_OUT;
}
}
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
{
struct request_queue *q = rq->q;
unsigned long flags;
__blk_mq_requeue_request(rq);
/* this request will be re-inserted to io scheduler queue */
blk_mq_sched_requeue_request(rq);
spin_lock_irqsave(&q->requeue_lock, flags);
list_add_tail(&rq->queuelist, &q->requeue_list);
spin_unlock_irqrestore(&q->requeue_lock, flags);
if (kick_requeue_list)
blk_mq_kick_requeue_list(q);
}
EXPORT_SYMBOL(blk_mq_requeue_request);
static void blk_mq_requeue_work(struct work_struct *work)
{
struct request_queue *q =
container_of(work, struct request_queue, requeue_work.work);
LIST_HEAD(rq_list);
LIST_HEAD(flush_list);
struct request *rq;
spin_lock_irq(&q->requeue_lock);
list_splice_init(&q->requeue_list, &rq_list);
list_splice_init(&q->flush_list, &flush_list);
spin_unlock_irq(&q->requeue_lock);
while (!list_empty(&rq_list)) {
rq = list_entry(rq_list.next, struct request, queuelist);
/*
* If RQF_DONTPREP ist set, the request has been started by the
* driver already and might have driver-specific data allocated
* already. Insert it into the hctx dispatch list to avoid
* block layer merges for the request.
*/
if (rq->rq_flags & RQF_DONTPREP) {
list_del_init(&rq->queuelist);
blk_mq_request_bypass_insert(rq, 0);
} else {
list_del_init(&rq->queuelist);
blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
}
}
while (!list_empty(&flush_list)) {
rq = list_entry(flush_list.next, struct request, queuelist);
list_del_init(&rq->queuelist);
blk_mq_insert_request(rq, 0);
}
blk_mq_run_hw_queues(q, false);
}
void blk_mq_kick_requeue_list(struct request_queue *q)
{
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
unsigned long msecs)
{
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
static bool blk_is_flush_data_rq(struct request *rq)
{
return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
}
static bool blk_mq_rq_inflight(struct request *rq, void *priv)
{
/*
* If we find a request that isn't idle we know the queue is busy
* as it's checked in the iter.
* Return false to stop the iteration.
*
* In case of queue quiesce, if one flush data request is completed,
* don't count it as inflight given the flush sequence is suspended,
* and the original flush data request is invisible to driver, just
* like other pending requests because of quiesce
*/
if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
blk_is_flush_data_rq(rq) &&
blk_mq_request_completed(rq))) {
bool *busy = priv;
*busy = true;
return false;
}
return true;
}
bool blk_mq_queue_inflight(struct request_queue *q)
{
bool busy = false;
blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
return busy;
}
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
static void blk_mq_rq_timed_out(struct request *req)
{
req->rq_flags |= RQF_TIMED_OUT;
if (req->q->mq_ops->timeout) {
enum blk_eh_timer_return ret;
ret = req->q->mq_ops->timeout(req);
if (ret == BLK_EH_DONE)
return;
WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
}
blk_add_timer(req);
}
struct blk_expired_data {
bool has_timedout_rq;
unsigned long next;
unsigned long timeout_start;
};
static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
{
unsigned long deadline;
if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
return false;
if (rq->rq_flags & RQF_TIMED_OUT)
return false;
deadline = READ_ONCE(rq->deadline);
if (time_after_eq(expired->timeout_start, deadline))
return true;
if (expired->next == 0)
expired->next = deadline;
else if (time_after(expired->next, deadline))
expired->next = deadline;
return false;
}
void blk_mq_put_rq_ref(struct request *rq)
{
if (is_flush_rq(rq)) {
if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
blk_mq_free_request(rq);
} else if (req_ref_put_and_test(rq)) {
__blk_mq_free_request(rq);
}
}
static bool blk_mq_check_expired(struct request *rq, void *priv)
{
struct blk_expired_data *expired = priv;
/*
* blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
* be reallocated underneath the timeout handler's processing, then
* the expire check is reliable. If the request is not expired, then
* it was completed and reallocated as a new request after returning
* from blk_mq_check_expired().
*/
if (blk_mq_req_expired(rq, expired)) {
expired->has_timedout_rq = true;
return false;
}
return true;
}
static bool blk_mq_handle_expired(struct request *rq, void *priv)
{
struct blk_expired_data *expired = priv;
if (blk_mq_req_expired(rq, expired))
blk_mq_rq_timed_out(rq);
return true;
}
static void blk_mq_timeout_work(struct work_struct *work)
{
struct request_queue *q =
container_of(work, struct request_queue, timeout_work);
struct blk_expired_data expired = {
.timeout_start = jiffies,
};
struct blk_mq_hw_ctx *hctx;
unsigned long i;
/* A deadlock might occur if a request is stuck requiring a
* timeout at the same time a queue freeze is waiting
* completion, since the timeout code would not be able to
* acquire the queue reference here.
*
* That's why we don't use blk_queue_enter here; instead, we use
* percpu_ref_tryget directly, because we need to be able to
* obtain a reference even in the short window between the queue
* starting to freeze, by dropping the first reference in
* blk_freeze_queue_start, and the moment the last request is
* consumed, marked by the instant q_usage_counter reaches
* zero.
*/
if (!percpu_ref_tryget(&q->q_usage_counter))
return;
/* check if there is any timed-out request */
blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
if (expired.has_timedout_rq) {
/*
* Before walking tags, we must ensure any submit started
* before the current time has finished. Since the submit
* uses srcu or rcu, wait for a synchronization point to
* ensure all running submits have finished
*/
blk_mq_wait_quiesce_done(q->tag_set);
expired.next = 0;
blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
}
if (expired.next != 0) {
mod_timer(&q->timeout, expired.next);
} else {
/*
* Request timeouts are handled as a forward rolling timer. If
* we end up here it means that no requests are pending and
* also that no request has been pending for a while. Mark
* each hctx as idle.
*/
queue_for_each_hw_ctx(q, hctx, i) {
/* the hctx may be unmapped, so check it here */
if (blk_mq_hw_queue_mapped(hctx))
blk_mq_tag_idle(hctx);
}
}
blk_queue_exit(q);
}
struct flush_busy_ctx_data {
struct blk_mq_hw_ctx *hctx;
struct list_head *list;
};
static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
struct flush_busy_ctx_data *flush_data = data;
struct blk_mq_hw_ctx *hctx = flush_data->hctx;
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
enum hctx_type type = hctx->type;
spin_lock(&ctx->lock);
list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
sbitmap_clear_bit(sb, bitnr);
spin_unlock(&ctx->lock);
return true;
}
/*
* Process software queues that have been marked busy, splicing them
* to the for-dispatch
*/
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
struct flush_busy_ctx_data data = {
.hctx = hctx,
.list = list,
};
sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
}
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
struct dispatch_rq_data {
struct blk_mq_hw_ctx *hctx;
struct request *rq;
};
static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
void *data)
{
struct dispatch_rq_data *dispatch_data = data;
struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
enum hctx_type type = hctx->type;
spin_lock(&ctx->lock);
if (!list_empty(&ctx->rq_lists[type])) {
dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
list_del_init(&dispatch_data->rq->queuelist);
if (list_empty(&ctx->rq_lists[type]))
sbitmap_clear_bit(sb, bitnr);
}
spin_unlock(&ctx->lock);
return !dispatch_data->rq;
}
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *start)
{
unsigned off = start ? start->index_hw[hctx->type] : 0;
struct dispatch_rq_data data = {
.hctx = hctx,
.rq = NULL,
};
__sbitmap_for_each_set(&hctx->ctx_map, off,
dispatch_rq_from_ctx, &data);
return data.rq;
}
bool __blk_mq_alloc_driver_tag(struct request *rq)
{
struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
int tag;
blk_mq_tag_busy(rq->mq_hctx);
if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
bt = &rq->mq_hctx->tags->breserved_tags;
tag_offset = 0;
} else {
if (!hctx_may_queue(rq->mq_hctx, bt))
return false;
}
tag = __sbitmap_queue_get(bt);
if (tag == BLK_MQ_NO_TAG)
return false;
rq->tag = tag + tag_offset;
blk_mq_inc_active_requests(rq->mq_hctx);
return true;
}
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
int flags, void *key)
{
struct blk_mq_hw_ctx *hctx;
hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
spin_lock(&hctx->dispatch_wait_lock);
if (!list_empty(&wait->entry)) {
struct sbitmap_queue *sbq;
list_del_init(&wait->entry);
sbq = &hctx->tags->bitmap_tags;
atomic_dec(&sbq->ws_active);
}
spin_unlock(&hctx->dispatch_wait_lock);
blk_mq_run_hw_queue(hctx, true);
return 1;
}
/*
* Mark us waiting for a tag. For shared tags, this involves hooking us into
* the tag wakeups. For non-shared tags, we can simply mark us needing a
* restart. For both cases, take care to check the condition again after
* marking us as waiting.
*/
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
struct sbitmap_queue *sbq;
struct wait_queue_head *wq;
wait_queue_entry_t *wait;
bool ret;
if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
!(blk_mq_is_shared_tags(hctx->flags))) {
blk_mq_sched_mark_restart_hctx(hctx);
/*
* It's possible that a tag was freed in the window between the
* allocation failure and adding the hardware queue to the wait
* queue.
*
* Don't clear RESTART here, someone else could have set it.
* At most this will cost an extra queue run.
*/
return blk_mq_get_driver_tag(rq);
}
wait = &hctx->dispatch_wait;
if (!list_empty_careful(&wait->entry))
return false;
if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
sbq = &hctx->tags->breserved_tags;
else
sbq = &hctx->tags->bitmap_tags;
wq = &bt_wait_ptr(sbq, hctx)->wait;
spin_lock_irq(&wq->lock);
spin_lock(&hctx->dispatch_wait_lock);
if (!list_empty(&wait->entry)) {
spin_unlock(&hctx->dispatch_wait_lock);
spin_unlock_irq(&wq->lock);
return false;
}
atomic_inc(&sbq->ws_active);
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
__add_wait_queue(wq, wait);
/*
* Add one explicit barrier since blk_mq_get_driver_tag() may
* not imply barrier in case of failure.
*
* Order adding us to wait queue and allocating driver tag.
*
* The pair is the one implied in sbitmap_queue_wake_up() which
* orders clearing sbitmap tag bits and waitqueue_active() in
* __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
*
* Otherwise, re-order of adding wait queue and getting driver tag
* may cause __sbitmap_queue_wake_up() to wake up nothing because
* the waitqueue_active() may not observe us in wait queue.
