1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
#ifndef __BPF_CORE_READ_H__
#define __BPF_CORE_READ_H__
/*
* enum bpf_field_info_kind is passed as a second argument into
* __builtin_preserve_field_info() built-in to get a specific aspect of
* a field, captured as a first argument. __builtin_preserve_field_info(field,
* info_kind) returns __u32 integer and produces BTF field relocation, which
* is understood and processed by libbpf during BPF object loading. See
* selftests/bpf for examples.
*/
enum bpf_field_info_kind {
BPF_FIELD_BYTE_OFFSET = 0, /* field byte offset */
BPF_FIELD_BYTE_SIZE = 1,
BPF_FIELD_EXISTS = 2, /* field existence in target kernel */
BPF_FIELD_SIGNED = 3,
BPF_FIELD_LSHIFT_U64 = 4,
BPF_FIELD_RSHIFT_U64 = 5,
};
/* second argument to __builtin_btf_type_id() built-in */
enum bpf_type_id_kind {
BPF_TYPE_ID_LOCAL = 0, /* BTF type ID in local program */
BPF_TYPE_ID_TARGET = 1, /* BTF type ID in target kernel */
};
/* second argument to __builtin_preserve_type_info() built-in */
enum bpf_type_info_kind {
BPF_TYPE_EXISTS = 0, /* type existence in target kernel */
BPF_TYPE_SIZE = 1, /* type size in target kernel */
BPF_TYPE_MATCHES = 2, /* type match in target kernel */
};
/* second argument to __builtin_preserve_enum_value() built-in */
enum bpf_enum_value_kind {
BPF_ENUMVAL_EXISTS = 0, /* enum value existence in kernel */
BPF_ENUMVAL_VALUE = 1, /* enum value value relocation */
};
#define __CORE_RELO(src, field, info) \
__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
bpf_probe_read_kernel( \
(void *)dst, \
__CORE_RELO(src, fld, BYTE_SIZE), \
(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
#else
/* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
* for big-endian we need to adjust destination pointer accordingly, based on
* field byte size
*/
#define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \
bpf_probe_read_kernel( \
(void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
__CORE_RELO(src, fld, BYTE_SIZE), \
(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
#endif
/*
* Extract bitfield, identified by s->field, and return its value as u64.
* All this is done in relocatable manner, so bitfield changes such as
* signedness, bit size, offset changes, this will be handled automatically.
* This version of macro is using bpf_probe_read_kernel() to read underlying
* integer storage. Macro functions as an expression and its return type is
* bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
*/
#define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({ \
unsigned long long val = 0; \
\
__CORE_BITFIELD_PROBE_READ(&val, s, field); \
val <<= __CORE_RELO(s, field, LSHIFT_U64); \
if (__CORE_RELO(s, field, SIGNED)) \
val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
else \
val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
val; \
})
/*
* Extract bitfield, identified by s->field, and return its value as u64.
* This version of macro is using direct memory reads and should be used from
* BPF program types that support such functionality (e.g., typed raw
* tracepoints).
*/
#define BPF_CORE_READ_BITFIELD(s, field) ({ \
const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
unsigned long long val; \
\
/* This is a so-called barrier_var() operation that makes specified \
* variable "a black box" for optimizing compiler. \
* It forces compiler to perform BYTE_OFFSET relocation on p and use \
* its calculated value in the switch below, instead of applying \
* the same relocation 4 times for each individual memory load. \
*/ \
asm volatile("" : "=r"(p) : "0"(p)); \
\
switch (__CORE_RELO(s, field, BYTE_SIZE)) { \
case 1: val = *(const unsigned char *)p; break; \
case 2: val = *(const unsigned short *)p; break; \
case 4: val = *(const unsigned int *)p; break; \
case 8: val = *(const unsigned long long *)p; break; \
} \
val <<= __CORE_RELO(s, field, LSHIFT_U64); \
if (__CORE_RELO(s, field, SIGNED)) \
val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \
else \
val = val >> __CORE_RELO(s, field, RSHIFT_U64); \
val; \
})
/*
* Write to a bitfield, identified by s->field.
