/*
* arch/sh/mm/pmb.c
*
* Privileged Space Mapping Buffer (PMB) Support.
*
* Copyright (C) 2005 - 2011 Paul Mundt
* Copyright (C) 2010 Matt Fleming
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/syscore_ops.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <asm/cacheflush.h>
#include <linux/sizes.h>
#include <linux/uaccess.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
struct pmb_entry;
struct pmb_entry {
unsigned long vpn;
unsigned long ppn;
unsigned long flags;
unsigned long size;
raw_spinlock_t lock;
/*
* 0 .. NR_PMB_ENTRIES for specific entry selection, or
* PMB_NO_ENTRY to search for a free one
*/
int entry;
/* Adjacent entry link for contiguous multi-entry mappings */
struct pmb_entry *link;
};
static struct {
unsigned long size;
int flag;
} pmb_sizes[] = {
{ .size = SZ_512M, .flag = PMB_SZ_512M, },
{ .size = SZ_128M, .flag = PMB_SZ_128M, },
{ .size = SZ_64M, .flag = PMB_SZ_64M, },
{ .size = SZ_16M, .flag = PMB_SZ_16M, },
};
static void pmb_unmap_entry(struct pmb_entry *, int depth);
static DEFINE_RWLOCK(pmb_rwlock);
static struct pmb_entry pmb_entry_list[NR_PMB_ENTRIES];
static DECLARE_BITMAP(pmb_map, NR_PMB_ENTRIES);
static unsigned int pmb_iomapping_enabled;
static __always_inline unsigned long mk_pmb_entry(unsigned int entry)
{
return (entry & PMB_E_MASK) << PMB_E_SHIFT;
}
static __always_inline unsigned long mk_pmb_addr(unsigned int entry)
{
return mk_pmb_entry(entry) | PMB_ADDR;
}
static __always_inline unsigned long mk_pmb_data(unsigned int entry)
{
return mk_pmb_entry(entry) | PMB_DATA;
}
static __always_inline unsigned int pmb_ppn_in_range(unsigned long ppn)
{
return ppn >= __pa(memory_start) && ppn < __pa(memory_end);
}
/*
* Ensure that the PMB entries match our cache configuration.
*
* When we are in 32-bit address extended mode, CCR.CB becomes
* invalid, so care must be taken to manually adjust cacheable
* translations.
*/
static __always_inline unsigned long pmb_cache_flags(void)
{
unsigned long flags = 0;
#if defined(CONFIG_CACHE_OFF)
flags |= PMB_WT | PMB_UB;
#elif defined(CONFIG_CACHE_WRITETHROUGH)
flags |= PMB_C | PMB_WT | PMB_UB;
#elif defined(CONFIG_CACHE_WRITEBACK)
flags |= PMB_C;
#endif
return flags;
}
/*
* Convert typical pgprot value to the PMB equivalent
*/
static inline unsigned long pgprot_to_pmb_flags(pgprot_t prot)
{
unsigned long pmb_flags = 0;
u64 flags = pgprot_val(prot);
if (flags & _PAGE_CACHABLE)
pmb_flags |= PMB_C;
if (flags & _PAGE_WT)
pmb_flags |= PMB_WT | PMB_UB;
return pmb_flags;
}
static inline bool pmb_can_merge(struct pmb_entry *a, struct pmb_entry *b)
{
return (b->vpn == (a->vpn + a->size)) &&
(b->ppn == (a->ppn + a->size)) &&
(b->flags == a->flags);
}
static bool pmb_mapping_exists(unsigned long vaddr, phys_addr_t phys,
unsigned long size)
{
int i;
read_lock(&pmb_rwlock);
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
struct pmb_entry *pmbe, *iter;
unsigned long span;
if (!test_bit(i, pmb_map))
continue;
pmbe = &pmb_entry_list[i];
/*
* See if VPN and PPN are bounded by an existing mapping.
*/
if ((vaddr < pmbe->vpn) || (vaddr >= (pmbe->vpn + pmbe->size)))
continue;
if ((phys < pmbe->ppn) || (phys >= (pmbe->ppn + pmbe->size)))
continue;
/*
* Now see if we're in range of a simple mapping.
*/
if (size <= pmbe->size) {
read_unlock(&pmb_rwlock);
return true;
}
span = pmbe->size;
/*
* Finally for sizes that involve compound mappings, walk
* the chain.
*/
for (iter = pmbe->link; iter; iter = iter->link)
span += iter->size;
/*
* Nothing else to do if the range requirements are met.
