summaryrefslogtreecommitdiff
path: root/tools/sched_ext/scx_flatcg.bpf.c
blob: 3ab2b60781a0d9d366b194e50624bce869cacbb4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * A demo sched_ext flattened cgroup hierarchy scheduler. It implements
 * hierarchical weight-based cgroup CPU control by flattening the cgroup
 * hierarchy into a single layer by compounding the active weight share at each
 * level. Consider the following hierarchy with weights in parentheses:
 *
 * R + A (100) + B (100)
 *   |         \ C (100)
 *   \ D (200)
 *
 * Ignoring the root and threaded cgroups, only B, C and D can contain tasks.
 * Let's say all three have runnable tasks. The total share that each of these
 * three cgroups is entitled to can be calculated by compounding its share at
 * each level.
 *
 * For example, B is competing against C and in that competition its share is
 * 100/(100+100) == 1/2. At its parent level, A is competing against D and A's
 * share in that competition is 100/(200+100) == 1/3. B's eventual share in the
 * system can be calculated by multiplying the two shares, 1/2 * 1/3 == 1/6. C's
 * eventual shaer is the same at 1/6. D is only competing at the top level and
 * its share is 200/(100+200) == 2/3.
 *
 * So, instead of hierarchically scheduling level-by-level, we can consider it
 * as B, C and D competing each other with respective share of 1/6, 1/6 and 2/3
 * and keep updating the eventual shares as the cgroups' runnable states change.
 *
 * This flattening of hierarchy can bring a substantial performance gain when
 * the cgroup hierarchy is nested multiple levels. in a simple benchmark using
 * wrk[8] on apache serving a CGI script calculating sha1sum of a small file, it
 * outperforms CFS by ~3% with CPU controller disabled and by ~10% with two
 * apache instances competing with 2:1 weight ratio nested four level deep.
 *
 * However, the gain comes at the cost of not being able to properly handle
 * thundering herd of cgroups. For example, if many cgroups which are nested
 * behind a low priority parent cgroup wake up around the same time, they may be
 * able to consume more CPU cycles than they are entitled to. In many use cases,
 * this isn't a real concern especially given the performance gain. Also, there
 * are ways to mitigate the problem further by e.g. introducing an extra
 * scheduling layer on cgroup delegation boundaries.
 *
 * The scheduler first picks the cgroup to run and then schedule the tasks
 * within by using nested weighted vtime scheduling by default. The
 * cgroup-internal scheduling can be switched to FIFO with the -f option.
 */
#include <scx/common.bpf.h>
#include "scx_flatcg.h"

/*
 * Maximum amount of retries to find a valid cgroup.
 */
#define CGROUP_MAX_RETRIES 1024

char _license[] SEC("license") = "GPL";

const volatile u32 nr_cpus = 32;	/* !0 for veristat, set during init */
const volatile u64 cgrp_slice_ns = SCX_SLICE_DFL;
const volatile bool fifo_sched;

u64 cvtime_now;
UEI_DEFINE(uei);

struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, u64);
	__uint(max_entries, FCG_NR_STATS);
} stats SEC(".maps");

static void stat_inc(enum fcg_stat_idx idx)
{
	u32 idx_v = idx;

	u64 *cnt_p = bpf_map_lookup_elem(&stats, &idx_v);
	if (cnt_p)
		(*cnt_p)++;
}

struct fcg_cpu_ctx {
	u64			cur_cgid;
	u64			cur_at;
};

struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__type(key, u32);
	__type(value, struct fcg_cpu_ctx);
	__uint(max_entries, 1);
} cpu_ctx SEC(".maps");

struct {
	__uint(type, BPF_MAP_TYPE_CGRP_STORAGE);
	__uint(map_flags, BPF_F_NO_PREALLOC);
	__type(key, int);
	__type(value, struct fcg_cgrp_ctx);
} cgrp_ctx SEC(".maps");

struct cgv_node {
	struct bpf_rb_node	rb_node;
	__u64			cvtime;
	__u64			cgid;
};