* This is the inverse of BPF_CORE_WRITE_BITFIELD().
*/
#define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({ \
void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE); \
unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64); \
unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64); \
unsigned long long mask, val, nval = new_val; \
unsigned int rpad = rshift - lshift; \
\
asm volatile("" : "+r"(p)); \
\
switch (byte_size) { \
case 1: val = *(unsigned char *)p; break; \
case 2: val = *(unsigned short *)p; break; \
case 4: val = *(unsigned int *)p; break; \
case 8: val = *(unsigned long long *)p; break; \
} \
\
mask = (~0ULL << rshift) >> lshift; \
val = (val & ~mask) | ((nval << rpad) & mask); \
\
switch (byte_size) { \
case 1: *(unsigned char *)p = val; break; \
case 2: *(unsigned short *)p = val; break; \
case 4: *(unsigned int *)p = val; break; \
case 8: *(unsigned long long *)p = val; break; \
} \
})
#define ___bpf_field_ref1(field) (field)
#define ___bpf_field_ref2(type, field) (((typeof(type) *)0)->field)
#define ___bpf_field_ref(args...) \
___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args)
/*
* Convenience macro to check that field actually exists in target kernel's.
* Returns:
* 1, if matching field is present in target kernel;
* 0, if no matching field found.
*
* Supports two forms:
* - field reference through variable access:
* bpf_core_field_exists(p->my_field);
* - field reference through type and field names:
* bpf_core_field_exists(struct my_type, my_field).
*/
#define bpf_core_field_exists(field...) \
__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS)
/*
* Convenience macro to get the byte size of a field. Works for integers,
* struct/unions, pointers, arrays, and enums.
*
* Supports two forms:
* - field reference through variable access:
* bpf_core_field_size(p->my_field);
* - field reference through type and field names:
* bpf_core_field_size(struct my_type, my_field).
*/
#define bpf_core_field_size(field...) \
__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE)
/*
* Convenience macro to get field's byte offset.
*
* Supports two forms:
* - field reference through variable access:
* bpf_core_field_offset(p->my_field);
* - field reference through type and field names:
* bpf_core_field_offset(struct my_type, my_field).
*/
#define bpf_core_field_offset(field...) \
__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET)
/*
* Convenience macro to get BTF type ID of a specified type, using a local BTF
* information. Return 32-bit unsigned integer with type ID from program's own
* BTF. Always succeeds.
*/
#define bpf_core_type_id_local(type) \
__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
/*
* Convenience macro to get BTF type ID of a target kernel's type that matches
* specified local type.
* Returns:
* - valid 32-bit unsigned type ID in kernel BTF;
* - 0, if no matching type was found in a target kernel BTF.
*/
#define bpf_core_type_id_kernel(type) \
__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
/*
* Convenience macro to check that provided named type
* (struct/union/enum/typedef) exists in a target kernel.
* Returns:
* 1, if such type is present in target kernel's BTF;
* 0, if no matching type is found.
*/
#define bpf_core_type_exists(type) \
__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
/*
* Convenience macro to check that provided named type
* (struct/union/enum/typedef) "matches" that in a target kernel.
* Returns:
* 1, if the type matches in the target kernel's BTF;
* 0, if the type does not match any in the target kernel
*/
#define bpf_core_type_matches(type) \
__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_MATCHES)
/*
* Convenience macro to get the byte size of a provided named type
* (struct/union/enum/typedef) in a target kernel.
* Returns:
* >= 0 size (in bytes), if type is present in target kernel's BTF;
* 0, if no matching type is found.
*/
#define bpf_core_type_size(type) \
__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
/*
* Convenience macro to check that provided enumerator value is defined in
* a target kernel.