*/
smp_mb();
/*
* It's possible that a tag was freed in the window between the
* allocation failure and adding the hardware queue to the wait
* queue.
*/
ret = blk_mq_get_driver_tag(rq);
if (!ret) {
spin_unlock(&hctx->dispatch_wait_lock);
spin_unlock_irq(&wq->lock);
return false;
}
/*
* We got a tag, remove ourselves from the wait queue to ensure
* someone else gets the wakeup.
*/
list_del_init(&wait->entry);
atomic_dec(&sbq->ws_active);
spin_unlock(&hctx->dispatch_wait_lock);
spin_unlock_irq(&wq->lock);
return true;
}
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
/*
* Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
* - EWMA is one simple way to compute running average value
* - weight(7/8 and 1/8) is applied so that it can decrease exponentially
* - take 4 as factor for avoiding to get too small(0) result, and this
* factor doesn't matter because EWMA decreases exponentially
*/
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
unsigned int ewma;
ewma = hctx->dispatch_busy;
if (!ewma && !busy)
return;
ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
if (busy)
ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
hctx->dispatch_busy = ewma;
}
#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
static void blk_mq_handle_dev_resource(struct request *rq,
struct list_head *list)
{
list_add(&rq->queuelist, list);
__blk_mq_requeue_request(rq);
}
static void blk_mq_handle_zone_resource(struct request *rq,
struct list_head *zone_list)
{
/*
* If we end up here it is because we cannot dispatch a request to a
* specific zone due to LLD level zone-write locking or other zone
* related resource not being available. In this case, set the request
* aside in zone_list for retrying it later.
*/
list_add(&rq->queuelist, zone_list);
__blk_mq_requeue_request(rq);
}
enum prep_dispatch {
PREP_DISPATCH_OK,
PREP_DISPATCH_NO_TAG,
PREP_DISPATCH_NO_BUDGET,
};
static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
bool need_budget)
{
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
int budget_token = -1;
if (need_budget) {
budget_token = blk_mq_get_dispatch_budget(rq->q);
if (budget_token < 0) {
blk_mq_put_driver_tag(rq);
return PREP_DISPATCH_NO_BUDGET;
}
blk_mq_set_rq_budget_token(rq, budget_token);
}
if (!blk_mq_get_driver_tag(rq)) {
/*
* The initial allocation attempt failed, so we need to
* rerun the hardware queue when a tag is freed. The
* waitqueue takes care of that. If the queue is run
* before we add this entry back on the dispatch list,
* we'll re-run it below.
*/
if (!blk_mq_mark_tag_wait(hctx, rq)) {
/*
* All budgets not got from this function will be put
* together during handling partial dispatch
*/
if (need_budget)
blk_mq_put_dispatch_budget(rq->q, budget_token);
return PREP_DISPATCH_NO_TAG;
}
}
return PREP_DISPATCH_OK;
}
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
static void blk_mq_release_budgets(struct request_queue *q,
struct list_head *list)
{
struct request *rq;
list_for_each_entry(rq, list, queuelist) {
int budget_token = blk_mq_get_rq_budget_token(rq);
if (budget_token >= 0)
blk_mq_put_dispatch_budget(q, budget_token);
}
}
/*
* blk_mq_commit_rqs will notify driver using bd->last that there is no
* more requests. (See comment in struct blk_mq_ops for commit_rqs for
* details)
* Attention, we should explicitly call this in unusual cases:
* 1) did not queue everything initially scheduled to queue
* 2) the last attempt to queue a request failed
*/
static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
bool from_schedule)
{
if (hctx->queue->mq_ops->commit_rqs && queued) {
trace_block_unplug(hctx->queue, queued, !from_schedule);
hctx->queue->mq_ops->commit_rqs(hctx);
}
}
/*
* Returns true if we did some work AND can potentially do more.
*/
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
unsigned int nr_budgets)
{
enum prep_dispatch prep;
struct request_queue *q = hctx->queue;
struct request *rq;
int queued;
blk_status_t ret = BLK_STS_OK;
LIST_HEAD(zone_list);
bool needs_resource = false;
if (list_empty(list))
return false;
/*
* Now process all the entries, sending them to the driver.
*/
queued = 0;
do {
struct blk_mq_queue_data bd;
rq = list_first_entry(list, struct request, queuelist);
WARN_ON_ONCE(hctx != rq->mq_hctx);
prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
if (prep != PREP_DISPATCH_OK)
break;
list_del_init(&rq->queuelist);
bd.rq = rq;
bd.last = list_empty(list);
/*
* once the request is queued to lld, no need to cover the
* budget any more
*/
if (nr_budgets)
nr_budgets--;
ret = q->mq_ops->queue_rq(hctx, &bd);
switch (ret) {
case BLK_STS_OK:
queued++;
break;
case BLK_STS_RESOURCE:
needs_resource = true;
fallthrough;
case BLK_STS_DEV_RESOURCE:
blk_mq_handle_dev_resource(rq, list);
goto out;
case BLK_STS_ZONE_RESOURCE:
/*
* Move the request to zone_list and keep going through
* the dispatch list to find more requests the drive can
* accept.
*/
blk_mq_handle_zone_resource(rq, &zone_list);
needs_resource = true;
break;
default:
blk_mq_end_request(rq, ret);
}
} while (!list_empty(list));
out:
if (!list_empty(&zone_list))
list_splice_tail_init(&zone_list, list);
/* If we didn't flush the entire list, we could have told the driver
* there was more coming, but that turned out to be a lie.
*/
if (!list_empty(list) || ret != BLK_STS_OK)
blk_mq_commit_rqs(hctx, queued, false);
/*
* Any items that need requeuing? Stuff them into hctx->dispatch,
* that is where we will continue on next queue run.
*/
if (!list_empty(list)) {
bool needs_restart;
/* For non-shared tags, the RESTART check will suffice */
bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
blk_mq_is_shared_tags(hctx->flags));
if (nr_budgets)
blk_mq_release_budgets(q, list);
spin_lock(&hctx->lock);
list_splice_tail_init(list, &hctx->dispatch);
spin_unlock(&hctx->lock);
/*
* Order adding requests to hctx->dispatch and checking
* SCHED_RESTART flag. The pair of this smp_mb() is the one
* in blk_mq_sched_restart(). Avoid restart code path to
* miss the new added requests to hctx->dispatch, meantime
* SCHED_RESTART is observed here.
*/
smp_mb();
/*
* If SCHED_RESTART was set by the caller of this function and
* it is no longer set that means that it was cleared by another
* thread and hence that a queue rerun is needed.
*
* If 'no_tag' is set, that means that we failed getting
* a driver tag with an I/O scheduler attached. If our dispatch
* waitqueue is no longer active, ensure that we run the queue
* AFTER adding our entries back to the list.
*
* If no I/O scheduler has been configured it is possible that
* the hardware queue got stopped and restarted before requests
* were pushed back onto the dispatch list. Rerun the queue to
* avoid starvation. Notes:
* - blk_mq_run_hw_queue() checks whether or not a queue has
* been stopped before rerunning a queue.
* - Some but not all block drivers stop a queue before
* returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
* and dm-rq.
*
* If driver returns BLK_STS_RESOURCE and SCHED_RESTART
* bit is set, run queue after a delay to avoid IO stalls
* that could otherwise occur if the queue is idle. We'll do
* similar if we couldn't get budget or couldn't lock a zone
* and SCHED_RESTART is set.
*/
needs_restart = blk_mq_sched_needs_restart(hctx);
if (prep == PREP_DISPATCH_NO_BUDGET)
needs_resource = true;
if (!needs_restart ||
(no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
blk_mq_run_hw_queue(hctx, true);
else if (needs_resource)
blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
blk_mq_update_dispatch_busy(hctx, true);
return false;
}
blk_mq_update_dispatch_busy(hctx, false);
return true;
}
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
if (cpu >= nr_cpu_ids)
cpu = cpumask_first(hctx->cpumask);
return cpu;
}
/*
* ->next_cpu is always calculated from hctx->cpumask, so simply use
* it for speeding up the check
*/
static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
{
return hctx->next_cpu >= nr_cpu_ids;
}
/*
* It'd be great if the workqueue API had a way to pass
* in a mask and had some smarts for more clever placement.
* For now we just round-robin here, switching for every
* BLK_MQ_CPU_WORK_BATCH queued items.
*/
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
bool tried = false;
int next_cpu = hctx->next_cpu;
/* Switch to unbound if no allowable CPUs in this hctx */
if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
return WORK_CPU_UNBOUND;
if (--hctx->next_cpu_batch <= 0) {
select_cpu:
next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
cpu_online_mask);
if (next_cpu >= nr_cpu_ids)
next_cpu = blk_mq_first_mapped_cpu(hctx);
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
}
/*
* Do unbound schedule if we can't find a online CPU for this hctx,
* and it should only happen in the path of handling CPU DEAD.
*/
if (!cpu_online(next_cpu)) {
if (!tried) {
tried = true;
goto select_cpu;
}
/*
* Make sure to re-select CPU next time once after CPUs
* in hctx->cpumask become online again.
*/
hctx->next_cpu = next_cpu;
hctx->next_cpu_batch = 1;
return WORK_CPU_UNBOUND;
}
hctx->next_cpu = next_cpu;
return next_cpu;
}
/**
* blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
* @hctx: Pointer to the hardware queue to run.
* @msecs: Milliseconds of delay to wait before running the queue.
*
* Run a hardware queue asynchronously with a delay of @msecs.
*/
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
if (unlikely(blk_mq_hctx_stopped(hctx)))
return;
kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
/**
* blk_mq_run_hw_queue - Start to run a hardware queue.
* @hctx: Pointer to the hardware queue to run.
* @async: If we want to run the queue asynchronously.
*
* Check if the request queue is not in a quiesced state and if there are
* pending requests to be sent. If this is true, run the queue to send requests
* to hardware.
*/
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
bool need_run;
/*
* We can't run the queue inline with interrupts disabled.
*/
WARN_ON_ONCE(!async && in_interrupt());
might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
/*
* When queue is quiesced, we may be switching io scheduler, or
* updating nr_hw_queues, or other things, and we can't run queue
* any more, even __blk_mq_hctx_has_pending() can't be called safely.
*
* And queue will be rerun in blk_mq_unquiesce_queue() if it is
* quiesced.
