summaryrefslogtreecommitdiff
path: root/mm/memory.c
blob: 2e754621d3332a288f40c23a58236f4eb5f60527 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/module.h>
#include <linux/delayacct.h>
#include <linux/init.h>
#include <linux/writeback.h>

#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

#include <linux/swapops.h>
#include <linux/elf.h>

#ifndef CONFIG_NEED_MULTIPLE_NODES
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

unsigned long num_physpages;
/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;
unsigned long vmalloc_earlyreserve;

EXPORT_SYMBOL(num_physpages);
EXPORT_SYMBOL(high_memory);
EXPORT_SYMBOL(vmalloc_earlyreserve);

int randomize_va_space __read_mostly = 1;

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
	return 1;
}
__setup("norandmaps", disable_randmaps);


/*
 * If a p?d_bad entry is found while walking page tables, report
 * the error, before resetting entry to p?d_none.  Usually (but
 * very seldom) called out from the p?d_none_or_clear_bad macros.
 */

void pgd_clear_bad(pgd_t *pgd)
{
	pgd_ERROR(*pgd);
	pgd_clear(pgd);
}

void pud_clear_bad(pud_t *pud)
{
	pud_ERROR(*pud);
	pud_clear(pud);
}

void pmd_clear_bad(pmd_t *pmd)
{
	pmd_ERROR(*pmd);
	pmd_clear(pmd);
}

/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
{
	struct page *page = pmd_page(*pmd);
	pmd_clear(pmd);
	pte_lock_deinit(page);
	pte_free_tlb(tlb, page);
	dec_zone_page_state(page, NR_PAGETABLE);
	tlb->mm->nr_ptes--;
}

static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		free_pte_range(tlb, pmd);
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd);
}

static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
void free_pgd_range(struct mmu_gather **tlb,
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long start;

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */

	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

	start = addr;
	pgd = pgd_offset((*tlb)->mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
	} while (pgd++, addr = next, addr != end);

	if (!(*tlb)->fullmm)
		flush_tlb_pgtables((*tlb)->mm, start, end);
}

void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
		unsigned long floor, unsigned long ceiling)
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

		/*
		 * Hide vma from rmap and vmtruncate before freeing pgtables
		 */
		anon_vma_unlink(vma);
		unlink_file_vma(vma);

		if (is_vm_hugetlb_page(vma)) {
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
			       && !is_vm_hugetlb_page(next)) {
				vma = next;
				next = vma->vm_next;
				anon_vma_unlink(vma);
				unlink_file_vma(vma);
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
		vma = next;
	}
}

int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
{
	struct page *new = pte_alloc_one(mm, address);
	if (!new)
		return -ENOMEM;

	pte_lock_init(new);
	spin_lock(&mm->page_table_lock);
	if (pmd_present(*pmd)) {	/* Another has populated it */
		pte_lock_deinit(new);
		pte_free(new);
	} else {
		mm->nr_ptes++;
		inc_zone_page_state(new, NR_PAGETABLE);
		pmd_populate(mm, pmd, new);
	}
	spin_unlock(&mm->page_table_lock);
	return 0;
}

int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
{
	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
	if (!new)
		return -ENOMEM;

	spin_lock(&init_mm.page_table_lock);
	if (pmd_present(*pmd))		/* Another has populated it */
		pte_free_kernel(new);
	else
		pmd_populate_kernel(&init_mm, pmd, new);
	spin_unlock(&init_mm.page_table_lock);
	return 0;
}

static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
{
	if (file_rss)
		add_mm_counter(mm, file_rss, file_rss);
	if (anon_rss)
		add_mm_counter(mm, anon_rss, anon_rss);
}

/*
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
 *
 * The calling function must still handle the error.
 */
void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
{
	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
			"vm_flags = %lx, vaddr = %lx\n",
		(long long)pte_val(pte),
		(vma->vm_mm == current->mm ? current->comm : "???"),
		vma->vm_flags, vaddr);
	dump_stack();
}

static inline int is_cow_mapping(unsigned int flags)
{
	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}

/*
 * This function gets the "struct page" associated with a pte.
 *
 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
 * will have each page table entry just pointing to a raw page frame
 * number, and as far as the VM layer is concerned, those do not have
 * pages associated with them - even if the PFN might point to memory
 * that otherwise is perfectly fine and has a "struct page".
 *
 * The way we recognize those mappings is through the rules set up
 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
 * and the vm_pgoff will point to the first PFN mapped: thus every
 * page that is a raw mapping will always honor the rule
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
 * and if that isn't true, the page has been COW'ed (in which case it
 * _does_ have a "struct page" associated with it even if it is in a
 * VM_PFNMAP range).
 */
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
{
	unsigned long pfn = pte_pfn(pte);

	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
		if (pfn == vma->vm_pgoff + off)
			return NULL;
		if (!is_cow_mapping(vma->vm_flags))
			return NULL;
	}

	/*
	 * Add some anal sanity checks for now. Eventually,
	 * we should just do "return pfn_to_page(pfn)", but
	 * in the meantime we check that we get a valid pfn,
	 * and that the resulting page looks ok.
	 */
	if (unlikely(!pfn_valid(pfn))) {
		print_bad_pte(vma, pte, addr);
		return NULL;
	}