private(CGV_TREE) struct bpf_spin_lock cgv_tree_lock;
private(CGV_TREE) struct bpf_rb_root cgv_tree __contains(cgv_node, rb_node);

struct cgv_node_stash {
	struct cgv_node __kptr *node;
};

struct {
	__uint(type, BPF_MAP_TYPE_HASH);
	__uint(max_entries, 16384);
	__type(key, __u64);
	__type(value, struct cgv_node_stash);
} cgv_node_stash SEC(".maps");

struct fcg_task_ctx {
	u64		bypassed_at;
};

struct {
	__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
	__uint(map_flags, BPF_F_NO_PREALLOC);
	__type(key, int);
	__type(value, struct fcg_task_ctx);
} task_ctx SEC(".maps");

/* gets inc'd on weight tree changes to expire the cached hweights */
u64 hweight_gen = 1;

static u64 div_round_up(u64 dividend, u64 divisor)
{
	return (dividend + divisor - 1) / divisor;
}

static bool vtime_before(u64 a, u64 b)
{
	return (s64)(a - b) < 0;
}

static bool cgv_node_less(struct bpf_rb_node *a, const struct bpf_rb_node *b)
{
	struct cgv_node *cgc_a, *cgc_b;

	cgc_a = container_of(a, struct cgv_node, rb_node);
	cgc_b = container_of(b, struct cgv_node, rb_node);

	return cgc_a->cvtime < cgc_b->cvtime;
}

static struct fcg_cpu_ctx *find_cpu_ctx(void)
{
	struct fcg_cpu_ctx *cpuc;
	u32 idx = 0;

	cpuc = bpf_map_lookup_elem(&cpu_ctx, &idx);
	if (!cpuc) {
		scx_bpf_error("cpu_ctx lookup failed");
		return NULL;
	}
	return cpuc;
}

static struct fcg_cgrp_ctx *find_cgrp_ctx(struct cgroup *cgrp)
{
	struct fcg_cgrp_ctx *cgc;

	cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
	if (!cgc) {
		scx_bpf_error("cgrp_ctx lookup failed for cgid %llu", cgrp->kn->id);
		return NULL;
	}
	return cgc;
}

static struct fcg_cgrp_ctx *find_ancestor_cgrp_ctx(struct cgroup *cgrp, int level)
{
	struct fcg_cgrp_ctx *cgc;

	cgrp = bpf_cgroup_ancestor(cgrp, level);
	if (!cgrp) {
		scx_bpf_error("ancestor cgroup lookup failed");
		return NULL;
	}

	cgc = find_cgrp_ctx(cgrp);
	if (!cgc)
		scx_bpf_error("ancestor cgrp_ctx lookup failed");
	bpf_cgroup_release(cgrp);
	return cgc;
}

static void cgrp_refresh_hweight(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc)
{
	int level;

	if (!cgc->nr_active) {
		stat_inc(FCG_STAT_HWT_SKIP);
		return;
	}

	if (cgc->hweight_gen == hweight_gen) {
		stat_inc(FCG_STAT_HWT_CACHE);
		return;
	}

	stat_inc(FCG_STAT_HWT_UPDATES);
	bpf_for(level, 0, cgrp->level + 1) {
		struct fcg_cgrp_ctx *cgc;
		bool is_active;

		cgc = find_ancestor_cgrp_ctx(cgrp, level);
		if (!cgc)
			break;

		if (!level) {
			cgc->hweight = FCG_HWEIGHT_ONE;
			cgc->hweight_gen = hweight_gen;
		} else {
			struct fcg_cgrp_ctx *pcgc;

			pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1);
			if (!pcgc)
				break;

			/*
			 * We can be oppotunistic here and not grab the
			 * cgv_tree_lock and deal with the occasional races.
			 * However, hweight updates are already cached and
			 * relatively low-frequency. Let's just do the
			 * straightforward thing.
			 */
			bpf_spin_lock(&cgv_tree_lock);
			is_active = cgc->nr_active;
			if (is_active) {
				cgc->hweight_gen = pcgc->hweight_gen;
				cgc->hweight =
					div_round_up(pcgc->hweight * cgc->weight,
						     pcgc->child_weight_sum);
			}
			bpf_spin_unlock(&cgv_tree_lock);

			if (!is_active) {
				stat_inc(FCG_STAT_HWT_RACE);
				break;
			}
		}
	}
}

static void cgrp_cap_budget(struct cgv_node *cgv_node, struct fcg_cgrp_ctx *cgc)
{
	u64 delta, cvtime, max_budget;