*/
if (size <= span) {
read_unlock(&pmb_rwlock);
return true;
}
}
read_unlock(&pmb_rwlock);
return false;
}
static bool pmb_size_valid(unsigned long size)
{
int i;
for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++)
if (pmb_sizes[i].size == size)
return true;
return false;
}
static inline bool pmb_addr_valid(unsigned long addr, unsigned long size)
{
return (addr >= P1SEG && (addr + size - 1) < P3SEG);
}
static inline bool pmb_prot_valid(pgprot_t prot)
{
return (pgprot_val(prot) & _PAGE_USER) == 0;
}
static int pmb_size_to_flags(unsigned long size)
{
int i;
for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++)
if (pmb_sizes[i].size == size)
return pmb_sizes[i].flag;
return 0;
}
static int pmb_alloc_entry(void)
{
int pos;
pos = find_first_zero_bit(pmb_map, NR_PMB_ENTRIES);
if (pos >= 0 && pos < NR_PMB_ENTRIES)
__set_bit(pos, pmb_map);
else
pos = -ENOSPC;
return pos;
}
static struct pmb_entry *pmb_alloc(unsigned long vpn, unsigned long ppn,
unsigned long flags, int entry)
{
struct pmb_entry *pmbe;
unsigned long irqflags;
void *ret = NULL;
int pos;
write_lock_irqsave(&pmb_rwlock, irqflags);
if (entry == PMB_NO_ENTRY) {
pos = pmb_alloc_entry();
if (unlikely(pos < 0)) {
ret = ERR_PTR(pos);
goto out;
}
} else {
if (__test_and_set_bit(entry, pmb_map)) {
ret = ERR_PTR(-ENOSPC);
goto out;
}
pos = entry;
}
write_unlock_irqrestore(&pmb_rwlock, irqflags);
pmbe = &pmb_entry_list[pos];
memset(pmbe, 0, sizeof(struct pmb_entry));
raw_spin_lock_init(&pmbe->lock);
pmbe->vpn = vpn;
pmbe->ppn = ppn;
pmbe->flags = flags;
pmbe->entry = pos;
return pmbe;
out:
write_unlock_irqrestore(&pmb_rwlock, irqflags);
return ret;
}
static void pmb_free(struct pmb_entry *pmbe)
{
__clear_bit(pmbe->entry, pmb_map);
pmbe->entry = PMB_NO_ENTRY;
pmbe->link = NULL;
}
/*
* Must be run uncached.
*/
static void __set_pmb_entry(struct pmb_entry *pmbe)
{
unsigned long addr, data;
addr = mk_pmb_addr(pmbe->entry);
data = mk_pmb_data(pmbe->entry);
jump_to_uncached();
/* Set V-bit */
__raw_writel(pmbe->vpn | PMB_V, addr);
__raw_writel(pmbe->ppn | pmbe->flags | PMB_V, data);
back_to_cached();
}
static void __clear_pmb_entry(struct pmb_entry *pmbe)
{
unsigned long addr, data;
unsigned long addr_val, data_val;
addr = mk_pmb_addr(pmbe->entry);
data = mk_pmb_data(pmbe->entry);
addr_val = __raw_readl(addr);
data_val = __raw_readl(data);
/* Clear V-bit */
writel_uncached(addr_val & ~PMB_V, addr);
writel_uncached(data_val & ~PMB_V, data);
}
#ifdef CONFIG_PM
static void set_pmb_entry(struct pmb_entry *pmbe)
{
unsigned long flags;
raw_spin_lock_irqsave(&pmbe->lock, flags);
__set_pmb_entry(pmbe);
raw_spin_unlock_irqrestore(&pmbe->lock, flags);
}
#endif /* CONFIG_PM */
int pmb_bolt_mapping(unsigned long vaddr, phys_addr_t phys,
unsigned long size, pgprot_t prot)
{
struct pmb_entry *pmbp, *pmbe;
unsigned long orig_addr, orig_size;
unsigned long flags, pmb_flags;
int i, mapped;
if (size < SZ_16M)
return -EINVAL;
if (!pmb_addr_valid(vaddr, size))
return -EFAULT;
if (pmb_mapping_exists(vaddr, phys, size))
return 0;
orig_addr = vaddr;
orig_size = size;
flush_tlb_kernel_range(vaddr, vaddr + size);
pmb_flags = pgprot_to_pmb_flags(prot);
pmbp = NULL;
do {
for (i = mapped = 0; i < ARRAY_SIZE(pmb_sizes); i++) {
if (size < pmb_sizes[i].size)
continue;
pmbe = pmb_alloc(vaddr, phys, pmb_flags |
pmb_sizes[i].flag, PMB_NO_ENTRY);
if (IS_ERR(pmbe)) {
pmb_unmap_entry(pmbp, mapped);
return PTR_ERR(pmbe);
}
raw_spin_lock_irqsave(&pmbe->lock, flags);
pmbe->size = pmb_sizes[i].size;
__set_pmb_entry(pmbe);
phys += pmbe->size;
vaddr += pmbe->size;
size -= pmbe->size;
/*
* Link adjacent entries that span multiple PMB
* entries for easier tear-down.