	/*
	 * NOTE! We still have PageReserved() pages in the page 
	 * tables. 
	 *
	 * The PAGE_ZERO() pages and various VDSO mappings can
	 * cause them to exist.
	 */
	return pfn_to_page(pfn);
}

/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

static inline void
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
		unsigned long addr, int *rss)
{
	unsigned long vm_flags = vma->vm_flags;
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
		if (!pte_file(pte)) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			swap_duplicate(entry);
			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
						 &src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both parent
				 * and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				set_pte_at(src_mm, addr, src_pte, pte);
			}
		}
		goto out_set_pte;
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
	if (is_cow_mapping(vm_flags)) {
		ptep_set_wrprotect(src_mm, addr, src_pte);
		pte = pte_wrprotect(pte);
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
		page_dup_rmap(page);
		rss[!!PageAnon(page)]++;
	}

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
}

static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pte_t *src_pte, *dst_pte;
	spinlock_t *src_ptl, *dst_ptl;
	int progress = 0;
	int rss[2];

again:
	rss[1] = rss[0] = 0;
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
	if (!dst_pte)
		return -ENOMEM;
	src_pte = pte_offset_map_nested(src_pmd, addr);
	src_ptl = pte_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
			    need_lockbreak(src_ptl) ||
			    need_lockbreak(dst_ptl))
				break;
		}
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

	spin_unlock(src_ptl);
	pte_unmap_nested(src_pte - 1);
	add_mm_rss(dst_mm, rss[0], rss[1]);
	pte_unmap_unlock(dst_pte - 1, dst_ptl);
	cond_resched();
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;

	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
		if (!vma->anon_vma)
			return 0;
	}

	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
	return 0;
}

static unsigned long zap_pte_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pmd_t *pmd,
				unsigned long addr, unsigned long end,
				long *zap_work, struct zap_details *details)
{
	struct mm_struct *mm = tlb->mm;
	pte_t *pte;
	spinlock_t *ptl;
	int file_rss = 0;
	int anon_rss = 0;

	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	do {
		pte_t ptent = *pte;
		if (pte_none(ptent)) {
			(*zap_work)--;
			continue;
		}

		(*zap_work) -= PAGE_SIZE;

		if (pte_present(ptent)) {
			struct page *page;

			page = vm_normal_page(vma, addr, ptent);
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
				/*
				 * Each page->index must be checked when
				 * invalidating or truncating nonlinear.
				 */
				if (details->nonlinear_vma &&
				    (page->index < details->first_index ||
				     page->index > details->last_index))
					continue;
			}
			ptent = ptep_get_and_clear_full(mm, addr, pte,
							tlb->fullmm);
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
			if (unlikely(details) && details->nonlinear_vma
			    && linear_page_index(details->nonlinear_vma,
						addr) != page->index)
				set_pte_at(mm, addr, pte,
					   pgoff_to_pte(page->index));
			if (PageAnon(page))
				anon_rss--;
			else {
				if (pte_dirty(ptent))
					set_page_dirty(page);
				if (pte_young(ptent))
					mark_page_accessed(page);
				file_rss--;
			}
			page_remove_rmap(page);
			tlb_remove_page(tlb, page);
			continue;
		}
		/*
		 * If details->check_mapping, we leave swap entries;
		 * if details->nonlinear_vma, we leave file entries.
		 */
		if (unlikely(details))
			continue;
		if (!pte_file(ptent))
			free_swap_and_cache(pte_to_swp_entry(ptent));
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));

	add_mm_rss(mm, file_rss, anon_rss);
	pte_unmap_unlock(pte - 1, ptl);

	return addr;
}

static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pud_t *pud,
				unsigned long addr, unsigned long end,
				long *zap_work, struct zap_details *details)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd)) {
			(*zap_work)--;
			continue;
		}
		next = zap_pte_range(tlb, vma, pmd, addr, next,
						zap_work, details);
	} while (pmd++, addr = next, (addr != end && *zap_work > 0));

	return addr;
}

static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				long *zap_work, struct zap_details *details)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud)) {
			(*zap_work)--;
			continue;
		}
		next = zap_pmd_range(tlb, vma, pud, addr, next,
						zap_work, details);
	} while (pud++, addr = next, (addr != end && *zap_work > 0));

	return addr;
}

static unsigned long unmap_page_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma,
				unsigned long addr, unsigned long end,
				long *zap_work, struct zap_details *details)
{
	pgd_t *pgd;
	unsigned long next;

	if (details && !details->check_mapping && !details->nonlinear_vma)
		details = NULL;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd)) {
			(*zap_work)--;
			continue;
		}
		next = zap_pud_range(tlb, vma, pgd, addr, next,
						zap_work, details);
	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
	tlb_end_vma(tlb, vma);

	return addr;
}

#ifdef CONFIG_PREEMPT
# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
#else
/* No preempt: go for improved straight-line efficiency */
# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
#endif