	/*
	 * A node which is on the rbtree can't be pointed to from elsewhere yet
	 * and thus can't be updated and repositioned. Instead, we collect the
	 * vtime deltas separately and apply it asynchronously here.
	 */
	delta = cgc->cvtime_delta;
	__sync_fetch_and_sub(&cgc->cvtime_delta, delta);
	cvtime = cgv_node->cvtime + delta;

	/*
	 * Allow a cgroup to carry the maximum budget proportional to its
	 * hweight such that a full-hweight cgroup can immediately take up half
	 * of the CPUs at the most while staying at the front of the rbtree.
	 */
	max_budget = (cgrp_slice_ns * nr_cpus * cgc->hweight) /
		(2 * FCG_HWEIGHT_ONE);
	if (vtime_before(cvtime, cvtime_now - max_budget))
		cvtime = cvtime_now - max_budget;

	cgv_node->cvtime = cvtime;
}

static void cgrp_enqueued(struct cgroup *cgrp, struct fcg_cgrp_ctx *cgc)
{
	struct cgv_node_stash *stash;
	struct cgv_node *cgv_node;
	u64 cgid = cgrp->kn->id;

	/* paired with cmpxchg in try_pick_next_cgroup() */
	if (__sync_val_compare_and_swap(&cgc->queued, 0, 1)) {
		stat_inc(FCG_STAT_ENQ_SKIP);
		return;
	}

	stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
	if (!stash) {
		scx_bpf_error("cgv_node lookup failed for cgid %llu", cgid);
		return;
	}

	/* NULL if the node is already on the rbtree */
	cgv_node = bpf_kptr_xchg(&stash->node, NULL);
	if (!cgv_node) {
		stat_inc(FCG_STAT_ENQ_RACE);
		return;
	}

	bpf_spin_lock(&cgv_tree_lock);
	cgrp_cap_budget(cgv_node, cgc);
	bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
	bpf_spin_unlock(&cgv_tree_lock);
}

static void set_bypassed_at(struct task_struct *p, struct fcg_task_ctx *taskc)
{
	/*
	 * Tell fcg_stopping() that this bypassed the regular scheduling path
	 * and should be force charged to the cgroup. 0 is used to indicate that
	 * the task isn't bypassing, so if the current runtime is 0, go back by
	 * one nanosecond.
	 */
	taskc->bypassed_at = p->se.sum_exec_runtime ?: (u64)-1;
}

s32 BPF_STRUCT_OPS(fcg_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags)
{
	struct fcg_task_ctx *taskc;
	bool is_idle = false;
	s32 cpu;

	cpu = scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, &is_idle);

	taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
	if (!taskc) {
		scx_bpf_error("task_ctx lookup failed");
		return cpu;
	}

	/*
	 * If select_cpu_dfl() is recommending local enqueue, the target CPU is
	 * idle. Follow it and charge the cgroup later in fcg_stopping() after
	 * the fact.
	 */
	if (is_idle) {
		set_bypassed_at(p, taskc);
		stat_inc(FCG_STAT_LOCAL);
		scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, 0);
	}

	return cpu;
}

void BPF_STRUCT_OPS(fcg_enqueue, struct task_struct *p, u64 enq_flags)
{
	struct fcg_task_ctx *taskc;
	struct cgroup *cgrp;
	struct fcg_cgrp_ctx *cgc;

	taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
	if (!taskc) {
		scx_bpf_error("task_ctx lookup failed");
		return;
	}

	/*
	 * Use the direct dispatching and force charging to deal with tasks with
	 * custom affinities so that we don't have to worry about per-cgroup
	 * dq's containing tasks that can't be executed from some CPUs.
	 */
	if (p->nr_cpus_allowed != nr_cpus) {
		set_bypassed_at(p, taskc);