* Returns:
* 1, if specified enum type and its enumerator value are present in target
* kernel's BTF;
* 0, if no matching enum and/or enum value within that enum is found.
*/
#define bpf_core_enum_value_exists(enum_type, enum_value) \
__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
/*
* Convenience macro to get the integer value of an enumerator value in
* a target kernel.
* Returns:
* 64-bit value, if specified enum type and its enumerator value are
* present in target kernel's BTF;
* 0, if no matching enum and/or enum value within that enum is found.
*/
#define bpf_core_enum_value(enum_type, enum_value) \
__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
/*
* bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
* offset relocation for source address using __builtin_preserve_access_index()
* built-in, provided by Clang.
*
* __builtin_preserve_access_index() takes as an argument an expression of
* taking an address of a field within struct/union. It makes compiler emit
* a relocation, which records BTF type ID describing root struct/union and an
* accessor string which describes exact embedded field that was used to take
* an address. See detailed description of this relocation format and
* semantics in comments to struct bpf_core_relo in include/uapi/linux/bpf.h.
*
* This relocation allows libbpf to adjust BPF instruction to use correct
* actual field offset, based on target kernel BTF type that matches original
* (local) BTF, used to record relocation.
*/
#define bpf_core_read(dst, sz, src) \
bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
#define bpf_core_read_user(dst, sz, src) \
bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
/*
* bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
* additionally emitting BPF CO-RE field relocation for specified source
* argument.
*/
#define bpf_core_read_str(dst, sz, src) \
bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
/* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
#define bpf_core_read_user_str(dst, sz, src) \
bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
#define ___concat(a, b) a ## b
#define ___apply(fn, n) ___concat(fn, n)
#define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
/*
* return number of provided arguments; used for switch-based variadic macro
* definitions (see ___last, ___arrow, etc below)
*/
#define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
/*
* return 0 if no arguments are passed, N - otherwise; used for
* recursively-defined macros to specify termination (0) case, and generic
* (N) case (e.g., ___read_ptrs, ___core_read)
*/
#define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
#define ___last1(x) x
#define ___last2(a, x) x
#define ___last3(a, b, x) x
#define ___last4(a, b, c, x) x
#define ___last5(a, b, c, d, x) x
#define ___last6(a, b, c, d, e, x) x
#define ___last7(a, b, c, d, e, f, x) x
#define ___last8(a, b, c, d, e, f, g, x) x
#define ___last9(a, b, c, d, e, f, g, h, x) x
#define ___last10(a, b, c, d, e, f, g, h, i, x) x
#define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
#define ___nolast2(a, _) a
#define ___nolast3(a, b, _) a, b
#define ___nolast4(a, b, c, _) a, b, c
#define ___nolast5(a, b, c, d, _) a, b, c, d
#define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
#define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
#define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
#define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
#define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
#define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
#define ___arrow1(a) a
#define ___arrow2(a, b) a->b
#define ___arrow3(a, b, c) a->b->c
#define ___arrow4(a, b, c, d) a->b->c->d
#define ___arrow5(a, b, c, d, e) a->b->c->d->e
#define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
#define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
#define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
#define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
#define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
#define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
#define ___type(...) typeof(___arrow(__VA_ARGS__))
#define ___read(read_fn, dst, src_type, src, accessor) \
read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
/* "recursively" read a sequence of inner pointers using local __t var */
#define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
#define ___rd_last(fn, ...) \
___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
#define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
#define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
#define ___read_ptrs(fn, src, ...) \
___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
#define ___core_read0(fn, fn_ptr, dst, src, a) \
___read(fn, dst, ___type(src), src, a);
#define ___core_readN(fn, fn_ptr, dst, src, ...) \
___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__)) \
___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t, \
___last(__VA_ARGS__));
#define ___core_read(fn, fn_ptr, dst, src, a, ...) \
___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst, \
src, a, ##__VA_ARGS__)
/*
* BPF_CORE_READ_INTO() is a more performance-conscious variant of
* BPF_CORE_READ(), in which final field is read into user-provided storage.