*/
__blk_mq_run_dispatch_ops(hctx->queue, false,
need_run = !blk_queue_quiesced(hctx->queue) &&
blk_mq_hctx_has_pending(hctx));
if (!need_run)
return;
if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
blk_mq_delay_run_hw_queue(hctx, 0);
return;
}
blk_mq_run_dispatch_ops(hctx->queue,
blk_mq_sched_dispatch_requests(hctx));
}
EXPORT_SYMBOL(blk_mq_run_hw_queue);
/*
* Return prefered queue to dispatch from (if any) for non-mq aware IO
* scheduler.
*/
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
{
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
/*
* If the IO scheduler does not respect hardware queues when
* dispatching, we just don't bother with multiple HW queues and
* dispatch from hctx for the current CPU since running multiple queues
* just causes lock contention inside the scheduler and pointless cache
* bouncing.
*/
struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
if (!blk_mq_hctx_stopped(hctx))
return hctx;
return NULL;
}
/**
* blk_mq_run_hw_queues - Run all hardware queues in a request queue.
* @q: Pointer to the request queue to run.
* @async: If we want to run the queue asynchronously.
*/
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
{
struct blk_mq_hw_ctx *hctx, *sq_hctx;
unsigned long i;
sq_hctx = NULL;
if (blk_queue_sq_sched(q))
sq_hctx = blk_mq_get_sq_hctx(q);
queue_for_each_hw_ctx(q, hctx, i) {
if (blk_mq_hctx_stopped(hctx))
continue;
/*
* Dispatch from this hctx either if there's no hctx preferred
* by IO scheduler or if it has requests that bypass the
* scheduler.
*/
if (!sq_hctx || sq_hctx == hctx ||
!list_empty_careful(&hctx->dispatch))
blk_mq_run_hw_queue(hctx, async);
}
}
EXPORT_SYMBOL(blk_mq_run_hw_queues);
/**
* blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
* @q: Pointer to the request queue to run.
* @msecs: Milliseconds of delay to wait before running the queues.
*/
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
{
struct blk_mq_hw_ctx *hctx, *sq_hctx;
unsigned long i;
sq_hctx = NULL;
if (blk_queue_sq_sched(q))
sq_hctx = blk_mq_get_sq_hctx(q);
queue_for_each_hw_ctx(q, hctx, i) {
if (blk_mq_hctx_stopped(hctx))
continue;
/*
* If there is already a run_work pending, leave the
* pending delay untouched. Otherwise, a hctx can stall
* if another hctx is re-delaying the other's work
* before the work executes.
*/
if (delayed_work_pending(&hctx->run_work))
continue;
/*
* Dispatch from this hctx either if there's no hctx preferred
* by IO scheduler or if it has requests that bypass the
* scheduler.
*/
if (!sq_hctx || sq_hctx == hctx ||
!list_empty_careful(&hctx->dispatch))
blk_mq_delay_run_hw_queue(hctx, msecs);
}
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
/*
* This function is often used for pausing .queue_rq() by driver when
* there isn't enough resource or some conditions aren't satisfied, and
* BLK_STS_RESOURCE is usually returned.
*
* We do not guarantee that dispatch can be drained or blocked
* after blk_mq_stop_hw_queue() returns. Please use
* blk_mq_quiesce_queue() for that requirement.
*/
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
cancel_delayed_work(&hctx->run_work);
set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
/*
* This function is often used for pausing .queue_rq() by driver when
* there isn't enough resource or some conditions aren't satisfied, and
* BLK_STS_RESOURCE is usually returned.
*
* We do not guarantee that dispatch can be drained or blocked
* after blk_mq_stop_hw_queues() returns. Please use
* blk_mq_quiesce_queue() for that requirement.
*/
void blk_mq_stop_hw_queues(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);
void blk_mq_start_hw_queues(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
if (!blk_mq_hctx_stopped(hctx))
return;
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_start_stopped_hw_queue(hctx, async ||
(hctx->flags & BLK_MQ_F_BLOCKING));
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
static void blk_mq_run_work_fn(struct work_struct *work)
{
struct blk_mq_hw_ctx *hctx =
container_of(work, struct blk_mq_hw_ctx, run_work.work);
blk_mq_run_dispatch_ops(hctx->queue,
blk_mq_sched_dispatch_requests(hctx));
}
/**
* blk_mq_request_bypass_insert - Insert a request at dispatch list.
* @rq: Pointer to request to be inserted.
* @flags: BLK_MQ_INSERT_*
*
* Should only be used carefully, when the caller knows we want to
* bypass a potential IO scheduler on the target device.
*/
static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
{
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
spin_lock(&hctx->lock);
if (flags & BLK_MQ_INSERT_AT_HEAD)
list_add(&rq->queuelist, &hctx->dispatch);
else
list_add_tail(&rq->queuelist, &hctx->dispatch);
spin_unlock(&hctx->lock);
}
static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx, struct list_head *list,
bool run_queue_async)
{
struct request *rq;
enum hctx_type type = hctx->type;
/*
* Try to issue requests directly if the hw queue isn't busy to save an
* extra enqueue & dequeue to the sw queue.
*/
if (!hctx->dispatch_busy && !run_queue_async) {
blk_mq_run_dispatch_ops(hctx->queue,
blk_mq_try_issue_list_directly(hctx, list));
if (list_empty(list))
goto out;
}
/*
* preemption doesn't flush plug list, so it's possible ctx->cpu is
* offline now
*/
list_for_each_entry(rq, list, queuelist) {
BUG_ON(rq->mq_ctx != ctx);
trace_block_rq_insert(rq);
if (rq->cmd_flags & REQ_NOWAIT)
run_queue_async = true;
}
spin_lock(&ctx->lock);
list_splice_tail_init(list, &ctx->rq_lists[type]);
blk_mq_hctx_mark_pending(hctx, ctx);
spin_unlock(&ctx->lock);
out:
blk_mq_run_hw_queue(hctx, run_queue_async);
}
static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
{
struct request_queue *q = rq->q;
struct blk_mq_ctx *ctx = rq->mq_ctx;
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
if (blk_rq_is_passthrough(rq)) {
/*
* Passthrough request have to be added to hctx->dispatch
* directly. The device may be in a situation where it can't
* handle FS request, and always returns BLK_STS_RESOURCE for
* them, which gets them added to hctx->dispatch.
*
* If a passthrough request is required to unblock the queues,
* and it is added to the scheduler queue, there is no chance to
* dispatch it given we prioritize requests in hctx->dispatch.
*/
blk_mq_request_bypass_insert(rq, flags);
} else if (req_op(rq) == REQ_OP_FLUSH) {
/*
* Firstly normal IO request is inserted to scheduler queue or
* sw queue, meantime we add flush request to dispatch queue(
* hctx->dispatch) directly and there is at most one in-flight
* flush request for each hw queue, so it doesn't matter to add
* flush request to tail or front of the dispatch queue.
*
* Secondly in case of NCQ, flush request belongs to non-NCQ
* command, and queueing it will fail when there is any
* in-flight normal IO request(NCQ command). When adding flush
* rq to the front of hctx->dispatch, it is easier to introduce
* extra time to flush rq's latency because of S_SCHED_RESTART
* compared with adding to the tail of dispatch queue, then
* chance of flush merge is increased, and less flush requests
* will be issued to controller. It is observed that ~10% time
* is saved in blktests block/004 on disk attached to AHCI/NCQ
* drive when adding flush rq to the front of hctx->dispatch.
*
* Simply queue flush rq to the front of hctx->dispatch so that
* intensive flush workloads can benefit in case of NCQ HW.
*/
blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
} else if (q->elevator) {
LIST_HEAD(list);
WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
list_add(&rq->queuelist, &list);
q->elevator->type->ops.insert_requests(hctx, &list, flags);
} else {
trace_block_rq_insert(rq);
spin_lock(&ctx->lock);
if (flags & BLK_MQ_INSERT_AT_HEAD)
list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
else
list_add_tail(&rq->queuelist,
&ctx->rq_lists[hctx->type]);
blk_mq_hctx_mark_pending(hctx, ctx);
spin_unlock(&ctx->lock);
}
}
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
unsigned int nr_segs)
{
int err;
if (bio->bi_opf & REQ_RAHEAD)
rq->cmd_flags |= REQ_FAILFAST_MASK;
rq->__sector = bio->bi_iter.bi_sector;
rq->write_hint = bio->bi_write_hint;
blk_rq_bio_prep(rq, bio, nr_segs);
/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
WARN_ON_ONCE(err);
blk_account_io_start(rq);
}
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
struct request *rq, bool last)
{
struct request_queue *q = rq->q;
struct blk_mq_queue_data bd = {
.rq = rq,
.last = last,
};
blk_status_t ret;
/*
* For OK queue, we are done. For error, caller may kill it.
* Any other error (busy), just add it to our list as we
* previously would have done.
*/
ret = q->mq_ops->queue_rq(hctx, &bd);
switch (ret) {
case BLK_STS_OK:
blk_mq_update_dispatch_busy(hctx, false);
break;
case BLK_STS_RESOURCE:
case BLK_STS_DEV_RESOURCE:
blk_mq_update_dispatch_busy(hctx, true);
__blk_mq_requeue_request(rq);
break;
default:
blk_mq_update_dispatch_busy(hctx, false);
break;
}
return ret;
}
static bool blk_mq_get_budget_and_tag(struct request *rq)
{
int budget_token;
budget_token = blk_mq_get_dispatch_budget(rq->q);
if (budget_token < 0)
return false;
blk_mq_set_rq_budget_token(rq, budget_token);
if (!blk_mq_get_driver_tag(rq)) {
blk_mq_put_dispatch_budget(rq->q, budget_token);
return false;
}
return true;
}
/**
* blk_mq_try_issue_directly - Try to send a request directly to device driver.
* @hctx: Pointer of the associated hardware queue.
* @rq: Pointer to request to be sent.
*
* If the device has enough resources to accept a new request now, send the
* request directly to device driver. Else, insert at hctx->dispatch queue, so
* we can try send it another time in the future. Requests inserted at this
* queue have higher priority.