		/*
		 * The global dq is deprioritized as we don't want to let tasks
		 * to boost themselves by constraining its cpumask. The
		 * deprioritization is rather severe, so let's not apply that to
		 * per-cpu kernel threads. This is ham-fisted. We probably wanna
		 * implement per-cgroup fallback dq's instead so that we have
		 * more control over when tasks with custom cpumask get issued.
		 */
		if (p->nr_cpus_allowed == 1 && (p->flags & PF_KTHREAD)) {
			stat_inc(FCG_STAT_LOCAL);
			scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, enq_flags);
		} else {
			stat_inc(FCG_STAT_GLOBAL);
			scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags);
		}
		return;
	}

	cgrp = scx_bpf_task_cgroup(p);
	cgc = find_cgrp_ctx(cgrp);
	if (!cgc)
		goto out_release;

	if (fifo_sched) {
		scx_bpf_dispatch(p, cgrp->kn->id, SCX_SLICE_DFL, enq_flags);
	} else {
		u64 tvtime = p->scx.dsq_vtime;

		/*
		 * Limit the amount of budget that an idling task can accumulate
		 * to one slice.
		 */
		if (vtime_before(tvtime, cgc->tvtime_now - SCX_SLICE_DFL))
			tvtime = cgc->tvtime_now - SCX_SLICE_DFL;

		scx_bpf_dispatch_vtime(p, cgrp->kn->id, SCX_SLICE_DFL,
				       tvtime, enq_flags);
	}

	cgrp_enqueued(cgrp, cgc);
out_release:
	bpf_cgroup_release(cgrp);
}

/*
 * Walk the cgroup tree to update the active weight sums as tasks wake up and
 * sleep. The weight sums are used as the base when calculating the proportion a
 * given cgroup or task is entitled to at each level.
 */
static void update_active_weight_sums(struct cgroup *cgrp, bool runnable)
{
	struct fcg_cgrp_ctx *cgc;
	bool updated = false;
	int idx;

	cgc = find_cgrp_ctx(cgrp);
	if (!cgc)
		return;

	/*
	 * In most cases, a hot cgroup would have multiple threads going to
	 * sleep and waking up while the whole cgroup stays active. In leaf
	 * cgroups, ->nr_runnable which is updated with __sync operations gates
	 * ->nr_active updates, so that we don't have to grab the cgv_tree_lock
	 * repeatedly for a busy cgroup which is staying active.
	 */
	if (runnable) {
		if (__sync_fetch_and_add(&cgc->nr_runnable, 1))
			return;
		stat_inc(FCG_STAT_ACT);
	} else {
		if (__sync_sub_and_fetch(&cgc->nr_runnable, 1))
			return;
		stat_inc(FCG_STAT_DEACT);
	}

	/*
	 * If @cgrp is becoming runnable, its hweight should be refreshed after
	 * it's added to the weight tree so that enqueue has the up-to-date
	 * value. If @cgrp is becoming quiescent, the hweight should be
	 * refreshed before it's removed from the weight tree so that the usage
	 * charging which happens afterwards has access to the latest value.
	 */
	if (!runnable)
		cgrp_refresh_hweight(cgrp, cgc);

	/* propagate upwards */
	bpf_for(idx, 0, cgrp->level) {
		int level = cgrp->level - idx;
		struct fcg_cgrp_ctx *cgc, *pcgc = NULL;
		bool propagate = false;

		cgc = find_ancestor_cgrp_ctx(cgrp, level);
		if (!cgc)
			break;
		if (level) {
			pcgc = find_ancestor_cgrp_ctx(cgrp, level - 1);
			if (!pcgc)
				break;
		}