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
 * @tlbp: address of the caller's struct mmu_gather
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
 * @details: details of nonlinear truncation or shared cache invalidation
 *
 * Returns the end address of the unmapping (restart addr if interrupted).
 *
 * Unmap all pages in the vma list.
 *
 * We aim to not hold locks for too long (for scheduling latency reasons).
 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
 * return the ending mmu_gather to the caller.
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
unsigned long unmap_vmas(struct mmu_gather **tlbp,
		struct vm_area_struct *vma, unsigned long start_addr,
		unsigned long end_addr, unsigned long *nr_accounted,
		struct zap_details *details)
{
	long zap_work = ZAP_BLOCK_SIZE;
	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
	int tlb_start_valid = 0;
	unsigned long start = start_addr;
	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
	int fullmm = (*tlbp)->fullmm;

	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
		unsigned long end;

		start = max(vma->vm_start, start_addr);
		if (start >= vma->vm_end)
			continue;
		end = min(vma->vm_end, end_addr);
		if (end <= vma->vm_start)
			continue;

		if (vma->vm_flags & VM_ACCOUNT)
			*nr_accounted += (end - start) >> PAGE_SHIFT;

		while (start != end) {
			if (!tlb_start_valid) {
				tlb_start = start;
				tlb_start_valid = 1;
			}

			if (unlikely(is_vm_hugetlb_page(vma))) {
				unmap_hugepage_range(vma, start, end);
				zap_work -= (end - start) /
						(HPAGE_SIZE / PAGE_SIZE);
				start = end;
			} else
				start = unmap_page_range(*tlbp, vma,
						start, end, &zap_work, details);

			if (zap_work > 0) {
				BUG_ON(start != end);
				break;
			}

			tlb_finish_mmu(*tlbp, tlb_start, start);

			if (need_resched() ||
				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
				if (i_mmap_lock) {
					*tlbp = NULL;
					goto out;
				}
				cond_resched();
			}

			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
			tlb_start_valid = 0;
			zap_work = ZAP_BLOCK_SIZE;
		}
	}
out:
	return start;	/* which is now the end (or restart) address */
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 * @details: details of nonlinear truncation or shared cache invalidation
 */
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_gather *tlb;
	unsigned long end = address + size;
	unsigned long nr_accounted = 0;

	lru_add_drain();
	tlb = tlb_gather_mmu(mm, 0);
	update_hiwater_rss(mm);
	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
	if (tlb)
		tlb_finish_mmu(tlb, address, end);
	return end;
}

/*
 * Do a quick page-table lookup for a single page.
 */
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			unsigned int flags)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
		BUG_ON(flags & FOLL_GET);
		goto out;
	}

	page = NULL;
	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto no_page_table;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto no_page_table;
	
	pmd = pmd_offset(pud, address);
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto no_page_table;

	if (pmd_huge(*pmd)) {
		BUG_ON(flags & FOLL_GET);
		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
		goto out;
	}

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (!ptep)
		goto out;

	pte = *ptep;
	if (!pte_present(pte))
		goto unlock;
	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;
	page = vm_normal_page(vma, address, pte);
	if (unlikely(!page))
		goto unlock;

	if (flags & FOLL_GET)
		get_page(page);
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		mark_page_accessed(page);
	}
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
	return page;

no_page_table:
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate page tables.
	 */
	if (flags & FOLL_ANON) {
		page = ZERO_PAGE(address);
		if (flags & FOLL_GET)
			get_page(page);
		BUG_ON(flags & FOLL_WRITE);
	}
	return page;
}

int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long start, int len, int write, int force,
		struct page **pages, struct vm_area_struct **vmas)
{
	int i;
	unsigned int vm_flags;

	/* 
	 * Require read or write permissions.
	 * If 'force' is set, we only require the "MAY" flags.
	 */
	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
	i = 0;

	do {
		struct vm_area_struct *vma;
		unsigned int foll_flags;

		vma = find_extend_vma(mm, start);
		if (!vma && in_gate_area(tsk, start)) {
			unsigned long pg = start & PAGE_MASK;
			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
			pgd_t *pgd;
			pud_t *pud;
			pmd_t *pmd;
			pte_t *pte;
			if (write) /* user gate pages are read-only */
				return i ? : -EFAULT;
			if (pg > TASK_SIZE)
				pgd = pgd_offset_k(pg);
			else
				pgd = pgd_offset_gate(mm, pg);
			BUG_ON(pgd_none(*pgd));
			pud = pud_offset(pgd, pg);
			BUG_ON(pud_none(*pud));
			pmd = pmd_offset(pud, pg);
			if (pmd_none(*pmd))
				return i ? : -EFAULT;
			pte = pte_offset_map(pmd, pg);
			if (pte_none(*pte)) {
				pte_unmap(pte);
				return i ? : -EFAULT;
			}
			if (pages) {
				struct page *page = vm_normal_page(gate_vma, start, *pte);
				pages[i] = page;
				if (page)
					get_page(page);
			}
			pte_unmap(pte);
			if (vmas)
				vmas[i] = gate_vma;
			i++;
			start += PAGE_SIZE;
			len--;
			continue;
		}

