summaryrefslogtreecommitdiff
path: root/tools/testing/selftests/kvm/lib/x86_64/vmx.c
blob: b77a01d0a27139b94845286361dc5750417a8f0c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
// SPDX-License-Identifier: GPL-2.0-only
/*
 * tools/testing/selftests/kvm/lib/x86_64/vmx.c
 *
 * Copyright (C) 2018, Google LLC.
 */

#include "test_util.h"
#include "kvm_util.h"
#include "../kvm_util_internal.h"
#include "processor.h"
#include "vmx.h"

#define PAGE_SHIFT_4K  12

#define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000

bool enable_evmcs;

struct hv_enlightened_vmcs *current_evmcs;
struct hv_vp_assist_page *current_vp_assist;

struct eptPageTableEntry {
	uint64_t readable:1;
	uint64_t writable:1;
	uint64_t executable:1;
	uint64_t memory_type:3;
	uint64_t ignore_pat:1;
	uint64_t page_size:1;
	uint64_t accessed:1;
	uint64_t dirty:1;
	uint64_t ignored_11_10:2;
	uint64_t address:40;
	uint64_t ignored_62_52:11;
	uint64_t suppress_ve:1;
};

struct eptPageTablePointer {
	uint64_t memory_type:3;
	uint64_t page_walk_length:3;
	uint64_t ad_enabled:1;
	uint64_t reserved_11_07:5;
	uint64_t address:40;
	uint64_t reserved_63_52:12;
};
int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id)
{
	uint16_t evmcs_ver;

	struct kvm_enable_cap enable_evmcs_cap = {
		.cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
		 .args[0] = (unsigned long)&evmcs_ver
	};

	vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap);

	/* KVM should return supported EVMCS version range */
	TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
		    (evmcs_ver & 0xff) > 0,
		    "Incorrect EVMCS version range: %x:%x\n",
		    evmcs_ver & 0xff, evmcs_ver >> 8);

	return evmcs_ver;
}

/* Allocate memory regions for nested VMX tests.
 *
 * Input Args:
 *   vm - The VM to allocate guest-virtual addresses in.
 *
 * Output Args:
 *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
 *
 * Return:
 *   Pointer to structure with the addresses of the VMX areas.
 */
struct vmx_pages *
vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
{
	vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);

	/* Setup of a region of guest memory for the vmxon region. */
	vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);

	/* Setup of a region of guest memory for a vmcs. */
	vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);

	/* Setup of a region of guest memory for the MSR bitmap. */
	vmx->msr = (void *)vm_vaddr_alloc_page(vm);
	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
	memset(vmx->msr_hva, 0, getpagesize());

	/* Setup of a region of guest memory for the shadow VMCS. */
	vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);

	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
	vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
	memset(vmx->vmread_hva, 0, getpagesize());

	vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
	memset(vmx->vmwrite_hva, 0, getpagesize());

	/* Setup of a region of guest memory for the VP Assist page. */
	vmx->vp_assist = (void *)vm_vaddr_alloc_page(vm);
	vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
	vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);

	/* Setup of a region of guest memory for the enlightened VMCS. */
	vmx->enlightened_vmcs = (void *)vm_vaddr_alloc_page(vm);
	vmx->enlightened_vmcs_hva =
		addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
	vmx->enlightened_vmcs_gpa =
		addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);

	*p_vmx_gva = vmx_gva;
	return vmx;
}

bool prepare_for_vmx_operation(struct vmx_pages *vmx)
{
	uint64_t feature_control;
	uint64_t required;
	unsigned long cr0;
	unsigned long cr4;

	/*
	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
	 */
	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");

	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
	/* Enable VMX operation */
	cr4 |= X86_CR4_VMXE;
	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");

	/*
	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
	 *    outside of SMX causes a #GP.
	 */
	required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
	required |= FEAT_CTL_LOCKED;
	feature_control = rdmsr(MSR_IA32_FEAT_CTL);
	if ((feature_control & required) != required)
		wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);

	/* Enter VMX root operation. */
	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
	if (vmxon(vmx->vmxon_gpa))
		return false;

	return true;
}

bool load_vmcs(struct vmx_pages *vmx)
{
	if (!enable_evmcs) {
		/* Load a VMCS. */
		*(uint32_t *)(vmx->vmcs) = vmcs_revision();
		if (vmclear(vmx->vmcs_gpa))
			return false;

		if (vmptrld(vmx->vmcs_gpa))
			return false;