		/*
		 * We need the propagation protected by a lock to synchronize
		 * against weight changes. There's no reason to drop the lock at
		 * each level but bpf_spin_lock() doesn't want any function
		 * calls while locked.
		 */
		bpf_spin_lock(&cgv_tree_lock);

		if (runnable) {
			if (!cgc->nr_active++) {
				updated = true;
				if (pcgc) {
					propagate = true;
					pcgc->child_weight_sum += cgc->weight;
				}
			}
		} else {
			if (!--cgc->nr_active) {
				updated = true;
				if (pcgc) {
					propagate = true;
					pcgc->child_weight_sum -= cgc->weight;
				}
			}
		}

		bpf_spin_unlock(&cgv_tree_lock);

		if (!propagate)
			break;
	}

	if (updated)
		__sync_fetch_and_add(&hweight_gen, 1);

	if (runnable)
		cgrp_refresh_hweight(cgrp, cgc);
}

void BPF_STRUCT_OPS(fcg_runnable, struct task_struct *p, u64 enq_flags)
{
	struct cgroup *cgrp;

	cgrp = scx_bpf_task_cgroup(p);
	update_active_weight_sums(cgrp, true);
	bpf_cgroup_release(cgrp);
}

void BPF_STRUCT_OPS(fcg_running, struct task_struct *p)
{
	struct cgroup *cgrp;
	struct fcg_cgrp_ctx *cgc;

	if (fifo_sched)
		return;

	cgrp = scx_bpf_task_cgroup(p);
	cgc = find_cgrp_ctx(cgrp);
	if (cgc) {
		/*
		 * @cgc->tvtime_now always progresses forward as tasks start
		 * executing. The test and update can be performed concurrently
		 * from multiple CPUs and thus racy. Any error should be
		 * contained and temporary. Let's just live with it.
		 */
		if (vtime_before(cgc->tvtime_now, p->scx.dsq_vtime))
			cgc->tvtime_now = p->scx.dsq_vtime;
	}
	bpf_cgroup_release(cgrp);
}

void BPF_STRUCT_OPS(fcg_stopping, struct task_struct *p, bool runnable)
{
	struct fcg_task_ctx *taskc;
	struct cgroup *cgrp;
	struct fcg_cgrp_ctx *cgc;

	/*
	 * Scale the execution time by the inverse of the weight and charge.
	 *
	 * Note that the default yield implementation yields by setting
	 * @p->scx.slice to zero and the following would treat the yielding task
	 * as if it has consumed all its slice. If this penalizes yielding tasks
	 * too much, determine the execution time by taking explicit timestamps
	 * instead of depending on @p->scx.slice.
	 */
	if (!fifo_sched)
		p->scx.dsq_vtime +=
			(SCX_SLICE_DFL - p->scx.slice) * 100 / p->scx.weight;

	taskc = bpf_task_storage_get(&task_ctx, p, 0, 0);
	if (!taskc) {
		scx_bpf_error("task_ctx lookup failed");
		return;
	}

	if (!taskc->bypassed_at)
		return;

	cgrp = scx_bpf_task_cgroup(p);
	cgc = find_cgrp_ctx(cgrp);
	if (cgc) {
		__sync_fetch_and_add(&cgc->cvtime_delta,
				     p->se.sum_exec_runtime - taskc->bypassed_at);
		taskc->bypassed_at = 0;
	}
	bpf_cgroup_release(cgrp);
}

void BPF_STRUCT_OPS(fcg_quiescent, struct task_struct *p, u64 deq_flags)
{
	struct cgroup *cgrp;

	cgrp = scx_bpf_task_cgroup(p);
	update_active_weight_sums(cgrp, false);
	bpf_cgroup_release(cgrp);
}

void BPF_STRUCT_OPS(fcg_cgroup_set_weight, struct cgroup *cgrp, u32 weight)
{
	struct fcg_cgrp_ctx *cgc, *pcgc = NULL;

	cgc = find_cgrp_ctx(cgrp);
	if (!cgc)
		return;

	if (cgrp->level) {
		pcgc = find_ancestor_cgrp_ctx(cgrp, cgrp->level - 1);
		if (!pcgc)
			return;
	}

	bpf_spin_lock(&cgv_tree_lock);
	if (pcgc && cgc->nr_active)
		pcgc->child_weight_sum += (s64)weight - cgc->weight;
	cgc->weight = weight;
	bpf_spin_unlock(&cgv_tree_lock);
}

static bool try_pick_next_cgroup(u64 *cgidp)
{
	struct bpf_rb_node *rb_node;
	struct cgv_node_stash *stash;
	struct cgv_node *cgv_node;
	struct fcg_cgrp_ctx *cgc;
	struct cgroup *cgrp;
	u64 cgid;