*/
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
blk_status_t ret;
if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
blk_mq_insert_request(rq, 0);
return;
}
if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
blk_mq_insert_request(rq, 0);
blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
return;
}
ret = __blk_mq_issue_directly(hctx, rq, true);
switch (ret) {
case BLK_STS_OK:
break;
case BLK_STS_RESOURCE:
case BLK_STS_DEV_RESOURCE:
blk_mq_request_bypass_insert(rq, 0);
blk_mq_run_hw_queue(hctx, false);
break;
default:
blk_mq_end_request(rq, ret);
break;
}
}
static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
{
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
blk_mq_insert_request(rq, 0);
return BLK_STS_OK;
}
if (!blk_mq_get_budget_and_tag(rq))
return BLK_STS_RESOURCE;
return __blk_mq_issue_directly(hctx, rq, last);
}
static void blk_mq_plug_issue_direct(struct blk_plug *plug)
{
struct blk_mq_hw_ctx *hctx = NULL;
struct request *rq;
int queued = 0;
blk_status_t ret = BLK_STS_OK;
while ((rq = rq_list_pop(&plug->mq_list))) {
bool last = rq_list_empty(plug->mq_list);
if (hctx != rq->mq_hctx) {
if (hctx) {
blk_mq_commit_rqs(hctx, queued, false);
queued = 0;
}
hctx = rq->mq_hctx;
}
ret = blk_mq_request_issue_directly(rq, last);
switch (ret) {
case BLK_STS_OK:
queued++;
break;
case BLK_STS_RESOURCE:
case BLK_STS_DEV_RESOURCE:
blk_mq_request_bypass_insert(rq, 0);
blk_mq_run_hw_queue(hctx, false);
goto out;
default:
blk_mq_end_request(rq, ret);
break;
}
}
out:
if (ret != BLK_STS_OK)
blk_mq_commit_rqs(hctx, queued, false);
}
static void __blk_mq_flush_plug_list(struct request_queue *q,
struct blk_plug *plug)
{
if (blk_queue_quiesced(q))
return;
q->mq_ops->queue_rqs(&plug->mq_list);
}
static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
{
struct blk_mq_hw_ctx *this_hctx = NULL;
struct blk_mq_ctx *this_ctx = NULL;
struct request *requeue_list = NULL;
struct request **requeue_lastp = &requeue_list;
unsigned int depth = 0;
bool is_passthrough = false;
LIST_HEAD(list);
do {
struct request *rq = rq_list_pop(&plug->mq_list);
if (!this_hctx) {
this_hctx = rq->mq_hctx;
this_ctx = rq->mq_ctx;
is_passthrough = blk_rq_is_passthrough(rq);
} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
is_passthrough != blk_rq_is_passthrough(rq)) {
rq_list_add_tail(&requeue_lastp, rq);
continue;
}
list_add(&rq->queuelist, &list);
depth++;
} while (!rq_list_empty(plug->mq_list));
plug->mq_list = requeue_list;
trace_block_unplug(this_hctx->queue, depth, !from_sched);
percpu_ref_get(&this_hctx->queue->q_usage_counter);
/* passthrough requests should never be issued to the I/O scheduler */
if (is_passthrough) {
spin_lock(&this_hctx->lock);
list_splice_tail_init(&list, &this_hctx->dispatch);
spin_unlock(&this_hctx->lock);
blk_mq_run_hw_queue(this_hctx, from_sched);
} else if (this_hctx->queue->elevator) {
this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
&list, 0);
blk_mq_run_hw_queue(this_hctx, from_sched);
} else {
blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
}
percpu_ref_put(&this_hctx->queue->q_usage_counter);
}
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
struct request *rq;
/*
* We may have been called recursively midway through handling
* plug->mq_list via a schedule() in the driver's queue_rq() callback.
* To avoid mq_list changing under our feet, clear rq_count early and
* bail out specifically if rq_count is 0 rather than checking
* whether the mq_list is empty.
*/
if (plug->rq_count == 0)
return;
plug->rq_count = 0;
if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
struct request_queue *q;
rq = rq_list_peek(&plug->mq_list);
q = rq->q;
/*
* Peek first request and see if we have a ->queue_rqs() hook.
* If we do, we can dispatch the whole plug list in one go. We
* already know at this point that all requests belong to the
* same queue, caller must ensure that's the case.
*/
if (q->mq_ops->queue_rqs) {
blk_mq_run_dispatch_ops(q,
__blk_mq_flush_plug_list(q, plug));
if (rq_list_empty(plug->mq_list))
return;
}
blk_mq_run_dispatch_ops(q,
blk_mq_plug_issue_direct(plug));
if (rq_list_empty(plug->mq_list))
return;
}
do {
blk_mq_dispatch_plug_list(plug, from_schedule);
} while (!rq_list_empty(plug->mq_list));
}
static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
struct list_head *list)
{
int queued = 0;
blk_status_t ret = BLK_STS_OK;
while (!list_empty(list)) {
struct request *rq = list_first_entry(list, struct request,
queuelist);
list_del_init(&rq->queuelist);
ret = blk_mq_request_issue_directly(rq, list_empty(list));
switch (ret) {
case BLK_STS_OK:
queued++;
break;
case BLK_STS_RESOURCE:
case BLK_STS_DEV_RESOURCE:
blk_mq_request_bypass_insert(rq, 0);
if (list_empty(list))
blk_mq_run_hw_queue(hctx, false);
goto out;
default:
blk_mq_end_request(rq, ret);
break;
}
}
out:
if (ret != BLK_STS_OK)
blk_mq_commit_rqs(hctx, queued, false);
}
static bool blk_mq_attempt_bio_merge(struct request_queue *q,
struct bio *bio, unsigned int nr_segs)
{
if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
if (blk_attempt_plug_merge(q, bio, nr_segs))
return true;
if (blk_mq_sched_bio_merge(q, bio, nr_segs))
return true;
}
return false;
}
static struct request *blk_mq_get_new_requests(struct request_queue *q,
struct blk_plug *plug,
struct bio *bio,
unsigned int nsegs)
{
struct blk_mq_alloc_data data = {
.q = q,
.nr_tags = 1,
.cmd_flags = bio->bi_opf,
};
struct request *rq;
rq_qos_throttle(q, bio);
if (plug) {
data.nr_tags = plug->nr_ios;
plug->nr_ios = 1;
data.cached_rq = &plug->cached_rq;
}
rq = __blk_mq_alloc_requests(&data);
if (rq)
return rq;
rq_qos_cleanup(q, bio);
if (bio->bi_opf & REQ_NOWAIT)
bio_wouldblock_error(bio);
return NULL;
}
/*
* Check if there is a suitable cached request and return it.
*/
static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
struct request_queue *q, blk_opf_t opf)
{
enum hctx_type type = blk_mq_get_hctx_type(opf);
struct request *rq;
if (!plug)
return NULL;
rq = rq_list_peek(&plug->cached_rq);
if (!rq || rq->q != q)
return NULL;
if (type != rq->mq_hctx->type &&
(type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
return NULL;
if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
return NULL;
return rq;
}
static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
struct bio *bio)
{
WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
/*
* If any qos ->throttle() end up blocking, we will have flushed the
* plug and hence killed the cached_rq list as well. Pop this entry
* before we throttle.
*/
plug->cached_rq = rq_list_next(rq);
rq_qos_throttle(rq->q, bio);
blk_mq_rq_time_init(rq, 0);
rq->cmd_flags = bio->bi_opf;
INIT_LIST_HEAD(&rq->queuelist);
}
/**
* blk_mq_submit_bio - Create and send a request to block device.
* @bio: Bio pointer.
*
* Builds up a request structure from @q and @bio and send to the device. The
* request may not be queued directly to hardware if:
* * This request can be merged with another one
* * We want to place request at plug queue for possible future merging
* * There is an IO scheduler active at this queue
*
* It will not queue the request if there is an error with the bio, or at the
* request creation.
*/
void blk_mq_submit_bio(struct bio *bio)
{
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
struct blk_plug *plug = blk_mq_plug(bio);
const int is_sync = op_is_sync(bio->bi_opf);
struct blk_mq_hw_ctx *hctx;
unsigned int nr_segs = 1;
struct request *rq;
blk_status_t ret;
/*
* If the plug has a cached request for this queue, try to use it.
*/
rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
/*
* A BIO that was released from a zone write plug has already been
* through the preparation in this function, already holds a reference
* on the queue usage counter, and is the only write BIO in-flight for
* the target zone. Go straight to preparing a request for it.
*/
if (bio_zone_write_plugging(bio)) {
nr_segs = bio->__bi_nr_segments;
if (rq)
blk_queue_exit(q);
goto new_request;
}
bio = blk_queue_bounce(bio, q);
/*
* The cached request already holds a q_usage_counter reference and we
* don't have to acquire a new one if we use it.
*/
if (!rq) {
if (unlikely(bio_queue_enter(bio)))
return;
}
if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
if (!bio)
goto queue_exit;
}
if (!bio_integrity_prep(bio))
goto queue_exit;
if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
goto queue_exit;
if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
goto queue_exit;
new_request:
if (!rq) {
rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
if (unlikely(!rq))
goto queue_exit;
} else {
blk_mq_use_cached_rq(rq, plug, bio);
}
trace_block_getrq(bio);
rq_qos_track(q, rq, bio);
blk_mq_bio_to_request(rq, bio, nr_segs);
ret = blk_crypto_rq_get_keyslot(rq);
if (ret != BLK_STS_OK) {
bio->bi_status = ret;
bio_endio(bio);
blk_zone_complete_request(rq);
blk_mq_free_request(rq);
return;
}
if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
return;
if (bio_zone_write_plugging(bio))
blk_zone_write_plug_attempt_merge(rq);
if (plug) {
blk_add_rq_to_plug(plug, rq);
return;
}
hctx = rq->mq_hctx;
if ((rq->rq_flags & RQF_USE_SCHED) ||
(hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
blk_mq_insert_request(rq, 0);
blk_mq_run_hw_queue(hctx, true);
} else {
blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
}
return;
queue_exit:
/*
* Don't drop the queue reference if we were trying to use a cached
* request and thus didn't acquire one.
*/
if (!rq)
blk_queue_exit(q);
}
#ifdef CONFIG_BLK_MQ_STACKING
/**
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
* @rq: the request being queued
*/
blk_status_t blk_insert_cloned_request(struct request *rq)
{
struct request_queue *q = rq->q;
unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
unsigned int max_segments = blk_rq_get_max_segments(rq);
blk_status_t ret;
if (blk_rq_sectors(rq) > max_sectors) {
/*
* SCSI device does not have a good way to return if
* Write Same/Zero is actually supported. If a device rejects
* a non-read/write command (discard, write same,etc.) the
* low-level device driver will set the relevant queue limit to
* 0 to prevent blk-lib from issuing more of the offending
* operations. Commands queued prior to the queue limit being
* reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
* errors being propagated to upper layers.