		/* Setup shadow VMCS, do not load it yet. */
		*(uint32_t *)(vmx->shadow_vmcs) =
			vmcs_revision() | 0x80000000ul;
		if (vmclear(vmx->shadow_vmcs_gpa))
			return false;
	} else {
		if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
				  vmx->enlightened_vmcs))
			return false;
		current_evmcs->revision_id = EVMCS_VERSION;
	}

	return true;
}

static bool ept_vpid_cap_supported(uint64_t mask)
{
	return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
}

bool ept_1g_pages_supported(void)
{
	return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
}

/*
 * Initialize the control fields to the most basic settings possible.
 */
static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
{
	uint32_t sec_exec_ctl = 0;

	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
	vmwrite(POSTED_INTR_NV, 0);

	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));

	if (vmx->eptp_gpa) {
		uint64_t ept_paddr;
		struct eptPageTablePointer eptp = {
			.memory_type = VMX_BASIC_MEM_TYPE_WB,
			.page_walk_length = 3, /* + 1 */
			.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
			.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
		};

		memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
		vmwrite(EPT_POINTER, ept_paddr);
		sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
	}

	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
	else {
		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
		GUEST_ASSERT(!sec_exec_ctl);
	}

	vmwrite(EXCEPTION_BITMAP, 0);
	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
	vmwrite(CR3_TARGET_COUNT, 0);
	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
	vmwrite(TPR_THRESHOLD, 0);

	vmwrite(CR0_GUEST_HOST_MASK, 0);
	vmwrite(CR4_GUEST_HOST_MASK, 0);
	vmwrite(CR0_READ_SHADOW, get_cr0());
	vmwrite(CR4_READ_SHADOW, get_cr4());

	vmwrite(MSR_BITMAP, vmx->msr_gpa);
	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
}

/*
 * Initialize the host state fields based on the current host state, with
 * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
 * or vmresume.
 */
static inline void init_vmcs_host_state(void)
{
	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);

	vmwrite(HOST_ES_SELECTOR, get_es());
	vmwrite(HOST_CS_SELECTOR, get_cs());
	vmwrite(HOST_SS_SELECTOR, get_ss());
	vmwrite(HOST_DS_SELECTOR, get_ds());
	vmwrite(HOST_FS_SELECTOR, get_fs());
	vmwrite(HOST_GS_SELECTOR, get_gs());
	vmwrite(HOST_TR_SELECTOR, get_tr());

	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));

	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));

	vmwrite(HOST_CR0, get_cr0());
	vmwrite(HOST_CR3, get_cr3());
	vmwrite(HOST_CR4, get_cr4());
	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
	vmwrite(HOST_TR_BASE,
		get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
	vmwrite(HOST_GDTR_BASE, get_gdt().address);
	vmwrite(HOST_IDTR_BASE, get_idt().address);
	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
}

/*
 * Initialize the guest state fields essentially as a clone of
 * the host state fields. Some host state fields have fixed
 * values, and we set the corresponding guest state fields accordingly.
 */
static inline void init_vmcs_guest_state(void *rip, void *rsp)
{
	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
	vmwrite(GUEST_LDTR_SELECTOR, 0);
	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
	vmwrite(GUEST_INTR_STATUS, 0);
	vmwrite(GUEST_PML_INDEX, 0);

	vmwrite(VMCS_LINK_POINTER, -1ll);
	vmwrite(GUEST_IA32_DEBUGCTL, 0);
	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));

	vmwrite(GUEST_ES_LIMIT, -1);
	vmwrite(GUEST_CS_LIMIT, -1);
	vmwrite(GUEST_SS_LIMIT, -1);
	vmwrite(GUEST_DS_LIMIT, -1);
	vmwrite(GUEST_FS_LIMIT, -1);
	vmwrite(GUEST_GS_LIMIT, -1);
	vmwrite(GUEST_LDTR_LIMIT, -1);
	vmwrite(GUEST_TR_LIMIT, 0x67);
	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
	vmwrite(GUEST_ES_AR_BYTES,
		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
	vmwrite(GUEST_DS_AR_BYTES,
		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
	vmwrite(GUEST_FS_AR_BYTES,
		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
	vmwrite(GUEST_GS_AR_BYTES,
		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
	vmwrite(GUEST_ACTIVITY_STATE, 0);
	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);