		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
				|| !(vm_flags & vma->vm_flags))
			return i ? : -EFAULT;

		if (is_vm_hugetlb_page(vma)) {
			i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &len, i);
			continue;
		}

		foll_flags = FOLL_TOUCH;
		if (pages)
			foll_flags |= FOLL_GET;
		if (!write && !(vma->vm_flags & VM_LOCKED) &&
		    (!vma->vm_ops || !vma->vm_ops->nopage))
			foll_flags |= FOLL_ANON;

		do {
			struct page *page;

			if (write)
				foll_flags |= FOLL_WRITE;

			cond_resched();
			while (!(page = follow_page(vma, start, foll_flags))) {
				int ret;
				ret = __handle_mm_fault(mm, vma, start,
						foll_flags & FOLL_WRITE);
				/*
				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
				 * broken COW when necessary, even if maybe_mkwrite
				 * decided not to set pte_write. We can thus safely do
				 * subsequent page lookups as if they were reads.
				 */
				if (ret & VM_FAULT_WRITE)
					foll_flags &= ~FOLL_WRITE;
				
				switch (ret & ~VM_FAULT_WRITE) {
				case VM_FAULT_MINOR:
					tsk->min_flt++;
					break;
				case VM_FAULT_MAJOR:
					tsk->maj_flt++;
					break;
				case VM_FAULT_SIGBUS:
					return i ? i : -EFAULT;
				case VM_FAULT_OOM:
					return i ? i : -ENOMEM;
				default:
					BUG();
				}
			}
			if (pages) {
				pages[i] = page;

				flush_anon_page(page, start);
				flush_dcache_page(page);
			}
			if (vmas)
				vmas[i] = vma;
			i++;
			start += PAGE_SIZE;
			len--;
		} while (len && start < vma->vm_end);
	} while (len);
	return i;
}
EXPORT_SYMBOL(get_user_pages);

static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end, pgprot_t prot)
{
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;
	do {
		struct page *page = ZERO_PAGE(addr);
		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
		page_cache_get(page);
		page_add_file_rmap(page);
		inc_mm_counter(mm, file_rss);
		BUG_ON(!pte_none(*pte));
		set_pte_at(mm, addr, pte, zero_pte);
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap_unlock(pte - 1, ptl);
	return 0;
}

static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		if (zeromap_pte_range(mm, pmd, addr, next, prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (zeromap_pmd_range(mm, pud, addr, next, prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

int zeromap_page_range(struct vm_area_struct *vma,
			unsigned long addr, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long end = addr + size;
	struct mm_struct *mm = vma->vm_mm;
	int err;

	BUG_ON(addr >= end);
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = zeromap_pud_range(mm, pgd, addr, next, prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
	return err;
}

pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
{
	pgd_t * pgd = pgd_offset(mm, addr);
	pud_t * pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		pmd_t * pmd = pmd_alloc(mm, pud, addr);
		if (pmd)
			return pte_alloc_map_lock(mm, pmd, addr, ptl);
	}
	return NULL;
}

/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
{
	int retval;
	pte_t *pte;
	spinlock_t *ptl;  

	retval = -EINVAL;
	if (PageAnon(page))
		goto out;
	retval = -ENOMEM;
	flush_dcache_page(page);
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
	inc_mm_counter(mm, file_rss);
	page_add_file_rmap(page);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
 * (see split_page()).
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
 */
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
	vma->vm_flags |= VM_INSERTPAGE;
	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_page);

/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;
	do {
		BUG_ON(!pte_none(*pte));
		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
	pte_unmap_unlock(pte - 1, ptl);
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long end = addr + PAGE_ALIGN(size);
	struct mm_struct *mm = vma->vm_mm;
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
	 *   VM_RESERVED is specified all over the place, because
	 *	in 2.4 it kept swapout's vma scan off this vma; but
	 *	in 2.6 the LRU scan won't even find its pages, so this
	 *	flag means no more than count its pages in reserved_vm,
	 * 	and omit it from core dump, even when VM_IO turned off.
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
	 */
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
		vma->vm_pgoff = pfn;
	}

	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

/*
 * handle_pte_fault chooses page fault handler according to an entry
 * which was read non-atomically.  Before making any commitment, on
 * those architectures or configurations (e.g. i386 with PAE) which
 * might give a mix of unmatched parts, do_swap_page and do_file_page
 * must check under lock before unmapping the pte and proceeding
 * (but do_wp_page is only called after already making such a check;
 * and do_anonymous_page and do_no_page can safely check later on).
 */
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
		same = pte_same(*page_table, orig_pte);
		spin_unlock(ptl);
	}
#endif
	pte_unmap(page_table);
	return same;
}

/*
 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 * servicing faults for write access.  In the normal case, do always want
 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 * that do not have writing enabled, when used by access_process_vm.
 */
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
	if (likely(vma->vm_flags & VM_WRITE))
		pte = pte_mkwrite(pte);
	return pte;
}

static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
{
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
		void *kaddr = kmap_atomic(dst, KM_USER0);
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
			memset(kaddr, 0, PAGE_SIZE);
		kunmap_atomic(kaddr, KM_USER0);
		return;
		