*/
if (likely(pmbp)) {
raw_spin_lock_nested(&pmbp->lock,
SINGLE_DEPTH_NESTING);
pmbp->link = pmbe;
raw_spin_unlock(&pmbp->lock);
}
pmbp = pmbe;
/*
* Instead of trying smaller sizes on every
* iteration (even if we succeed in allocating
* space), try using pmb_sizes[i].size again.
*/
i--;
mapped++;
raw_spin_unlock_irqrestore(&pmbe->lock, flags);
}
} while (size >= SZ_16M);
flush_cache_vmap(orig_addr, orig_addr + orig_size);
return 0;
}
void __iomem *pmb_remap_caller(phys_addr_t phys, unsigned long size,
pgprot_t prot, void *caller)
{
unsigned long vaddr;
phys_addr_t offset, last_addr;
phys_addr_t align_mask;
unsigned long aligned;
struct vm_struct *area;
int i, ret;
if (!pmb_iomapping_enabled)
return NULL;
/*
* Small mappings need to go through the TLB.
*/
if (size < SZ_16M)
return ERR_PTR(-EINVAL);
if (!pmb_prot_valid(prot))
return ERR_PTR(-EINVAL);
for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++)
if (size >= pmb_sizes[i].size)
break;
last_addr = phys + size;
align_mask = ~(pmb_sizes[i].size - 1);
offset = phys & ~align_mask;
phys &= align_mask;
aligned = ALIGN(last_addr, pmb_sizes[i].size) - phys;
/*
* XXX: This should really start from uncached_end, but this
* causes the MMU to reset, so for now we restrict it to the
* 0xb000...0xc000 range.
*/
area = __get_vm_area_caller(aligned, VM_IOREMAP, 0xb0000000,
P3SEG, caller);
if (!area)
return NULL;
area->phys_addr = phys;
vaddr = (unsigned long)area->addr;
ret = pmb_bolt_mapping(vaddr, phys, size, prot);
if (unlikely(ret != 0))
return ERR_PTR(ret);
return (void __iomem *)(offset + (char *)vaddr);
}
int pmb_unmap(void __iomem *addr)
{
struct pmb_entry *pmbe = NULL;
unsigned long vaddr = (unsigned long __force)addr;
int i, found = 0;
read_lock(&pmb_rwlock);
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
if (test_bit(i, pmb_map)) {
pmbe = &pmb_entry_list[i];
if (pmbe->vpn == vaddr) {
found = 1;
break;
}
}
}
read_unlock(&pmb_rwlock);
if (found) {
pmb_unmap_entry(pmbe, NR_PMB_ENTRIES);
return 0;
}
return -EINVAL;
}
static void __pmb_unmap_entry(struct pmb_entry *pmbe, int depth)
{
do {
struct pmb_entry *pmblink = pmbe;
/*
* We may be called before this pmb_entry has been
* entered into the PMB table via set_pmb_entry(), but
* that's OK because we've allocated a unique slot for
* this entry in pmb_alloc() (even if we haven't filled
* it yet).
*
* Therefore, calling __clear_pmb_entry() is safe as no
* other mapping can be using that slot.
*/
__clear_pmb_entry(pmbe);
flush_cache_vunmap(pmbe->vpn, pmbe->vpn + pmbe->size);
pmbe = pmblink->link;
pmb_free(pmblink);
} while (pmbe && --depth);
}
static void pmb_unmap_entry(struct pmb_entry *pmbe, int depth)
{
unsigned long flags;
if (unlikely(!pmbe))
return;
write_lock_irqsave(&pmb_rwlock, flags);
__pmb_unmap_entry(pmbe, depth);
write_unlock_irqrestore(&pmb_rwlock, flags);
}
static void __init pmb_notify(void)
{
int i;
pr_info("PMB: boot mappings:\n");
read_lock(&pmb_rwlock);
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
struct pmb_entry *pmbe;
if (!test_bit(i, pmb_map))
continue;
pmbe = &pmb_entry_list[i];
pr_info(" 0x%08lx -> 0x%08lx [ %4ldMB %2scached ]\n",
pmbe->vpn >> PAGE_SHIFT, pmbe->ppn >> PAGE_SHIFT,
pmbe->size >> 20, (pmbe->flags & PMB_C) ? "" : "un");
}
read_unlock(&pmb_rwlock);
}
/*
* Sync our software copy of the PMB mappings with those in hardware. The
* mappings in the hardware PMB were either set up by the bootloader or
* very early on by the kernel.