*/
if (max_sectors == 0)
return BLK_STS_NOTSUPP;
printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
__func__, blk_rq_sectors(rq), max_sectors);
return BLK_STS_IOERR;
}
/*
* The queue settings related to segment counting may differ from the
* original queue.
*/
rq->nr_phys_segments = blk_recalc_rq_segments(rq);
if (rq->nr_phys_segments > max_segments) {
printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
__func__, rq->nr_phys_segments, max_segments);
return BLK_STS_IOERR;
}
if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
return BLK_STS_IOERR;
ret = blk_crypto_rq_get_keyslot(rq);
if (ret != BLK_STS_OK)
return ret;
blk_account_io_start(rq);
/*
* Since we have a scheduler attached on the top device,
* bypass a potential scheduler on the bottom device for
* insert.
*/
blk_mq_run_dispatch_ops(q,
ret = blk_mq_request_issue_directly(rq, true));
if (ret)
blk_account_io_done(rq, blk_time_get_ns());
return ret;
}
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
/**
* blk_rq_unprep_clone - Helper function to free all bios in a cloned request
* @rq: the clone request to be cleaned up
*
* Description:
* Free all bios in @rq for a cloned request.
*/
void blk_rq_unprep_clone(struct request *rq)
{
struct bio *bio;
while ((bio = rq->bio) != NULL) {
rq->bio = bio->bi_next;
bio_put(bio);
}
}
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
/**
* blk_rq_prep_clone - Helper function to setup clone request
* @rq: the request to be setup
* @rq_src: original request to be cloned
* @bs: bio_set that bios for clone are allocated from
* @gfp_mask: memory allocation mask for bio
* @bio_ctr: setup function to be called for each clone bio.
* Returns %0 for success, non %0 for failure.
* @data: private data to be passed to @bio_ctr
*
* Description:
* Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
* Also, pages which the original bios are pointing to are not copied
* and the cloned bios just point same pages.
* So cloned bios must be completed before original bios, which means
* the caller must complete @rq before @rq_src.
*/
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
struct bio_set *bs, gfp_t gfp_mask,
int (*bio_ctr)(struct bio *, struct bio *, void *),
void *data)
{
struct bio *bio, *bio_src;
if (!bs)
bs = &fs_bio_set;
__rq_for_each_bio(bio_src, rq_src) {
bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
bs);
if (!bio)
goto free_and_out;
if (bio_ctr && bio_ctr(bio, bio_src, data))
goto free_and_out;
if (rq->bio) {
rq->biotail->bi_next = bio;
rq->biotail = bio;
} else {
rq->bio = rq->biotail = bio;
}
bio = NULL;
}
/* Copy attributes of the original request to the clone request. */
rq->__sector = blk_rq_pos(rq_src);
rq->__data_len = blk_rq_bytes(rq_src);
if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
rq->special_vec = rq_src->special_vec;
}
rq->nr_phys_segments = rq_src->nr_phys_segments;
rq->ioprio = rq_src->ioprio;
rq->write_hint = rq_src->write_hint;
if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
goto free_and_out;
return 0;
free_and_out:
if (bio)
bio_put(bio);
blk_rq_unprep_clone(rq);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
#endif /* CONFIG_BLK_MQ_STACKING */
/*
* Steal bios from a request and add them to a bio list.
* The request must not have been partially completed before.
*/
void blk_steal_bios(struct bio_list *list, struct request *rq)
{
if (rq->bio) {
if (list->tail)
list->tail->bi_next = rq->bio;
else
list->head = rq->bio;
list->tail = rq->biotail;
rq->bio = NULL;
rq->biotail = NULL;
}
rq->__data_len = 0;
}
EXPORT_SYMBOL_GPL(blk_steal_bios);
static size_t order_to_size(unsigned int order)
{
return (size_t)PAGE_SIZE << order;
}
/* called before freeing request pool in @tags */
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
struct blk_mq_tags *tags)
{
struct page *page;
unsigned long flags;
/*
* There is no need to clear mapping if driver tags is not initialized
* or the mapping belongs to the driver tags.
*/
if (!drv_tags || drv_tags == tags)
return;
list_for_each_entry(page, &tags->page_list, lru) {
unsigned long start = (unsigned long)page_address(page);
unsigned long end = start + order_to_size(page->private);
int i;
for (i = 0; i < drv_tags->nr_tags; i++) {
struct request *rq = drv_tags->rqs[i];
unsigned long rq_addr = (unsigned long)rq;
if (rq_addr >= start && rq_addr < end) {
WARN_ON_ONCE(req_ref_read(rq) != 0);
cmpxchg(&drv_tags->rqs[i], rq, NULL);
}
}
}
/*
* Wait until all pending iteration is done.
*
* Request reference is cleared and it is guaranteed to be observed
* after the ->lock is released.
*/
spin_lock_irqsave(&drv_tags->lock, flags);
spin_unlock_irqrestore(&drv_tags->lock, flags);
}
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
unsigned int hctx_idx)
{
struct blk_mq_tags *drv_tags;
struct page *page;
if (list_empty(&tags->page_list))
return;
if (blk_mq_is_shared_tags(set->flags))
drv_tags = set->shared_tags;
else
drv_tags = set->tags[hctx_idx];
if (tags->static_rqs && set->ops->exit_request) {
int i;
for (i = 0; i < tags->nr_tags; i++) {
struct request *rq = tags->static_rqs[i];
if (!rq)
continue;
set->ops->exit_request(set, rq, hctx_idx);
tags->static_rqs[i] = NULL;
}
}
blk_mq_clear_rq_mapping(drv_tags, tags);
while (!list_empty(&tags->page_list)) {
page = list_first_entry(&tags->page_list, struct page, lru);
list_del_init(&page->lru);
/*
* Remove kmemleak object previously allocated in
* blk_mq_alloc_rqs().
*/
kmemleak_free(page_address(page));
__free_pages(page, page->private);
}
}
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
kfree(tags->rqs);
tags->rqs = NULL;
kfree(tags->static_rqs);
tags->static_rqs = NULL;
blk_mq_free_tags(tags);
}
static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
unsigned int hctx_idx)
{
int i;
for (i = 0; i < set->nr_maps; i++) {
unsigned int start = set->map[i].queue_offset;
unsigned int end = start + set->map[i].nr_queues;
if (hctx_idx >= start && hctx_idx < end)
break;
}
if (i >= set->nr_maps)
i = HCTX_TYPE_DEFAULT;
return i;
}
static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
unsigned int hctx_idx)
{
enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
}
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
unsigned int hctx_idx,
unsigned int nr_tags,
unsigned int reserved_tags)
{
int node = blk_mq_get_hctx_node(set, hctx_idx);
struct blk_mq_tags *tags;
if (node == NUMA_NO_NODE)
node = set->numa_node;
tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
if (!tags)
return NULL;
tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
node);
if (!tags->rqs)
goto err_free_tags;
tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
node);
if (!tags->static_rqs)
goto err_free_rqs;
return tags;
err_free_rqs:
kfree(tags->rqs);
err_free_tags:
blk_mq_free_tags(tags);
return NULL;
}
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
unsigned int hctx_idx, int node)
{
int ret;
if (set->ops->init_request) {
ret = set->ops->init_request(set, rq, hctx_idx, node);
if (ret)
return ret;
}
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
return 0;
}
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
struct blk_mq_tags *tags,
unsigned int hctx_idx, unsigned int depth)
{
unsigned int i, j, entries_per_page, max_order = 4;
int node = blk_mq_get_hctx_node(set, hctx_idx);
size_t rq_size, left;
if (node == NUMA_NO_NODE)
node = set->numa_node;
INIT_LIST_HEAD(&tags->page_list);
/*
* rq_size is the size of the request plus driver payload, rounded
* to the cacheline size
*/
rq_size = round_up(sizeof(struct request) + set->cmd_size,
cache_line_size());
left = rq_size * depth;
for (i = 0; i < depth; ) {
int this_order = max_order;
struct page *page;
int to_do;
void *p;
while (this_order && left < order_to_size(this_order - 1))
this_order--;
do {
page = alloc_pages_node(node,
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
this_order);
if (page)
break;
if (!this_order--)
break;
if (order_to_size(this_order) < rq_size)
break;
} while (1);
if (!page)
goto fail;
page->private = this_order;
list_add_tail(&page->lru, &tags->page_list);
p = page_address(page);
/*
* Allow kmemleak to scan these pages as they contain pointers
* to additional allocations like via ops->init_request().
*/
kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
entries_per_page = order_to_size(this_order) / rq_size;
to_do = min(entries_per_page, depth - i);
left -= to_do * rq_size;
for (j = 0; j < to_do; j++) {
struct request *rq = p;
tags->static_rqs[i] = rq;
if (blk_mq_init_request(set, rq, hctx_idx, node)) {
tags->static_rqs[i] = NULL;
goto fail;
}
p += rq_size;
i++;
}
}
return 0;
fail:
blk_mq_free_rqs(set, tags, hctx_idx);
return -ENOMEM;
}
struct rq_iter_data {
struct blk_mq_hw_ctx *hctx;
bool has_rq;
};
static bool blk_mq_has_request(struct request *rq, void *data)
{
struct rq_iter_data *iter_data = data;
if (rq->mq_hctx != iter_data->hctx)
return true;
iter_data->has_rq = true;
return false;
}
static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
{
struct blk_mq_tags *tags = hctx->sched_tags ?
hctx->sched_tags : hctx->tags;
struct rq_iter_data data = {
.hctx = hctx,
};
blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
return data.has_rq;
}
static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
unsigned int this_cpu)
{
enum hctx_type type = hctx->type;
int cpu;
/*
* hctx->cpumask has to rule out isolated CPUs, but userspace still
* might submit IOs on these isolated CPUs, so use the queue map to
* check if all CPUs mapped to this hctx are offline
*/
for_each_online_cpu(cpu) {
struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
type, cpu);
if (h != hctx)
continue;
/* this hctx has at least one online CPU */
if (this_cpu != cpu)
return true;
}
return false;
}
static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
{
struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
struct blk_mq_hw_ctx, cpuhp_online);
if (blk_mq_hctx_has_online_cpu(hctx, cpu))
return 0;
/*
* Prevent new request from being allocated on the current hctx.
*
* The smp_mb__after_atomic() Pairs with the implied barrier in
* test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
* seen once we return from the tag allocator.
*/
set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
smp_mb__after_atomic();
/*
* Try to grab a reference to the queue and wait for any outstanding
* requests. If we could not grab a reference the queue has been
* frozen and there are no requests.
