/*
* Copyright (C) 2013 Huawei Ltd.
* Author: Jiang Liu <liuj97@gmail.com>
*
* Copyright (C) 2014 Zi Shen Lim <zlim.lnx@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/stop_machine.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/insn.h>
#define AARCH64_INSN_SF_BIT BIT(31)
static int aarch64_insn_encoding_class[] = {
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_REG,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_FPSIMD,
AARCH64_INSN_CLS_DP_IMM,
AARCH64_INSN_CLS_DP_IMM,
AARCH64_INSN_CLS_BR_SYS,
AARCH64_INSN_CLS_BR_SYS,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_REG,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_FPSIMD,
};
enum aarch64_insn_encoding_class __kprobes aarch64_get_insn_class(u32 insn)
{
return aarch64_insn_encoding_class[(insn >> 25) & 0xf];
}
/* NOP is an alias of HINT */
bool __kprobes aarch64_insn_is_nop(u32 insn)
{
if (!aarch64_insn_is_hint(insn))
return false;
switch (insn & 0xFE0) {
case AARCH64_INSN_HINT_YIELD:
case AARCH64_INSN_HINT_WFE:
case AARCH64_INSN_HINT_WFI:
case AARCH64_INSN_HINT_SEV:
case AARCH64_INSN_HINT_SEVL:
return false;
default:
return true;
}
}
/*
* In ARMv8-A, A64 instructions have a fixed length of 32 bits and are always
* little-endian.
*/
int __kprobes aarch64_insn_read(void *addr, u32 *insnp)
{
int ret;
u32 val;
ret = probe_kernel_read(&val, addr, AARCH64_INSN_SIZE);
if (!ret)
*insnp = le32_to_cpu(val);
return ret;
}
int __kprobes aarch64_insn_write(void *addr, u32 insn)
{
insn = cpu_to_le32(insn);
return probe_kernel_write(addr, &insn, AARCH64_INSN_SIZE);
}
static bool __kprobes __aarch64_insn_hotpatch_safe(u32 insn)
{
if (aarch64_get_insn_class(insn) != AARCH64_INSN_CLS_BR_SYS)
return false;
return aarch64_insn_is_b(insn) ||
aarch64_insn_is_bl(insn) ||
aarch64_insn_is_svc(insn) ||
aarch64_insn_is_hvc(insn) ||
aarch64_insn_is_smc(insn) ||
aarch64_insn_is_brk(insn) ||
aarch64_insn_is_nop(insn);
}
/*
* ARM Architecture Reference Manual for ARMv8 Profile-A, Issue A.a
* Section B2.6.5 "Concurrent modification and execution of instructions":
* Concurrent modification and execution of instructions can lead to the
* resulting instruction performing any behavior that can be achieved by
* executing any sequence of instructions that can be executed from the
* same Exception level, except where the instruction before modification
* and the instruction after modification is a B, BL, NOP, BKPT, SVC, HVC,
* or SMC instruction.
*/
bool __kprobes aarch64_insn_hotpatch_safe(u32 old_insn, u32 new_insn)
{
return __aarch64_insn_hotpatch_safe(old_insn) &&
__aarch64_insn_hotpatch_safe(new_insn);
}
int __kprobes aarch64_insn_patch_text_nosync(void *addr, u32 insn)
{
u32 *tp = addr;
int ret;
/* A64 instructions must be word aligned */
if ((uintptr_t)tp & 0x3)
return -EINVAL;
ret = aarch64_insn_write(tp, insn);
if (ret == 0)
flush_icache_range((uintptr_t)tp,
(uintptr_t)tp + AARCH64_INSN_SIZE);
return ret;
}
struct aarch64_insn_patch {
void **text_addrs;
u32 *new_insns;
int insn_cnt;
atomic_t cpu_count;
};
static int __kprobes aarch64_insn_patch_text_cb(void *arg)
{
int i, ret = 0;
struct aarch64_insn_patch *pp = arg;
/* The first CPU becomes master */
if (atomic_inc_return(&pp->cpu_count) == 1) {
for (i = 0; ret == 0 && i < pp->insn_cnt; i++)
ret = aarch64_insn_patch_text_nosync(pp->text_addrs[i],
pp->new_insns[i]);
/*
* aarch64_insn_patch_text_nosync() calls flush_icache_range(),
* which ends with "dsb; isb" pair guaranteeing global
* visibility.
*/
atomic_set(&pp->cpu_count, -1);
} else {
while (atomic_read(&pp->cpu_count) != -1)
cpu_relax();
isb();
}
return ret;
}
int __kprobes aarch64_insn_patch_text_sync(void *addrs[], u32 insns[], int cnt)
{
struct aarch64_insn_patch patch = {
.text_addrs = addrs,
.new_insns = insns,
.insn_cnt = cnt,
.cpu_count = ATOMIC_INIT(0),
};
if (cnt <= 0)
return -EINVAL;
return stop_machine(aarch64_insn_patch_text_cb, &patch,
cpu_online_mask);
}
int __kprobes aarch64_insn_patch_text(void *addrs[], u32 insns[], int cnt)
{
int ret;
u32 insn;
/* Unsafe to patch multiple instructions without synchronizaiton */
if (cnt == 1) {
ret = aarch64_insn_read(addrs[0], &insn);
if (ret)
return ret;
if (aarch64_insn_hotpatch_safe(insn, insns[0])) {
/*
* ARMv8 architecture doesn't guarantee all CPUs see
* the new instruction after returning from function
* aarch64_insn_patch_text_nosync(). So send IPIs to
* all other CPUs to achieve instruction
* synchronization.