	}
	copy_user_highpage(dst, src, va);
}

/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		spinlock_t *ptl, pte_t orig_pte)
{
	struct page *old_page, *new_page;
	pte_t entry;
	int reuse = 0, ret = VM_FAULT_MINOR;
	struct page *dirty_page = NULL;

	old_page = vm_normal_page(vma, address, orig_pte);
	if (!old_page)
		goto gotten;

	/*
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
	 */
	if (PageAnon(old_page)) {
		if (!TestSetPageLocked(old_page)) {
			reuse = can_share_swap_page(old_page);
			unlock_page(old_page);
		}
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
					(VM_WRITE|VM_SHARED))) {
		/*
		 * Only catch write-faults on shared writable pages,
		 * read-only shared pages can get COWed by
		 * get_user_pages(.write=1, .force=1).
		 */
		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
			/*
			 * Notify the address space that the page is about to
			 * become writable so that it can prohibit this or wait
			 * for the page to get into an appropriate state.
			 *
			 * We do this without the lock held, so that it can
			 * sleep if it needs to.
			 */
			page_cache_get(old_page);
			pte_unmap_unlock(page_table, ptl);

			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
				goto unwritable_page;

			page_cache_release(old_page);

			/*
			 * Since we dropped the lock we need to revalidate
			 * the PTE as someone else may have changed it.  If
			 * they did, we just return, as we can count on the
			 * MMU to tell us if they didn't also make it writable.
			 */
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte))
				goto unlock;
		}
		dirty_page = old_page;
		get_page(dirty_page);
		reuse = 1;
	}

	if (reuse) {
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = pte_mkyoung(orig_pte);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		ptep_set_access_flags(vma, address, page_table, entry, 1);
		update_mmu_cache(vma, address, entry);
		lazy_mmu_prot_update(entry);
		ret |= VM_FAULT_WRITE;
		goto unlock;
	}

	/*
	 * Ok, we need to copy. Oh, well..
	 */
	page_cache_get(old_page);
gotten:
	pte_unmap_unlock(page_table, ptl);

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
	if (old_page == ZERO_PAGE(address)) {
		new_page = alloc_zeroed_user_highpage(vma, address);
		if (!new_page)
			goto oom;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
		if (!new_page)
			goto oom;
		cow_user_page(new_page, old_page, address);
	}

	/*
	 * Re-check the pte - we dropped the lock
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (likely(pte_same(*page_table, orig_pte))) {
		if (old_page) {
			page_remove_rmap(old_page);
			if (!PageAnon(old_page)) {
				dec_mm_counter(mm, file_rss);
				inc_mm_counter(mm, anon_rss);
			}
		} else
			inc_mm_counter(mm, anon_rss);
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		lazy_mmu_prot_update(entry);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
		ptep_clear_flush(vma, address, page_table);
		set_pte_at(mm, address, page_table, entry);
		update_mmu_cache(vma, address, entry);
		lru_cache_add_active(new_page);
		page_add_new_anon_rmap(new_page, vma, address);

		/* Free the old page.. */
		new_page = old_page;
		ret |= VM_FAULT_WRITE;
	}
	if (new_page)
		page_cache_release(new_page);
	if (old_page)
		page_cache_release(old_page);
unlock:
	pte_unmap_unlock(page_table, ptl);
	if (dirty_page) {
		set_page_dirty_balance(dirty_page);
		put_page(dirty_page);
	}
	return ret;
oom:
	if (old_page)
		page_cache_release(old_page);
	return VM_FAULT_OOM;

unwritable_page:
	page_cache_release(old_page);
	return VM_FAULT_SIGBUS;
}

/*
 * Helper functions for unmap_mapping_range().
 *
 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
 *
 * We have to restart searching the prio_tree whenever we drop the lock,
 * since the iterator is only valid while the lock is held, and anyway
 * a later vma might be split and reinserted earlier while lock dropped.
 *
 * The list of nonlinear vmas could be handled more efficiently, using
 * a placeholder, but handle it in the same way until a need is shown.
 * It is important to search the prio_tree before nonlinear list: a vma
 * may become nonlinear and be shifted from prio_tree to nonlinear list
 * while the lock is dropped; but never shifted from list to prio_tree.
 *
 * In order to make forward progress despite restarting the search,
 * vm_truncate_count is used to mark a vma as now dealt with, so we can
 * quickly skip it next time around.  Since the prio_tree search only
 * shows us those vmas affected by unmapping the range in question, we
 * can't efficiently keep all vmas in step with mapping->truncate_count:
 * so instead reset them all whenever it wraps back to 0 (then go to 1).
 * mapping->truncate_count and vma->vm_truncate_count are protected by
 * i_mmap_lock.
 *
 * In order to make forward progress despite repeatedly restarting some
 * large vma, note the restart_addr from unmap_vmas when it breaks out:
 * and restart from that address when we reach that vma again.  It might
 * have been split or merged, shrunk or extended, but never shifted: so
 * restart_addr remains valid so long as it remains in the vma's range.
 * unmap_mapping_range forces truncate_count to leap over page-aligned
 * values so we can save vma's restart_addr in its truncate_count field.
 */
#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))

static void reset_vma_truncate_counts(struct address_space *mapping)
{
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;