*/
if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
while (blk_mq_hctx_has_requests(hctx))
msleep(5);
percpu_ref_put(&hctx->queue->q_usage_counter);
}
return 0;
}
static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
{
struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
struct blk_mq_hw_ctx, cpuhp_online);
if (cpumask_test_cpu(cpu, hctx->cpumask))
clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
return 0;
}
/*
* 'cpu' is going away. splice any existing rq_list entries from this
* software queue to the hw queue dispatch list, and ensure that it
* gets run.
*/
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
{
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
LIST_HEAD(tmp);
enum hctx_type type;
hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
if (!cpumask_test_cpu(cpu, hctx->cpumask))
return 0;
ctx = __blk_mq_get_ctx(hctx->queue, cpu);
type = hctx->type;
spin_lock(&ctx->lock);
if (!list_empty(&ctx->rq_lists[type])) {
list_splice_init(&ctx->rq_lists[type], &tmp);
blk_mq_hctx_clear_pending(hctx, ctx);
}
spin_unlock(&ctx->lock);
if (list_empty(&tmp))
return 0;
spin_lock(&hctx->lock);
list_splice_tail_init(&tmp, &hctx->dispatch);
spin_unlock(&hctx->lock);
blk_mq_run_hw_queue(hctx, true);
return 0;
}
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
{
if (!(hctx->flags & BLK_MQ_F_STACKING))
cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
&hctx->cpuhp_online);
cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
&hctx->cpuhp_dead);
}
/*
* Before freeing hw queue, clearing the flush request reference in
* tags->rqs[] for avoiding potential UAF.
*/
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
unsigned int queue_depth, struct request *flush_rq)
{
int i;
unsigned long flags;
/* The hw queue may not be mapped yet */
if (!tags)
return;
WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
for (i = 0; i < queue_depth; i++)
cmpxchg(&tags->rqs[i], flush_rq, NULL);
/*
* Wait until all pending iteration is done.
*
* Request reference is cleared and it is guaranteed to be observed
* after the ->lock is released.
*/
spin_lock_irqsave(&tags->lock, flags);
spin_unlock_irqrestore(&tags->lock, flags);
}
/* hctx->ctxs will be freed in queue's release handler */
static void blk_mq_exit_hctx(struct request_queue *q,
struct blk_mq_tag_set *set,
struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
struct request *flush_rq = hctx->fq->flush_rq;
if (blk_mq_hw_queue_mapped(hctx))
blk_mq_tag_idle(hctx);
if (blk_queue_init_done(q))
blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
set->queue_depth, flush_rq);
if (set->ops->exit_request)
set->ops->exit_request(set, flush_rq, hctx_idx);
if (set->ops->exit_hctx)
set->ops->exit_hctx(hctx, hctx_idx);
blk_mq_remove_cpuhp(hctx);
xa_erase(&q->hctx_table, hctx_idx);
spin_lock(&q->unused_hctx_lock);
list_add(&hctx->hctx_list, &q->unused_hctx_list);
spin_unlock(&q->unused_hctx_lock);
}
static void blk_mq_exit_hw_queues(struct request_queue *q,
struct blk_mq_tag_set *set, int nr_queue)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i) {
if (i == nr_queue)
break;
blk_mq_exit_hctx(q, set, hctx, i);
}
}
static int blk_mq_init_hctx(struct request_queue *q,
struct blk_mq_tag_set *set,
struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
{
hctx->queue_num = hctx_idx;
if (!(hctx->flags & BLK_MQ_F_STACKING))
cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
&hctx->cpuhp_online);
cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
hctx->tags = set->tags[hctx_idx];
if (set->ops->init_hctx &&
set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
goto unregister_cpu_notifier;
if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
hctx->numa_node))
goto exit_hctx;
if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
goto exit_flush_rq;
return 0;
exit_flush_rq:
if (set->ops->exit_request)
set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
exit_hctx:
if (set->ops->exit_hctx)
set->ops->exit_hctx(hctx, hctx_idx);
unregister_cpu_notifier:
blk_mq_remove_cpuhp(hctx);
return -1;
}
static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
int node)
{
struct blk_mq_hw_ctx *hctx;
gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
if (!hctx)
goto fail_alloc_hctx;
if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
goto free_hctx;
atomic_set(&hctx->nr_active, 0);
if (node == NUMA_NO_NODE)
node = set->numa_node;
hctx->numa_node = node;
INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
spin_lock_init(&hctx->lock);
INIT_LIST_HEAD(&hctx->dispatch);
hctx->queue = q;
hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
INIT_LIST_HEAD(&hctx->hctx_list);
/*
* Allocate space for all possible cpus to avoid allocation at
* runtime
*/
hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
gfp, node);
if (!hctx->ctxs)
goto free_cpumask;
if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
gfp, node, false, false))
goto free_ctxs;
hctx->nr_ctx = 0;
spin_lock_init(&hctx->dispatch_wait_lock);
init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
if (!hctx->fq)
goto free_bitmap;
blk_mq_hctx_kobj_init(hctx);
return hctx;
free_bitmap:
sbitmap_free(&hctx->ctx_map);
free_ctxs:
kfree(hctx->ctxs);
free_cpumask:
free_cpumask_var(hctx->cpumask);
free_hctx:
kfree(hctx);
fail_alloc_hctx:
return NULL;
}
static void blk_mq_init_cpu_queues(struct request_queue *q,
unsigned int nr_hw_queues)
{
struct blk_mq_tag_set *set = q->tag_set;
unsigned int i, j;
for_each_possible_cpu(i) {
struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
struct blk_mq_hw_ctx *hctx;
int k;
__ctx->cpu = i;
spin_lock_init(&__ctx->lock);
for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
INIT_LIST_HEAD(&__ctx->rq_lists[k]);
__ctx->queue = q;
/*
* Set local node, IFF we have more than one hw queue. If
* not, we remain on the home node of the device
*/
for (j = 0; j < set->nr_maps; j++) {
hctx = blk_mq_map_queue_type(q, j, i);
if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
hctx->numa_node = cpu_to_node(i);
}
}
}
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
unsigned int hctx_idx,
unsigned int depth)
{
struct blk_mq_tags *tags;
int ret;
tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
if (!tags)
return NULL;
ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
if (ret) {
blk_mq_free_rq_map(tags);
return NULL;
}
return tags;
}
static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
int hctx_idx)
{
if (blk_mq_is_shared_tags(set->flags)) {
set->tags[hctx_idx] = set->shared_tags;
return true;
}
set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
set->queue_depth);
return set->tags[hctx_idx];
}
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
struct blk_mq_tags *tags,
unsigned int hctx_idx)
{
if (tags) {
blk_mq_free_rqs(set, tags, hctx_idx);
blk_mq_free_rq_map(tags);
}
}
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
unsigned int hctx_idx)
{
if (!blk_mq_is_shared_tags(set->flags))
blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
set->tags[hctx_idx] = NULL;
}
static void blk_mq_map_swqueue(struct request_queue *q)
{
unsigned int j, hctx_idx;
unsigned long i;
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
struct blk_mq_tag_set *set = q->tag_set;
queue_for_each_hw_ctx(q, hctx, i) {
cpumask_clear(hctx->cpumask);
hctx->nr_ctx = 0;
hctx->dispatch_from = NULL;
}
/*
* Map software to hardware queues.
*
* If the cpu isn't present, the cpu is mapped to first hctx.
*/
for_each_possible_cpu(i) {
ctx = per_cpu_ptr(q->queue_ctx, i);
for (j = 0; j < set->nr_maps; j++) {
if (!set->map[j].nr_queues) {
ctx->hctxs[j] = blk_mq_map_queue_type(q,
HCTX_TYPE_DEFAULT, i);
continue;
}
hctx_idx = set->map[j].mq_map[i];
/* unmapped hw queue can be remapped after CPU topo changed */
if (!set->tags[hctx_idx] &&
!__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
/*
* If tags initialization fail for some hctx,
* that hctx won't be brought online. In this
* case, remap the current ctx to hctx[0] which
* is guaranteed to always have tags allocated
*/
set->map[j].mq_map[i] = 0;
}
hctx = blk_mq_map_queue_type(q, j, i);
ctx->hctxs[j] = hctx;
/*
* If the CPU is already set in the mask, then we've
* mapped this one already. This can happen if
* devices share queues across queue maps.
*/
if (cpumask_test_cpu(i, hctx->cpumask))
continue;
cpumask_set_cpu(i, hctx->cpumask);
hctx->type = j;
ctx->index_hw[hctx->type] = hctx->nr_ctx;
hctx->ctxs[hctx->nr_ctx++] = ctx;
/*
* If the nr_ctx type overflows, we have exceeded the
* amount of sw queues we can support.
*/
BUG_ON(!hctx->nr_ctx);
}
for (; j < HCTX_MAX_TYPES; j++)
ctx->hctxs[j] = blk_mq_map_queue_type(q,
HCTX_TYPE_DEFAULT, i);
}
queue_for_each_hw_ctx(q, hctx, i) {
int cpu;
/*
* If no software queues are mapped to this hardware queue,
* disable it and free the request entries.
*/
if (!hctx->nr_ctx) {
/* Never unmap queue 0. We need it as a
* fallback in case of a new remap fails
* allocation
*/
if (i)
__blk_mq_free_map_and_rqs(set, i);
hctx->tags = NULL;
continue;
}
hctx->tags = set->tags[i];
WARN_ON(!hctx->tags);
/*
* Set the map size to the number of mapped software queues.
* This is more accurate and more efficient than looping
* over all possibly mapped software queues.
*/
sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
/*
* Rule out isolated CPUs from hctx->cpumask to avoid
* running block kworker on isolated CPUs
*/
for_each_cpu(cpu, hctx->cpumask) {
if (cpu_is_isolated(cpu))
cpumask_clear_cpu(cpu, hctx->cpumask);
}
/*
* Initialize batch roundrobin counts
*/
hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
}
}
/*
* Caller needs to ensure that we're either frozen/quiesced, or that
* the queue isn't live yet.
*/
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i) {
if (shared) {
hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
} else {
blk_mq_tag_idle(hctx);
hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
}
}
}
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
bool shared)
{
struct request_queue *q;
lockdep_assert_held(&set->tag_list_lock);
list_for_each_entry(q, &set->tag_list, tag_set_list) {
blk_mq_freeze_queue(q);
queue_set_hctx_shared(q, shared);
blk_mq_unfreeze_queue(q);
}
}
static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
mutex_lock(&set->tag_list_lock);
list_del(&q->tag_set_list);
if (list_is_singular(&set->tag_list)) {
/* just transitioned to unshared */
set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
/* update existing queue */
blk_mq_update_tag_set_shared(set, false);
}
mutex_unlock(&set->tag_list_lock);
INIT_LIST_HEAD(&q->tag_set_list);
}
static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
struct request_queue *q)
{
mutex_lock(&set->tag_list_lock);
/*
* Check to see if we're transitioning to shared (from 1 to 2 queues).