	/* pop the front cgroup and wind cvtime_now accordingly */
	bpf_spin_lock(&cgv_tree_lock);

	rb_node = bpf_rbtree_first(&cgv_tree);
	if (!rb_node) {
		bpf_spin_unlock(&cgv_tree_lock);
		stat_inc(FCG_STAT_PNC_NO_CGRP);
		*cgidp = 0;
		return true;
	}

	rb_node = bpf_rbtree_remove(&cgv_tree, rb_node);
	bpf_spin_unlock(&cgv_tree_lock);

	if (!rb_node) {
		/*
		 * This should never happen. bpf_rbtree_first() was called
		 * above while the tree lock was held, so the node should
		 * always be present.
		 */
		scx_bpf_error("node could not be removed");
		return true;
	}

	cgv_node = container_of(rb_node, struct cgv_node, rb_node);
	cgid = cgv_node->cgid;

	if (vtime_before(cvtime_now, cgv_node->cvtime))
		cvtime_now = cgv_node->cvtime;

	/*
	 * If lookup fails, the cgroup's gone. Free and move on. See
	 * fcg_cgroup_exit().
	 */
	cgrp = bpf_cgroup_from_id(cgid);
	if (!cgrp) {
		stat_inc(FCG_STAT_PNC_GONE);
		goto out_free;
	}

	cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
	if (!cgc) {
		bpf_cgroup_release(cgrp);
		stat_inc(FCG_STAT_PNC_GONE);
		goto out_free;
	}

	if (!scx_bpf_consume(cgid)) {
		bpf_cgroup_release(cgrp);
		stat_inc(FCG_STAT_PNC_EMPTY);
		goto out_stash;
	}

	/*
	 * Successfully consumed from the cgroup. This will be our current
	 * cgroup for the new slice. Refresh its hweight.
	 */
	cgrp_refresh_hweight(cgrp, cgc);

	bpf_cgroup_release(cgrp);

	/*
	 * As the cgroup may have more tasks, add it back to the rbtree. Note
	 * that here we charge the full slice upfront and then exact later
	 * according to the actual consumption. This prevents lowpri thundering
	 * herd from saturating the machine.
	 */
	bpf_spin_lock(&cgv_tree_lock);
	cgv_node->cvtime += cgrp_slice_ns * FCG_HWEIGHT_ONE / (cgc->hweight ?: 1);
	cgrp_cap_budget(cgv_node, cgc);
	bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
	bpf_spin_unlock(&cgv_tree_lock);

	*cgidp = cgid;
	stat_inc(FCG_STAT_PNC_NEXT);
	return true;

out_stash:
	stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
	if (!stash) {
		stat_inc(FCG_STAT_PNC_GONE);
		goto out_free;
	}

	/*
	 * Paired with cmpxchg in cgrp_enqueued(). If they see the following
	 * transition, they'll enqueue the cgroup. If they are earlier, we'll
	 * see their task in the dq below and requeue the cgroup.
	 */
	__sync_val_compare_and_swap(&cgc->queued, 1, 0);

	if (scx_bpf_dsq_nr_queued(cgid)) {
		bpf_spin_lock(&cgv_tree_lock);
		bpf_rbtree_add(&cgv_tree, &cgv_node->rb_node, cgv_node_less);
		bpf_spin_unlock(&cgv_tree_lock);
		stat_inc(FCG_STAT_PNC_RACE);
	} else {
		cgv_node = bpf_kptr_xchg(&stash->node, cgv_node);
		if (cgv_node) {
			scx_bpf_error("unexpected !NULL cgv_node stash");
			goto out_free;
		}
	}

	return false;