	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
	vmwrite(GUEST_ES_BASE, 0);
	vmwrite(GUEST_CS_BASE, 0);
	vmwrite(GUEST_SS_BASE, 0);
	vmwrite(GUEST_DS_BASE, 0);
	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
	vmwrite(GUEST_LDTR_BASE, 0);
	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
	vmwrite(GUEST_DR7, 0x400);
	vmwrite(GUEST_RSP, (uint64_t)rsp);
	vmwrite(GUEST_RIP, (uint64_t)rip);
	vmwrite(GUEST_RFLAGS, 2);
	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
}

void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
{
	init_vmcs_control_fields(vmx);
	init_vmcs_host_state();
	init_vmcs_guest_state(guest_rip, guest_rsp);
}

bool nested_vmx_supported(void)
{
	struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);

	return entry->ecx & CPUID_VMX;
}

void nested_vmx_check_supported(void)
{
	if (!nested_vmx_supported()) {
		print_skip("nested VMX not enabled");
		exit(KSFT_SKIP);
	}
}

static void nested_create_pte(struct kvm_vm *vm,
			      struct eptPageTableEntry *pte,
			      uint64_t nested_paddr,
			      uint64_t paddr,
			      int current_level,
			      int target_level)
{
	if (!pte->readable) {
		pte->writable = true;
		pte->readable = true;
		pte->executable = true;
		pte->page_size = (current_level == target_level);
		if (pte->page_size)
			pte->address = paddr >> vm->page_shift;
		else
			pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
	} else {
		/*
		 * Entry already present.  Assert that the caller doesn't want
		 * a hugepage at this level, and that there isn't a hugepage at
		 * this level.
		 */
		TEST_ASSERT(current_level != target_level,
			    "Cannot create hugepage at level: %u, nested_paddr: 0x%lx\n",
			    current_level, nested_paddr);
		TEST_ASSERT(!pte->page_size,
			    "Cannot create page table at level: %u, nested_paddr: 0x%lx\n",
			    current_level, nested_paddr);
	}
}


void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
		     uint64_t nested_paddr, uint64_t paddr, int target_level)
{
	const uint64_t page_size = PG_LEVEL_SIZE(target_level);
	struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
	uint16_t index;

	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
		    "unknown or unsupported guest mode, mode: 0x%x", vm->mode);

	TEST_ASSERT((nested_paddr >> 48) == 0,
		    "Nested physical address 0x%lx requires 5-level paging",
		    nested_paddr);
	TEST_ASSERT((nested_paddr % page_size) == 0,
		    "Nested physical address not on page boundary,\n"
		    "  nested_paddr: 0x%lx page_size: 0x%lx",
		    nested_paddr, page_size);
	TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
		    "Physical address beyond beyond maximum supported,\n"
		    "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
		    paddr, vm->max_gfn, vm->page_size);
	TEST_ASSERT((paddr % page_size) == 0,
		    "Physical address not on page boundary,\n"
		    "  paddr: 0x%lx page_size: 0x%lx",
		    paddr, page_size);
	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
		    "Physical address beyond beyond maximum supported,\n"
		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
		    paddr, vm->max_gfn, vm->page_size);

	for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
		index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
		pte = &pt[index];

		nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);

		if (pte->page_size)
			break;

		pt = addr_gpa2hva(vm, pte->address * vm->page_size);
	}

	/*
	 * For now mark these as accessed and dirty because the only
	 * testcase we have needs that.  Can be reconsidered later.
	 */
	pte->accessed = true;
	pte->dirty = true;

}

void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
		   uint64_t nested_paddr, uint64_t paddr)
{
	__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
}

/*
 * Map a range of EPT guest physical addresses to the VM's physical address
 *
 * Input Args:
 *   vm - Virtual Machine
 *   nested_paddr - Nested guest physical address to map
 *   paddr - VM Physical Address
 *   size - The size of the range to map
 *   level - The level at which to map the range
 *
 * Output Args: None
 *
 * Return: None
 *
 * Within the VM given by vm, creates a nested guest translation for the
 * page range starting at nested_paddr to the page range starting at paddr.
 */
void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
		  uint64_t nested_paddr, uint64_t paddr, uint64_t size,
		  int level)
{
	size_t page_size = PG_LEVEL_SIZE(level);
	size_t npages = size / page_size;

	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");

	while (npages--) {
		__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
		nested_paddr += page_size;
		paddr += page_size;
	}
}

void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
		uint64_t nested_paddr, uint64_t paddr, uint64_t size)
{
	__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
}

/* Prepare an identity extended page table that maps all the
 * physical pages in VM.
 */
void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
			uint32_t memslot)
{
	sparsebit_idx_t i, last;
	struct userspace_mem_region *region =
		memslot2region(vm, memslot);

	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
	last = i + (region->region.memory_size >> vm->page_shift);
	for (;;) {
		i = sparsebit_next_clear(region->unused_phy_pages, i);
		if (i > last)
			break;

		nested_map(vmx, vm,
			   (uint64_t)i << vm->page_shift,
			   (uint64_t)i << vm->page_shift,
			   1 << vm->page_shift);
	}
}

/* Identity map a region with 1GiB Pages. */
void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
			    uint64_t addr, uint64_t size)
{
	__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
}

void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
		  uint32_t eptp_memslot)
{
	vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
	vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
	vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
}

void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
{
	vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
	vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
	vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
}