*/
if (!list_empty(&set->tag_list) &&
!(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
/* update existing queue */
blk_mq_update_tag_set_shared(set, true);
}
if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
queue_set_hctx_shared(q, true);
list_add_tail(&q->tag_set_list, &set->tag_list);
mutex_unlock(&set->tag_list_lock);
}
/* All allocations will be freed in release handler of q->mq_kobj */
static int blk_mq_alloc_ctxs(struct request_queue *q)
{
struct blk_mq_ctxs *ctxs;
int cpu;
ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
if (!ctxs)
return -ENOMEM;
ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
if (!ctxs->queue_ctx)
goto fail;
for_each_possible_cpu(cpu) {
struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
ctx->ctxs = ctxs;
}
q->mq_kobj = &ctxs->kobj;
q->queue_ctx = ctxs->queue_ctx;
return 0;
fail:
kfree(ctxs);
return -ENOMEM;
}
/*
* It is the actual release handler for mq, but we do it from
* request queue's release handler for avoiding use-after-free
* and headache because q->mq_kobj shouldn't have been introduced,
* but we can't group ctx/kctx kobj without it.
*/
void blk_mq_release(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx, *next;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i)
WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
/* all hctx are in .unused_hctx_list now */
list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
list_del_init(&hctx->hctx_list);
kobject_put(&hctx->kobj);
}
xa_destroy(&q->hctx_table);
/*
* release .mq_kobj and sw queue's kobject now because
* both share lifetime with request queue.
*/
blk_mq_sysfs_deinit(q);
}
struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
struct queue_limits *lim, void *queuedata)
{
struct queue_limits default_lim = { };
struct request_queue *q;
int ret;
q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
if (IS_ERR(q))
return q;
q->queuedata = queuedata;
ret = blk_mq_init_allocated_queue(set, q);
if (ret) {
blk_put_queue(q);
return ERR_PTR(ret);
}
return q;
}
EXPORT_SYMBOL(blk_mq_alloc_queue);
/**
* blk_mq_destroy_queue - shutdown a request queue
* @q: request queue to shutdown
*
* This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
* requests will be failed with -ENODEV. The caller is responsible for dropping
* the reference from blk_mq_alloc_queue() by calling blk_put_queue().
*
* Context: can sleep
*/
void blk_mq_destroy_queue(struct request_queue *q)
{
WARN_ON_ONCE(!queue_is_mq(q));
WARN_ON_ONCE(blk_queue_registered(q));
might_sleep();
blk_queue_flag_set(QUEUE_FLAG_DYING, q);
blk_queue_start_drain(q);
blk_mq_freeze_queue_wait(q);
blk_sync_queue(q);
blk_mq_cancel_work_sync(q);
blk_mq_exit_queue(q);
}
EXPORT_SYMBOL(blk_mq_destroy_queue);
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
struct queue_limits *lim, void *queuedata,
struct lock_class_key *lkclass)
{
struct request_queue *q;
struct gendisk *disk;
q = blk_mq_alloc_queue(set, lim, queuedata);
if (IS_ERR(q))
return ERR_CAST(q);
disk = __alloc_disk_node(q, set->numa_node, lkclass);
if (!disk) {
blk_mq_destroy_queue(q);
blk_put_queue(q);
return ERR_PTR(-ENOMEM);
}
set_bit(GD_OWNS_QUEUE, &disk->state);
return disk;
}
EXPORT_SYMBOL(__blk_mq_alloc_disk);
struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
struct lock_class_key *lkclass)
{
struct gendisk *disk;
if (!blk_get_queue(q))
return NULL;
disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
if (!disk)
blk_put_queue(q);
return disk;
}
EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
struct blk_mq_tag_set *set, struct request_queue *q,
int hctx_idx, int node)
{
struct blk_mq_hw_ctx *hctx = NULL, *tmp;
/* reuse dead hctx first */
spin_lock(&q->unused_hctx_lock);
list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
if (tmp->numa_node == node) {
hctx = tmp;
break;
}
}
if (hctx)
list_del_init(&hctx->hctx_list);
spin_unlock(&q->unused_hctx_lock);
if (!hctx)
hctx = blk_mq_alloc_hctx(q, set, node);
if (!hctx)
goto fail;
if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
goto free_hctx;
return hctx;
free_hctx:
kobject_put(&hctx->kobj);
fail:
return NULL;
}
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i, j;
/* protect against switching io scheduler */
mutex_lock(&q->sysfs_lock);
for (i = 0; i < set->nr_hw_queues; i++) {
int old_node;
int node = blk_mq_get_hctx_node(set, i);
struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
if (old_hctx) {
old_node = old_hctx->numa_node;
blk_mq_exit_hctx(q, set, old_hctx, i);
}
if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
if (!old_hctx)
break;
pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
node, old_node);
hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
WARN_ON_ONCE(!hctx);
}
}
/*
* Increasing nr_hw_queues fails. Free the newly allocated
* hctxs and keep the previous q->nr_hw_queues.
*/
if (i != set->nr_hw_queues) {
j = q->nr_hw_queues;
} else {
j = i;
q->nr_hw_queues = set->nr_hw_queues;
}
xa_for_each_start(&q->hctx_table, j, hctx, j)
blk_mq_exit_hctx(q, set, hctx, j);
mutex_unlock(&q->sysfs_lock);
}
static void blk_mq_update_poll_flag(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
if (set->nr_maps > HCTX_TYPE_POLL &&
set->map[HCTX_TYPE_POLL].nr_queues)
blk_queue_flag_set(QUEUE_FLAG_POLL, q);
else
blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
}
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
struct request_queue *q)
{
/* mark the queue as mq asap */
q->mq_ops = set->ops;
if (blk_mq_alloc_ctxs(q))
goto err_exit;
/* init q->mq_kobj and sw queues' kobjects */
blk_mq_sysfs_init(q);
INIT_LIST_HEAD(&q->unused_hctx_list);
spin_lock_init(&q->unused_hctx_lock);
xa_init(&q->hctx_table);
blk_mq_realloc_hw_ctxs(set, q);
if (!q->nr_hw_queues)
goto err_hctxs;
INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
q->tag_set = set;
q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
blk_mq_update_poll_flag(q);
INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
INIT_LIST_HEAD(&q->flush_list);
INIT_LIST_HEAD(&q->requeue_list);
spin_lock_init(&q->requeue_lock);
q->nr_requests = set->queue_depth;
blk_mq_init_cpu_queues(q, set->nr_hw_queues);
blk_mq_add_queue_tag_set(set, q);
blk_mq_map_swqueue(q);
return 0;
err_hctxs:
blk_mq_release(q);
err_exit:
q->mq_ops = NULL;
return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
/* tags can _not_ be used after returning from blk_mq_exit_queue */
void blk_mq_exit_queue(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
blk_mq_del_queue_tag_set(q);
}
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
int i;
if (blk_mq_is_shared_tags(set->flags)) {
set->shared_tags = blk_mq_alloc_map_and_rqs(set,
BLK_MQ_NO_HCTX_IDX,
set->queue_depth);
if (!set->shared_tags)
return -ENOMEM;
}
for (i = 0; i < set->nr_hw_queues; i++) {
if (!__blk_mq_alloc_map_and_rqs(set, i))
goto out_unwind;
cond_resched();
}
return 0;
out_unwind:
while (--i >= 0)
__blk_mq_free_map_and_rqs(set, i);
if (blk_mq_is_shared_tags(set->flags)) {
blk_mq_free_map_and_rqs(set, set->shared_tags,
BLK_MQ_NO_HCTX_IDX);
}
return -ENOMEM;
}
/*
* Allocate the request maps associated with this tag_set. Note that this
* may reduce the depth asked for, if memory is tight. set->queue_depth
* will be updated to reflect the allocated depth.
*/
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
{
unsigned int depth;
int err;
depth = set->queue_depth;
do {
err = __blk_mq_alloc_rq_maps(set);
if (!err)
break;
set->queue_depth >>= 1;
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
err = -ENOMEM;
break;
}
} while (set->queue_depth);
if (!set->queue_depth || err) {
pr_err("blk-mq: failed to allocate request map\n");
return -ENOMEM;
}
if (depth != set->queue_depth)
pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
depth, set->queue_depth);
return 0;
}
static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
/*
* blk_mq_map_queues() and multiple .map_queues() implementations
* expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
* number of hardware queues.
*/
if (set->nr_maps == 1)
set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
if (set->ops->map_queues) {
int i;
/*
* transport .map_queues is usually done in the following
* way:
*
* for (queue = 0; queue < set->nr_hw_queues; queue++) {
* mask = get_cpu_mask(queue)
* for_each_cpu(cpu, mask)
* set->map[x].mq_map[cpu] = queue;
* }
*
* When we need to remap, the table has to be cleared for
* killing stale mapping since one CPU may not be mapped
* to any hw queue.
*/
for (i = 0; i < set->nr_maps; i++)
blk_mq_clear_mq_map(&set->map[i]);
set->ops->map_queues(set);
} else {
BUG_ON(set->nr_maps > 1);
blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
}
}
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
int new_nr_hw_queues)
{
struct blk_mq_tags **new_tags;
int i;
if (set->nr_hw_queues >= new_nr_hw_queues)
goto done;
new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
GFP_KERNEL, set->numa_node);
if (!new_tags)
return -ENOMEM;
if (set->tags)
memcpy(new_tags, set->tags, set->nr_hw_queues *
sizeof(*set->tags));
kfree(set->tags);
set->tags = new_tags;
for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
if (!__blk_mq_alloc_map_and_rqs(set, i)) {
while (--i >= set->nr_hw_queues)
__blk_mq_free_map_and_rqs(set, i);
return -ENOMEM;
}
cond_resched();
}
done:
set->nr_hw_queues = new_nr_hw_queues;
return 0;
}
/*
* Alloc a tag set to be associated with one or more request queues.
* May fail with EINVAL for various error conditions. May adjust the
* requested depth down, if it's too large. In that case, the set
* value will be stored in set->queue_depth.