out_free:
	bpf_obj_drop(cgv_node);
	return false;
}

void BPF_STRUCT_OPS(fcg_dispatch, s32 cpu, struct task_struct *prev)
{
	struct fcg_cpu_ctx *cpuc;
	struct fcg_cgrp_ctx *cgc;
	struct cgroup *cgrp;
	u64 now = bpf_ktime_get_ns();
	bool picked_next = false;

	cpuc = find_cpu_ctx();
	if (!cpuc)
		return;

	if (!cpuc->cur_cgid)
		goto pick_next_cgroup;

	if (vtime_before(now, cpuc->cur_at + cgrp_slice_ns)) {
		if (scx_bpf_consume(cpuc->cur_cgid)) {
			stat_inc(FCG_STAT_CNS_KEEP);
			return;
		}
		stat_inc(FCG_STAT_CNS_EMPTY);
	} else {
		stat_inc(FCG_STAT_CNS_EXPIRE);
	}

	/*
	 * The current cgroup is expiring. It was already charged a full slice.
	 * Calculate the actual usage and accumulate the delta.
	 */
	cgrp = bpf_cgroup_from_id(cpuc->cur_cgid);
	if (!cgrp) {
		stat_inc(FCG_STAT_CNS_GONE);
		goto pick_next_cgroup;
	}

	cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0, 0);
	if (cgc) {
		/*
		 * We want to update the vtime delta and then look for the next
		 * cgroup to execute but the latter needs to be done in a loop
		 * and we can't keep the lock held. Oh well...
		 */
		bpf_spin_lock(&cgv_tree_lock);
		__sync_fetch_and_add(&cgc->cvtime_delta,
				     (cpuc->cur_at + cgrp_slice_ns - now) *
				     FCG_HWEIGHT_ONE / (cgc->hweight ?: 1));
		bpf_spin_unlock(&cgv_tree_lock);
	} else {
		stat_inc(FCG_STAT_CNS_GONE);
	}

	bpf_cgroup_release(cgrp);

pick_next_cgroup:
	cpuc->cur_at = now;

	if (scx_bpf_consume(SCX_DSQ_GLOBAL)) {
		cpuc->cur_cgid = 0;
		return;
	}

	bpf_repeat(CGROUP_MAX_RETRIES) {
		if (try_pick_next_cgroup(&cpuc->cur_cgid)) {
			picked_next = true;
			break;
		}
	}

	/*
	 * This only happens if try_pick_next_cgroup() races against enqueue
	 * path for more than CGROUP_MAX_RETRIES times, which is extremely
	 * unlikely and likely indicates an underlying bug. There shouldn't be
	 * any stall risk as the race is against enqueue.
	 */
	if (!picked_next)
		stat_inc(FCG_STAT_PNC_FAIL);
}

s32 BPF_STRUCT_OPS(fcg_init_task, struct task_struct *p,
		   struct scx_init_task_args *args)
{
	struct fcg_task_ctx *taskc;
	struct fcg_cgrp_ctx *cgc;

	/*
	 * @p is new. Let's ensure that its task_ctx is available. We can sleep
	 * in this function and the following will automatically use GFP_KERNEL.
	 */
	taskc = bpf_task_storage_get(&task_ctx, p, 0,
				     BPF_LOCAL_STORAGE_GET_F_CREATE);
	if (!taskc)
		return -ENOMEM;

	taskc->bypassed_at = 0;

	if (!(cgc = find_cgrp_ctx(args->cgroup)))
		return -ENOENT;

	p->scx.dsq_vtime = cgc->tvtime_now;

	return 0;
}

int BPF_STRUCT_OPS_SLEEPABLE(fcg_cgroup_init, struct cgroup *cgrp,
			     struct scx_cgroup_init_args *args)
{
	struct fcg_cgrp_ctx *cgc;
	struct cgv_node *cgv_node;
	struct cgv_node_stash empty_stash = {}, *stash;
	u64 cgid = cgrp->kn->id;
	int ret;