*/
static void __init pmb_synchronize(void)
{
struct pmb_entry *pmbp = NULL;
int i, j;
/*
* Run through the initial boot mappings, log the established
* ones, and blow away anything that falls outside of the valid
* PPN range. Specifically, we only care about existing mappings
* that impact the cached/uncached sections.
*
* Note that touching these can be a bit of a minefield; the boot
* loader can establish multi-page mappings with the same caching
* attributes, so we need to ensure that we aren't modifying a
* mapping that we're presently executing from, or may execute
* from in the case of straddling page boundaries.
*
* In the future we will have to tidy up after the boot loader by
* jumping between the cached and uncached mappings and tearing
* down alternating mappings while executing from the other.
*/
for (i = 0; i < NR_PMB_ENTRIES; i++) {
unsigned long addr, data;
unsigned long addr_val, data_val;
unsigned long ppn, vpn, flags;
unsigned long irqflags;
unsigned int size;
struct pmb_entry *pmbe;
addr = mk_pmb_addr(i);
data = mk_pmb_data(i);
addr_val = __raw_readl(addr);
data_val = __raw_readl(data);
/*
* Skip over any bogus entries
*/
if (!(data_val & PMB_V) || !(addr_val & PMB_V))
continue;
ppn = data_val & PMB_PFN_MASK;
vpn = addr_val & PMB_PFN_MASK;
/*
* Only preserve in-range mappings.
*/
if (!pmb_ppn_in_range(ppn)) {
/*
* Invalidate anything out of bounds.
*/
writel_uncached(addr_val & ~PMB_V, addr);
writel_uncached(data_val & ~PMB_V, data);
continue;
}
/*
* Update the caching attributes if necessary
*/
if (data_val & PMB_C) {
data_val &= ~PMB_CACHE_MASK;
data_val |= pmb_cache_flags();
writel_uncached(data_val, data);
}
size = data_val & PMB_SZ_MASK;
flags = size | (data_val & PMB_CACHE_MASK);
pmbe = pmb_alloc(vpn, ppn, flags, i);
if (IS_ERR(pmbe)) {
WARN_ON_ONCE(1);
continue;
}
raw_spin_lock_irqsave(&pmbe->lock, irqflags);
for (j = 0; j < ARRAY_SIZE(pmb_sizes); j++)
if (pmb_sizes[j].flag == size)
pmbe->size = pmb_sizes[j].size;
if (pmbp) {
raw_spin_lock_nested(&pmbp->lock, SINGLE_DEPTH_NESTING);
/*
* Compare the previous entry against the current one to
* see if the entries span a contiguous mapping. If so,
* setup the entry links accordingly. Compound mappings
* are later coalesced.
*/
if (pmb_can_merge(pmbp, pmbe))
pmbp->link = pmbe;
raw_spin_unlock(&pmbp->lock);
}
pmbp = pmbe;
raw_spin_unlock_irqrestore(&pmbe->lock, irqflags);
}
}
static void __init pmb_merge(struct pmb_entry *head)
{
unsigned long span, newsize;
struct pmb_entry *tail;
int i = 1, depth = 0;
span = newsize = head->size;
tail = head->link;
while (tail) {
span += tail->size;
if (pmb_size_valid(span)) {
newsize = span;
depth = i;
}
/* This is the end of the line.. */
if (!tail->link)
break;
tail = tail->link;
i++;
}
/*
* The merged page size must be valid.
*/
if (!depth || !pmb_size_valid(newsize))
return;
head->flags &= ~PMB_SZ_MASK;
head->flags |= pmb_size_to_flags(newsize);
head->size = newsize;
__pmb_unmap_entry(head->link, depth);
__set_pmb_entry(head);
}
static void __init pmb_coalesce(void)
{
unsigned long flags;
int i;
write_lock_irqsave(&pmb_rwlock, flags);
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
struct pmb_entry *pmbe;
if (!test_bit(i, pmb_map))
continue;
pmbe = &pmb_entry_list[i];
/*
* We're only interested in compound mappings
*/
if (!pmbe->link)
continue;
/*
* Nothing to do if it already uses the largest possible
* page size.