*/
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
int i, ret;
BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
if (!set->nr_hw_queues)
return -EINVAL;
if (!set->queue_depth)
return -EINVAL;
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
return -EINVAL;
if (!set->ops->queue_rq)
return -EINVAL;
if (!set->ops->get_budget ^ !set->ops->put_budget)
return -EINVAL;
if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
pr_info("blk-mq: reduced tag depth to %u\n",
BLK_MQ_MAX_DEPTH);
set->queue_depth = BLK_MQ_MAX_DEPTH;
}
if (!set->nr_maps)
set->nr_maps = 1;
else if (set->nr_maps > HCTX_MAX_TYPES)
return -EINVAL;
/*
* If a crashdump is active, then we are potentially in a very
* memory constrained environment. Limit us to 64 tags to prevent
* using too much memory.
*/
if (is_kdump_kernel())
set->queue_depth = min(64U, set->queue_depth);
/*
* There is no use for more h/w queues than cpus if we just have
* a single map
*/
if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
set->nr_hw_queues = nr_cpu_ids;
if (set->flags & BLK_MQ_F_BLOCKING) {
set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
if (!set->srcu)
return -ENOMEM;
ret = init_srcu_struct(set->srcu);
if (ret)
goto out_free_srcu;
}
ret = -ENOMEM;
set->tags = kcalloc_node(set->nr_hw_queues,
sizeof(struct blk_mq_tags *), GFP_KERNEL,
set->numa_node);
if (!set->tags)
goto out_cleanup_srcu;
for (i = 0; i < set->nr_maps; i++) {
set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
sizeof(set->map[i].mq_map[0]),
GFP_KERNEL, set->numa_node);
if (!set->map[i].mq_map)
goto out_free_mq_map;
set->map[i].nr_queues = set->nr_hw_queues;
}
blk_mq_update_queue_map(set);
ret = blk_mq_alloc_set_map_and_rqs(set);
if (ret)
goto out_free_mq_map;
mutex_init(&set->tag_list_lock);
INIT_LIST_HEAD(&set->tag_list);
return 0;
out_free_mq_map:
for (i = 0; i < set->nr_maps; i++) {
kfree(set->map[i].mq_map);
set->map[i].mq_map = NULL;
}
kfree(set->tags);
set->tags = NULL;
out_cleanup_srcu:
if (set->flags & BLK_MQ_F_BLOCKING)
cleanup_srcu_struct(set->srcu);
out_free_srcu:
if (set->flags & BLK_MQ_F_BLOCKING)
kfree(set->srcu);
return ret;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);
/* allocate and initialize a tagset for a simple single-queue device */
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
const struct blk_mq_ops *ops, unsigned int queue_depth,
unsigned int set_flags)
{
memset(set, 0, sizeof(*set));
set->ops = ops;
set->nr_hw_queues = 1;
set->nr_maps = 1;
set->queue_depth = queue_depth;
set->numa_node = NUMA_NO_NODE;
set->flags = set_flags;
return blk_mq_alloc_tag_set(set);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
int i, j;
for (i = 0; i < set->nr_hw_queues; i++)
__blk_mq_free_map_and_rqs(set, i);
if (blk_mq_is_shared_tags(set->flags)) {
blk_mq_free_map_and_rqs(set, set->shared_tags,
BLK_MQ_NO_HCTX_IDX);
}
for (j = 0; j < set->nr_maps; j++) {
kfree(set->map[j].mq_map);
set->map[j].mq_map = NULL;
}
kfree(set->tags);
set->tags = NULL;
if (set->flags & BLK_MQ_F_BLOCKING) {
cleanup_srcu_struct(set->srcu);
kfree(set->srcu);
}
}
EXPORT_SYMBOL(blk_mq_free_tag_set);
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
struct blk_mq_tag_set *set = q->tag_set;
struct blk_mq_hw_ctx *hctx;
int ret;
unsigned long i;
if (!set)
return -EINVAL;
if (q->nr_requests == nr)
return 0;
blk_mq_freeze_queue(q);
blk_mq_quiesce_queue(q);
ret = 0;
queue_for_each_hw_ctx(q, hctx, i) {
if (!hctx->tags)
continue;
/*
* If we're using an MQ scheduler, just update the scheduler
* queue depth. This is similar to what the old code would do.
*/
if (hctx->sched_tags) {
ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
nr, true);
} else {
ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
false);
}
if (ret)
break;
if (q->elevator && q->elevator->type->ops.depth_updated)
q->elevator->type->ops.depth_updated(hctx);
}
if (!ret) {
q->nr_requests = nr;
if (blk_mq_is_shared_tags(set->flags)) {
if (q->elevator)
blk_mq_tag_update_sched_shared_tags(q);
else
blk_mq_tag_resize_shared_tags(set, nr);
}
}
blk_mq_unquiesce_queue(q);
blk_mq_unfreeze_queue(q);
return ret;
}
/*
* request_queue and elevator_type pair.
* It is just used by __blk_mq_update_nr_hw_queues to cache
* the elevator_type associated with a request_queue.
*/
struct blk_mq_qe_pair {
struct list_head node;
struct request_queue *q;
struct elevator_type *type;
};
/*
* Cache the elevator_type in qe pair list and switch the
* io scheduler to 'none'
*/
static bool blk_mq_elv_switch_none(struct list_head *head,
struct request_queue *q)
{
struct blk_mq_qe_pair *qe;
qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
if (!qe)
return false;
/* q->elevator needs protection from ->sysfs_lock */
mutex_lock(&q->sysfs_lock);
/* the check has to be done with holding sysfs_lock */
if (!q->elevator) {
kfree(qe);
goto unlock;
}
INIT_LIST_HEAD(&qe->node);
qe->q = q;
qe->type = q->elevator->type;
/* keep a reference to the elevator module as we'll switch back */
__elevator_get(qe->type);
list_add(&qe->node, head);
elevator_disable(q);
unlock:
mutex_unlock(&q->sysfs_lock);
return true;
}
static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
struct request_queue *q)
{
struct blk_mq_qe_pair *qe;
list_for_each_entry(qe, head, node)
if (qe->q == q)
return qe;
return NULL;
}
static void blk_mq_elv_switch_back(struct list_head *head,
struct request_queue *q)
{
struct blk_mq_qe_pair *qe;
struct elevator_type *t;
qe = blk_lookup_qe_pair(head, q);
if (!qe)
return;
t = qe->type;
list_del(&qe->node);
kfree(qe);
mutex_lock(&q->sysfs_lock);
elevator_switch(q, t);
/* drop the reference acquired in blk_mq_elv_switch_none */
elevator_put(t);
mutex_unlock(&q->sysfs_lock);
}
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
int nr_hw_queues)
{
struct request_queue *q;
LIST_HEAD(head);
int prev_nr_hw_queues = set->nr_hw_queues;
int i;
lockdep_assert_held(&set->tag_list_lock);
if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
nr_hw_queues = nr_cpu_ids;
if (nr_hw_queues < 1)
return;
if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
return;
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_freeze_queue(q);
/*
* Switch IO scheduler to 'none', cleaning up the data associated
* with the previous scheduler. We will switch back once we are done
* updating the new sw to hw queue mappings.
*/
list_for_each_entry(q, &set->tag_list, tag_set_list)
if (!blk_mq_elv_switch_none(&head, q))
goto switch_back;
list_for_each_entry(q, &set->tag_list, tag_set_list) {
blk_mq_debugfs_unregister_hctxs(q);
blk_mq_sysfs_unregister_hctxs(q);
}
if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
goto reregister;
fallback:
blk_mq_update_queue_map(set);
list_for_each_entry(q, &set->tag_list, tag_set_list) {
blk_mq_realloc_hw_ctxs(set, q);
blk_mq_update_poll_flag(q);
if (q->nr_hw_queues != set->nr_hw_queues) {
int i = prev_nr_hw_queues;
pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
nr_hw_queues, prev_nr_hw_queues);
for (; i < set->nr_hw_queues; i++)
__blk_mq_free_map_and_rqs(set, i);
set->nr_hw_queues = prev_nr_hw_queues;
goto fallback;
}
blk_mq_map_swqueue(q);
}
reregister:
list_for_each_entry(q, &set->tag_list, tag_set_list) {
blk_mq_sysfs_register_hctxs(q);
blk_mq_debugfs_register_hctxs(q);
}
switch_back:
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_elv_switch_back(&head, q);
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_unfreeze_queue(q);
/* Free the excess tags when nr_hw_queues shrink. */
for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
__blk_mq_free_map_and_rqs(set, i);
}
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
mutex_lock(&set->tag_list_lock);
__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
mutex_unlock(&set->tag_list_lock);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
struct io_comp_batch *iob, unsigned int flags)
{
long state = get_current_state();
int ret;
do {
ret = q->mq_ops->poll(hctx, iob);
if (ret > 0) {
__set_current_state(TASK_RUNNING);
return ret;
}
if (signal_pending_state(state, current))
__set_current_state(TASK_RUNNING);
if (task_is_running(current))
return 1;
if (ret < 0 || (flags & BLK_POLL_ONESHOT))
break;
cpu_relax();
} while (!need_resched());
__set_current_state(TASK_RUNNING);
return 0;
}
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
struct io_comp_batch *iob, unsigned int flags)
{
struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
return blk_hctx_poll(q, hctx, iob, flags);
}
int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
unsigned int poll_flags)
{
struct request_queue *q = rq->q;
int ret;
if (!blk_rq_is_poll(rq))
return 0;
if (!percpu_ref_tryget(&q->q_usage_counter))
return 0;
ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
blk_queue_exit(q);
return ret;
}
EXPORT_SYMBOL_GPL(blk_rq_poll);
unsigned int blk_mq_rq_cpu(struct request *rq)
{
return rq->mq_ctx->cpu;
}
EXPORT_SYMBOL(blk_mq_rq_cpu);
void blk_mq_cancel_work_sync(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
cancel_delayed_work_sync(&q->requeue_work);
queue_for_each_hw_ctx(q, hctx, i)
cancel_delayed_work_sync(&hctx->run_work);
}
static int __init blk_mq_init(void)
{
int i;
for_each_possible_cpu(i)
init_llist_head(&per_cpu(blk_cpu_done, i));
for_each_possible_cpu(i)
INIT_CSD(&per_cpu(blk_cpu_csd, i),
__blk_mq_complete_request_remote, NULL);
open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
"block/softirq:dead", NULL,
blk_softirq_cpu_dead);
cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
blk_mq_hctx_notify_dead);
cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
blk_mq_hctx_notify_online,
blk_mq_hctx_notify_offline);
return 0;
}
subsys_initcall(blk_mq_init);