	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
		vma->vm_truncate_count = 0;
	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
		vma->vm_truncate_count = 0;
}

static int unmap_mapping_range_vma(struct vm_area_struct *vma,
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
	unsigned long restart_addr;
	int need_break;

again:
	restart_addr = vma->vm_truncate_count;
	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
		start_addr = restart_addr;
		if (start_addr >= end_addr) {
			/* Top of vma has been split off since last time */
			vma->vm_truncate_count = details->truncate_count;
			return 0;
		}
	}

	restart_addr = zap_page_range(vma, start_addr,
					end_addr - start_addr, details);
	need_break = need_resched() ||
			need_lockbreak(details->i_mmap_lock);

	if (restart_addr >= end_addr) {
		/* We have now completed this vma: mark it so */
		vma->vm_truncate_count = details->truncate_count;
		if (!need_break)
			return 0;
	} else {
		/* Note restart_addr in vma's truncate_count field */
		vma->vm_truncate_count = restart_addr;
		if (!need_break)
			goto again;
	}

	spin_unlock(details->i_mmap_lock);
	cond_resched();
	spin_lock(details->i_mmap_lock);
	return -EINTR;
}

static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	struct prio_tree_iter iter;
	pgoff_t vba, vea, zba, zea;

restart:
	vma_prio_tree_foreach(vma, &iter, root,
			details->first_index, details->last_index) {
		/* Skip quickly over those we have already dealt with */
		if (vma->vm_truncate_count == details->truncate_count)
			continue;

		vba = vma->vm_pgoff;
		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

		if (unmap_mapping_range_vma(vma,
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
				details) < 0)
			goto restart;
	}
}

static inline void unmap_mapping_range_list(struct list_head *head,
					    struct zap_details *details)
{
	struct vm_area_struct *vma;

	/*
	 * In nonlinear VMAs there is no correspondence between virtual address
	 * offset and file offset.  So we must perform an exhaustive search
	 * across *all* the pages in each nonlinear VMA, not just the pages
	 * whose virtual address lies outside the file truncation point.
	 */
restart:
	list_for_each_entry(vma, head, shared.vm_set.list) {
		/* Skip quickly over those we have already dealt with */
		if (vma->vm_truncate_count == details->truncate_count)
			continue;
		details->nonlinear_vma = vma;
		if (unmap_mapping_range_vma(vma, vma->vm_start,
					vma->vm_end, details) < 0)
			goto restart;
	}
}

/**
 * unmap_mapping_range - unmap the portion of all mmaps
 * in the specified address_space corresponding to the specified
 * page range in the underlying file.
 * @mapping: the address space containing mmaps to be unmapped.
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
 * boundary.  Note that this is different from vmtruncate(), which
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	struct zap_details details;
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.nonlinear_vma = NULL;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;
	details.i_mmap_lock = &mapping->i_mmap_lock;

	spin_lock(&mapping->i_mmap_lock);

	/* serialize i_size write against truncate_count write */
	smp_wmb();
	/* Protect against page faults, and endless unmapping loops */
	mapping->truncate_count++;
	/*
	 * For archs where spin_lock has inclusive semantics like ia64
	 * this smp_mb() will prevent to read pagetable contents
	 * before the truncate_count increment is visible to
	 * other cpus.
	 */
	smp_mb();
	if (unlikely(is_restart_addr(mapping->truncate_count))) {
		if (mapping->truncate_count == 0)
			reset_vma_truncate_counts(mapping);
		mapping->truncate_count++;
	}
	details.truncate_count = mapping->truncate_count;

	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
	spin_unlock(&mapping->i_mmap_lock);
}
EXPORT_SYMBOL(unmap_mapping_range);

/**
 * vmtruncate - unmap mappings "freed" by truncate() syscall
 * @inode: inode of the file used
 * @offset: file offset to start truncating
 *
 * NOTE! We have to be ready to update the memory sharing
 * between the file and the memory map for a potential last
 * incomplete page.  Ugly, but necessary.
 */
int vmtruncate(struct inode * inode, loff_t offset)
{
	struct address_space *mapping = inode->i_mapping;
	unsigned long limit;

	if (inode->i_size < offset)
		goto do_expand;
	/*
	 * truncation of in-use swapfiles is disallowed - it would cause
	 * subsequent swapout to scribble on the now-freed blocks.
	 */
	if (IS_SWAPFILE(inode))
		goto out_busy;
	i_size_write(inode, offset);
	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
	truncate_inode_pages(mapping, offset);
	goto out_truncate;

do_expand:
	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
	if (limit != RLIM_INFINITY && offset > limit)
		goto out_sig;
	if (offset > inode->i_sb->s_maxbytes)
		goto out_big;
	i_size_write(inode, offset);

out_truncate:
	if (inode->i_op && inode->i_op->truncate)
		inode->i_op->truncate(inode);
	return 0;
out_sig:
	send_sig(SIGXFSZ, current, 0);
out_big:
	return -EFBIG;
out_busy:
	return -ETXTBSY;
}
EXPORT_SYMBOL(vmtruncate);

int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
{
	struct address_space *mapping = inode->i_mapping;