*/
if (pmbe->size == SZ_512M)
continue;
pmb_merge(pmbe);
}
write_unlock_irqrestore(&pmb_rwlock, flags);
}
#ifdef CONFIG_UNCACHED_MAPPING
static void __init pmb_resize(void)
{
int i;
/*
* If the uncached mapping was constructed by the kernel, it will
* already be a reasonable size.
*/
if (uncached_size == SZ_16M)
return;
read_lock(&pmb_rwlock);
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
struct pmb_entry *pmbe;
unsigned long flags;
if (!test_bit(i, pmb_map))
continue;
pmbe = &pmb_entry_list[i];
if (pmbe->vpn != uncached_start)
continue;
/*
* Found it, now resize it.
*/
raw_spin_lock_irqsave(&pmbe->lock, flags);
pmbe->size = SZ_16M;
pmbe->flags &= ~PMB_SZ_MASK;
pmbe->flags |= pmb_size_to_flags(pmbe->size);
uncached_resize(pmbe->size);
__set_pmb_entry(pmbe);
raw_spin_unlock_irqrestore(&pmbe->lock, flags);
}
read_unlock(&pmb_rwlock);
}
#endif
static int __init early_pmb(char *p)
{
if (!p)
return 0;
if (strstr(p, "iomap"))
pmb_iomapping_enabled = 1;
return 0;
}
early_param("pmb", early_pmb);
void __init pmb_init(void)
{
/* Synchronize software state */
pmb_synchronize();
/* Attempt to combine compound mappings */
pmb_coalesce();
#ifdef CONFIG_UNCACHED_MAPPING
/* Resize initial mappings, if necessary */
pmb_resize();
#endif
/* Log them */
pmb_notify();
writel_uncached(0, PMB_IRMCR);
/* Flush out the TLB */
local_flush_tlb_all();
ctrl_barrier();
}
bool __in_29bit_mode(void)
{
return (__raw_readl(PMB_PASCR) & PASCR_SE) == 0;
}
static int pmb_seq_show(struct seq_file *file, void *iter)
{
int i;
seq_printf(file, "V: Valid, C: Cacheable, WT: Write-Through\n"
"CB: Copy-Back, B: Buffered, UB: Unbuffered\n");
seq_printf(file, "ety vpn ppn size flags\n");
for (i = 0; i < NR_PMB_ENTRIES; i++) {
unsigned long addr, data;
unsigned int size;
char *sz_str = NULL;
addr = __raw_readl(mk_pmb_addr(i));
data = __raw_readl(mk_pmb_data(i));
size = data & PMB_SZ_MASK;
sz_str = (size == PMB_SZ_16M) ? " 16MB":
(size == PMB_SZ_64M) ? " 64MB":
(size == PMB_SZ_128M) ? "128MB":
"512MB";
/* 02: V 0x88 0x08 128MB C CB B */
seq_printf(file, "%02d: %c 0x%02lx 0x%02lx %s %c %s %s\n",
i, ((addr & PMB_V) && (data & PMB_V)) ? 'V' : ' ',
(addr >> 24) & 0xff, (data >> 24) & 0xff,
sz_str, (data & PMB_C) ? 'C' : ' ',
(data & PMB_WT) ? "WT" : "CB",
(data & PMB_UB) ? "UB" : " B");
}
return 0;
}
static int pmb_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, pmb_seq_show, NULL);
}
static const struct file_operations pmb_debugfs_fops = {
.owner = THIS_MODULE,
.open = pmb_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init pmb_debugfs_init(void)
{
debugfs_create_file("pmb", S_IFREG | S_IRUGO, arch_debugfs_dir, NULL,
&pmb_debugfs_fops);
return 0;
}
subsys_initcall(pmb_debugfs_init);
#ifdef CONFIG_PM
static void pmb_syscore_resume(void)
{
struct pmb_entry *pmbe;
int i;
read_lock(&pmb_rwlock);
for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
if (test_bit(i, pmb_map)) {
pmbe = &pmb_entry_list[i];
set_pmb_entry(pmbe);
}
}
read_unlock(&pmb_rwlock);
}
static struct syscore_ops pmb_syscore_ops = {
.resume = pmb_syscore_resume,
};
static int __init pmb_sysdev_init(void)
{
register_syscore_ops(&pmb_syscore_ops);
return 0;
}
subsys_initcall(pmb_sysdev_init);
#endif