	/*
	 * Technically incorrect as cgroup ID is full 64bit while dq ID is
	 * 63bit. Should not be a problem in practice and easy to spot in the
	 * unlikely case that it breaks.
	 */
	ret = scx_bpf_create_dsq(cgid, -1);
	if (ret)
		return ret;

	cgc = bpf_cgrp_storage_get(&cgrp_ctx, cgrp, 0,
				   BPF_LOCAL_STORAGE_GET_F_CREATE);
	if (!cgc) {
		ret = -ENOMEM;
		goto err_destroy_dsq;
	}

	cgc->weight = args->weight;
	cgc->hweight = FCG_HWEIGHT_ONE;

	ret = bpf_map_update_elem(&cgv_node_stash, &cgid, &empty_stash,
				  BPF_NOEXIST);
	if (ret) {
		if (ret != -ENOMEM)
			scx_bpf_error("unexpected stash creation error (%d)",
				      ret);
		goto err_destroy_dsq;
	}

	stash = bpf_map_lookup_elem(&cgv_node_stash, &cgid);
	if (!stash) {
		scx_bpf_error("unexpected cgv_node stash lookup failure");
		ret = -ENOENT;
		goto err_destroy_dsq;
	}

	cgv_node = bpf_obj_new(struct cgv_node);
	if (!cgv_node) {
		ret = -ENOMEM;
		goto err_del_cgv_node;
	}

	cgv_node->cgid = cgid;
	cgv_node->cvtime = cvtime_now;

	cgv_node = bpf_kptr_xchg(&stash->node, cgv_node);
	if (cgv_node) {
		scx_bpf_error("unexpected !NULL cgv_node stash");
		ret = -EBUSY;
		goto err_drop;
	}

	return 0;

err_drop:
	bpf_obj_drop(cgv_node);
err_del_cgv_node:
	bpf_map_delete_elem(&cgv_node_stash, &cgid);
err_destroy_dsq:
	scx_bpf_destroy_dsq(cgid);
	return ret;
}

void BPF_STRUCT_OPS(fcg_cgroup_exit, struct cgroup *cgrp)
{
	u64 cgid = cgrp->kn->id;

	/*
	 * For now, there's no way find and remove the cgv_node if it's on the
	 * cgv_tree. Let's drain them in the dispatch path as they get popped
	 * off the front of the tree.
	 */
	bpf_map_delete_elem(&cgv_node_stash, &cgid);
	scx_bpf_destroy_dsq(cgid);
}

void BPF_STRUCT_OPS(fcg_cgroup_move, struct task_struct *p,
		    struct cgroup *from, struct cgroup *to)
{
	struct fcg_cgrp_ctx *from_cgc, *to_cgc;
	s64 vtime_delta;

	/* find_cgrp_ctx() triggers scx_ops_error() on lookup failures */
	if (!(from_cgc = find_cgrp_ctx(from)) || !(to_cgc = find_cgrp_ctx(to)))
		return;

	vtime_delta = p->scx.dsq_vtime - from_cgc->tvtime_now;
	p->scx.dsq_vtime = to_cgc->tvtime_now + vtime_delta;
}

void BPF_STRUCT_OPS(fcg_exit, struct scx_exit_info *ei)
{
	UEI_RECORD(uei, ei);
}

SCX_OPS_DEFINE(flatcg_ops,
	       .select_cpu		= (void *)fcg_select_cpu,
	       .enqueue			= (void *)fcg_enqueue,
	       .dispatch		= (void *)fcg_dispatch,
	       .runnable		= (void *)fcg_runnable,
	       .running			= (void *)fcg_running,
	       .stopping		= (void *)fcg_stopping,
	       .quiescent		= (void *)fcg_quiescent,
	       .init_task		= (void *)fcg_init_task,
	       .cgroup_set_weight	= (void *)fcg_cgroup_set_weight,
	       .cgroup_init		= (void *)fcg_cgroup_init,
	       .cgroup_exit		= (void *)fcg_cgroup_exit,
	       .cgroup_move		= (void *)fcg_cgroup_move,
	       .exit			= (void *)fcg_exit,
	       .flags			= SCX_OPS_HAS_CGROUP_WEIGHT | SCX_OPS_ENQ_EXITING,
	       .name			= "flatcg");