*/
ret = aarch64_insn_patch_text_nosync(addrs[0], insns[0]);
kick_all_cpus_sync();
return ret;
}
}
return aarch64_insn_patch_text_sync(addrs, insns, cnt);
}
u32 __kprobes aarch64_insn_encode_immediate(enum aarch64_insn_imm_type type,
u32 insn, u64 imm)
{
u32 immlo, immhi, lomask, himask, mask;
int shift;
switch (type) {
case AARCH64_INSN_IMM_ADR:
lomask = 0x3;
himask = 0x7ffff;
immlo = imm & lomask;
imm >>= 2;
immhi = imm & himask;
imm = (immlo << 24) | (immhi);
mask = (lomask << 24) | (himask);
shift = 5;
break;
case AARCH64_INSN_IMM_26:
mask = BIT(26) - 1;
shift = 0;
break;
case AARCH64_INSN_IMM_19:
mask = BIT(19) - 1;
shift = 5;
break;
case AARCH64_INSN_IMM_16:
mask = BIT(16) - 1;
shift = 5;
break;
case AARCH64_INSN_IMM_14:
mask = BIT(14) - 1;
shift = 5;
break;
case AARCH64_INSN_IMM_12:
mask = BIT(12) - 1;
shift = 10;
break;
case AARCH64_INSN_IMM_9:
mask = BIT(9) - 1;
shift = 12;
break;
default:
pr_err("aarch64_insn_encode_immediate: unknown immediate encoding %d\n",
type);
return 0;
}
/* Update the immediate field. */
insn &= ~(mask << shift);
insn |= (imm & mask) << shift;
return insn;
}
static u32 aarch64_insn_encode_register(enum aarch64_insn_register_type type,
u32 insn,
enum aarch64_insn_register reg)
{
int shift;
if (reg < AARCH64_INSN_REG_0 || reg > AARCH64_INSN_REG_SP) {
pr_err("%s: unknown register encoding %d\n", __func__, reg);
return 0;
}
switch (type) {
case AARCH64_INSN_REGTYPE_RT:
shift = 0;
break;
case AARCH64_INSN_REGTYPE_RN:
shift = 5;
break;
default:
pr_err("%s: unknown register type encoding %d\n", __func__,
type);
return 0;
}
insn &= ~(GENMASK(4, 0) << shift);
insn |= reg << shift;
return insn;
}
static inline long branch_imm_common(unsigned long pc, unsigned long addr,
long range)
{
long offset;
/*
* PC: A 64-bit Program Counter holding the address of the current
* instruction. A64 instructions must be word-aligned.
*/
BUG_ON((pc & 0x3) || (addr & 0x3));
offset = ((long)addr - (long)pc);
BUG_ON(offset < -range || offset >= range);
return offset;
}
u32 __kprobes aarch64_insn_gen_branch_imm(unsigned long pc, unsigned long addr,
enum aarch64_insn_branch_type type)
{
u32 insn;
long offset;
/*
* B/BL support [-128M, 128M) offset
* ARM64 virtual address arrangement guarantees all kernel and module
* texts are within +/-128M.
*/
offset = branch_imm_common(pc, addr, SZ_128M);
switch (type) {
case AARCH64_INSN_BRANCH_LINK:
insn = aarch64_insn_get_bl_value();
break;
case AARCH64_INSN_BRANCH_NOLINK:
insn = aarch64_insn_get_b_value();
break;
default:
BUG_ON(1);
}
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn,
offset >> 2);
}
u32 aarch64_insn_gen_comp_branch_imm(unsigned long pc, unsigned long addr,
enum aarch64_insn_register reg,
enum aarch64_insn_variant variant,
enum aarch64_insn_branch_type type)
{
u32 insn;
long offset;
offset = branch_imm_common(pc, addr, SZ_1M);
switch (type) {
case AARCH64_INSN_BRANCH_COMP_ZERO:
insn = aarch64_insn_get_cbz_value();
break;
case AARCH64_INSN_BRANCH_COMP_NONZERO:
insn = aarch64_insn_get_cbnz_value();
break;
default:
BUG_ON(1);
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
break;
default:
BUG_ON(1);
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn,
offset >> 2);
}
u32 __kprobes aarch64_insn_gen_hint(enum aarch64_insn_hint_op op)
{
return aarch64_insn_get_hint_value() | op;
}
u32 __kprobes aarch64_insn_gen_nop(void)
{
return aarch64_insn_gen_hint(AARCH64_INSN_HINT_NOP);
}
u32 aarch64_insn_gen_branch_reg(enum aarch64_insn_register reg,
enum aarch64_insn_branch_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_BRANCH_NOLINK:
insn = aarch64_insn_get_br_value();
break;
case AARCH64_INSN_BRANCH_LINK:
insn = aarch64_insn_get_blr_value();
break;
case AARCH64_INSN_BRANCH_RETURN:
insn = aarch64_insn_get_ret_value();
break;
default:
BUG_ON(1);
}
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, reg);
}