* See BPF_CORE_READ() below for more details on general usage.
*/
#define BPF_CORE_READ_INTO(dst, src, a, ...) ({ \
___core_read(bpf_core_read, bpf_core_read, \
dst, (src), a, ##__VA_ARGS__) \
})
/*
* Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
*
* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
*/
#define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({ \
___core_read(bpf_core_read_user, bpf_core_read_user, \
dst, (src), a, ##__VA_ARGS__) \
})
/* Non-CO-RE variant of BPF_CORE_READ_INTO() */
#define BPF_PROBE_READ_INTO(dst, src, a, ...) ({ \
___core_read(bpf_probe_read_kernel, bpf_probe_read_kernel, \
dst, (src), a, ##__VA_ARGS__) \
})
/* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
*
* As no CO-RE relocations are emitted, source types can be arbitrary and are
* not restricted to kernel types only.
*/
#define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({ \
___core_read(bpf_probe_read_user, bpf_probe_read_user, \
dst, (src), a, ##__VA_ARGS__) \
})
/*
* BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
* BPF_CORE_READ() for intermediate pointers, but then executes (and returns
* corresponding error code) bpf_core_read_str() for final string read.
*/
#define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({ \
___core_read(bpf_core_read_str, bpf_core_read, \
dst, (src), a, ##__VA_ARGS__) \
})
/*
* Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
*
* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
*/
#define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({ \
___core_read(bpf_core_read_user_str, bpf_core_read_user, \
dst, (src), a, ##__VA_ARGS__) \
})
/* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
#define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({ \
___core_read(bpf_probe_read_kernel_str, bpf_probe_read_kernel, \
dst, (src), a, ##__VA_ARGS__) \
})
/*
* Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
*
* As no CO-RE relocations are emitted, source types can be arbitrary and are
* not restricted to kernel types only.
*/
#define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({ \
___core_read(bpf_probe_read_user_str, bpf_probe_read_user, \
dst, (src), a, ##__VA_ARGS__) \
})
/*
* BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
* when there are few pointer chasing steps.
* E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
* int x = s->a.b.c->d.e->f->g;
* can be succinctly achieved using BPF_CORE_READ as:
* int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
*
* BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
* CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
* equivalent to:
* 1. const void *__t = s->a.b.c;
* 2. __t = __t->d.e;
* 3. __t = __t->f;
* 4. return __t->g;
*
* Equivalence is logical, because there is a heavy type casting/preservation
* involved, as well as all the reads are happening through
* bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
* emit CO-RE relocations.
*
* N.B. Only up to 9 "field accessors" are supported, which should be more
* than enough for any practical purpose.
*/
#define BPF_CORE_READ(src, a, ...) ({ \
___type((src), a, ##__VA_ARGS__) __r; \
BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \
__r; \
})
/*
* Variant of BPF_CORE_READ() for reading from user-space memory.
*
* NOTE: all the source types involved are still *kernel types* and need to
* exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
* fail. Custom user types are not relocatable with CO-RE.
* The typical situation in which BPF_CORE_READ_USER() might be used is to
* read kernel UAPI types from the user-space memory passed in as a syscall
* input argument.
*/
#define BPF_CORE_READ_USER(src, a, ...) ({ \
___type((src), a, ##__VA_ARGS__) __r; \
BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \
__r; \
})
/* Non-CO-RE variant of BPF_CORE_READ() */
#define BPF_PROBE_READ(src, a, ...) ({ \
___type((src), a, ##__VA_ARGS__) __r; \
BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \
__r; \
})
/*
* Non-CO-RE variant of BPF_CORE_READ_USER().
*
* As no CO-RE relocations are emitted, source types can be arbitrary and are
* not restricted to kernel types only.
*/
#define BPF_PROBE_READ_USER(src, a, ...) ({ \
___type((src), a, ##__VA_ARGS__) __r; \
BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \
__r; \
})
#endif
|