	/*
	 * If the underlying filesystem is not going to provide
	 * a way to truncate a range of blocks (punch a hole) -
	 * we should return failure right now.
	 */
	if (!inode->i_op || !inode->i_op->truncate_range)
		return -ENOSYS;

	mutex_lock(&inode->i_mutex);
	down_write(&inode->i_alloc_sem);
	unmap_mapping_range(mapping, offset, (end - offset), 1);
	truncate_inode_pages_range(mapping, offset, end);
	inode->i_op->truncate_range(inode, offset, end);
	up_write(&inode->i_alloc_sem);
	mutex_unlock(&inode->i_mutex);

	return 0;
}
EXPORT_UNUSED_SYMBOL(vmtruncate_range);  /*  June 2006  */

/**
 * swapin_readahead - swap in pages in hope we need them soon
 * @entry: swap entry of this memory
 * @addr: address to start
 * @vma: user vma this addresses belong to
 *
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...
 *
 * This has been extended to use the NUMA policies from the mm triggering
 * the readahead.
 *
 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 */
void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
{
#ifdef CONFIG_NUMA
	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
#endif
	int i, num;
	struct page *new_page;
	unsigned long offset;

	/*
	 * Get the number of handles we should do readahead io to.
	 */
	num = valid_swaphandles(entry, &offset);
	for (i = 0; i < num; offset++, i++) {
		/* Ok, do the async read-ahead now */
		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
							   offset), vma, addr);
		if (!new_page)
			break;
		page_cache_release(new_page);
#ifdef CONFIG_NUMA
		/*
		 * Find the next applicable VMA for the NUMA policy.
		 */
		addr += PAGE_SIZE;
		if (addr == 0)
			vma = NULL;
		if (vma) {
			if (addr >= vma->vm_end) {
				vma = next_vma;
				next_vma = vma ? vma->vm_next : NULL;
			}
			if (vma && addr < vma->vm_start)
				vma = NULL;
		} else {
			if (next_vma && addr >= next_vma->vm_start) {
				vma = next_vma;
				next_vma = vma->vm_next;
			}
		}
#endif
	}
	lru_add_drain();	/* Push any new pages onto the LRU now */
}

/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		int write_access, pte_t orig_pte)
{
	spinlock_t *ptl;
	struct page *page;
	swp_entry_t entry;
	pte_t pte;
	int ret = VM_FAULT_MINOR;

	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
		goto out;

	entry = pte_to_swp_entry(orig_pte);
	if (is_migration_entry(entry)) {
		migration_entry_wait(mm, pmd, address);
		goto out;
	}
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
	page = lookup_swap_cache(entry);
	if (!page) {
 		swapin_readahead(entry, address, vma);
 		page = read_swap_cache_async(entry, vma, address);
		if (!page) {
			/*
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
			 */
			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
			goto unlock;
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
		count_vm_event(PGMAJFAULT);
		grab_swap_token();
	}

	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
	mark_page_accessed(page);
	lock_page(page);

	/*
	 * Back out if somebody else already faulted in this pte.
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*page_table, orig_pte)))
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
	}

	/* The page isn't present yet, go ahead with the fault. */

	inc_mm_counter(mm, anon_rss);
	pte = mk_pte(page, vma->vm_page_prot);
	if (write_access && can_share_swap_page(page)) {
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
		write_access = 0;
	}

	flush_icache_page(vma, page);
	set_pte_at(mm, address, page_table, pte);
	page_add_anon_rmap(page, vma, address);

	swap_free(entry);
	if (vm_swap_full())
		remove_exclusive_swap_page(page);
	unlock_page(page);

	if (write_access) {
		if (do_wp_page(mm, vma, address,
				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
			ret = VM_FAULT_OOM;
		goto out;
	}

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, address, pte);
	lazy_mmu_prot_update(pte);
unlock:
	pte_unmap_unlock(page_table, ptl);
out:
	return ret;
out_nomap:
	pte_unmap_unlock(page_table, ptl);
	unlock_page(page);
	page_cache_release(page);
	return ret;
}

/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		int write_access)
{
	struct page *page;
	spinlock_t *ptl;
	pte_t entry;

	if (write_access) {
		/* Allocate our own private page. */
		pte_unmap(page_table);

		if (unlikely(anon_vma_prepare(vma)))
			goto oom;
		page = alloc_zeroed_user_highpage(vma, address);
		if (!page)
			goto oom;

		entry = mk_pte(page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);

		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
		if (!pte_none(*page_table))
			goto release;
		inc_mm_counter(mm, anon_rss);
		lru_cache_add_active(page);
		page_add_new_anon_rmap(page, vma, address);
	} else {
		/* Map the ZERO_PAGE - vm_page_prot is readonly */
		page = ZERO_PAGE(address);
		page_cache_get(page);
		entry = mk_pte(page, vma->vm_page_prot);

		ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
		if (!pte_none(*page_table))
			goto release;
		inc_mm_counter(mm, file_rss);
		page_add_file_rmap(page);
	}

	set_pte_at(mm, address, page_table, entry);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(vma, address, entry);
	lazy_mmu_prot_update(entry);
unlock:
	pte_unmap_unlock(page_table, ptl);
	return VM_FAULT_MINOR;
release:
	page_cache_release(page);
	goto unlock;
oom:
	return VM_FAULT_OOM;
}

/*
 * do_no_page() tries to create a new page mapping. It aggressively
 * tries to share with existing pages, but makes a separate copy if
 * the "write_access" parameter is true in order to avoid the next
 * page fault.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		int write_access)
{
	spinlock_t *ptl;
	struct page *new_page;
	struct address_space *mapping = NULL;
	pte_t entry;
	unsigned int sequence = 0;
	int ret = VM_FAULT_MINOR;
	int anon = 0;
	struct page *dirty_page = NULL;

	pte_unmap(page_table);
	BUG_ON(vma->vm_flags & VM_PFNMAP);

	if (vma->vm_file) {
		mapping = vma->vm_file->f_mapping;
		sequence = mapping->truncate_count;
		smp_rmb(); /* serializes i_size against truncate_count */
	}
retry:
	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
	/*
	 * No smp_rmb is needed here as long as there's a full
	 * spin_lock/unlock sequence inside the ->nopage callback
	 * (for the pagecache lookup) that acts as an implicit
	 * smp_mb() and prevents the i_size read to happen
	 * after the next truncate_count read.
	 */

	/* no page was available -- either SIGBUS or OOM */
	if (new_page == NOPAGE_SIGBUS)
		return VM_FAULT_SIGBUS;
	if (new_page == NOPAGE_OOM)
		return VM_FAULT_OOM;

	/*
	 * Should we do an early C-O-W break?
	 */
	if (write_access) {
		if (!(vma->vm_flags & VM_SHARED)) {
			struct page *page;

			if (unlikely(anon_vma_prepare(vma)))
				goto oom;
			page = alloc_page_vma(GFP_HIGHUSER, vma, address);
			if (!page)
				goto oom;
			copy_user_highpage(page, new_page, address);
			page_cache_release(new_page);
			new_page = page;
			anon = 1;

		} else {
			/* if the page will be shareable, see if the backing
			 * address space wants to know that the page is about
			 * to become writable */
			if (vma->vm_ops->page_mkwrite &&
			    vma->vm_ops->page_mkwrite(vma, new_page) < 0
			    ) {
				page_cache_release(new_page);
				return VM_FAULT_SIGBUS;
			}
		}
	}

	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	/*
	 * For a file-backed vma, someone could have truncated or otherwise
	 * invalidated this page.  If unmap_mapping_range got called,
	 * retry getting the page.
	 */
	if (mapping && unlikely(sequence != mapping->truncate_count)) {
		pte_unmap_unlock(page_table, ptl);
		page_cache_release(new_page);
		cond_resched();
		sequence = mapping->truncate_count;
		smp_rmb();
		goto retry;
	}

	/*
	 * This silly early PAGE_DIRTY setting removes a race
	 * due to the bad i386 page protection. But it's valid
	 * for other architectures too.
	 *
	 * Note that if write_access is true, we either now have
	 * an exclusive copy of the page, or this is a shared mapping,
	 * so we can make it writable and dirty to avoid having to
	 * handle that later.
	 */
	/* Only go through if we didn't race with anybody else... */
	if (pte_none(*page_table)) {
		flush_icache_page(vma, new_page);
		entry = mk_pte(new_page, vma->vm_page_prot);
		if (write_access)
			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		set_pte_at(mm, address, page_table, entry);
		if (anon) {
			inc_mm_counter(mm, anon_rss);
			lru_cache_add_active(new_page);
			page_add_new_anon_rmap(new_page, vma, address);
		} else {
			inc_mm_counter(mm, file_rss);
			page_add_file_rmap(new_page);
			if (write_access) {
				dirty_page = new_page;
				get_page(dirty_page);
			}
		}
	} else {
		/* One of our sibling threads was faster, back out. */
		page_cache_release(new_page);
		goto unlock;
	}

	/* no need to invalidate: a not-present page shouldn't be cached */
	update_mmu_cache(vma, address, entry);
	lazy_mmu_prot_update(entry);
unlock:
	pte_unmap_unlock(page_table, ptl);
	if (dirty_page) {
		set_page_dirty_balance(dirty_page);
		put_page(dirty_page);
	}
	return ret;
oom:
	page_cache_release(new_page);
	return VM_FAULT_OOM;
}

/*
 * do_no_pfn() tries to create a new page mapping for a page without
 * a struct_page backing it
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 *
 * It is expected that the ->nopfn handler always returns the same pfn
 * for a given virtual mapping.
 *
 * Mark this `noinline' to prevent it from bloating the main pagefault code.
 */
static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
		     unsigned long address, pte_t *page_table, pmd_t *pmd,
		     int write_access)
{
	spinlock_t *ptl;
	pte_t entry;
	unsigned long pfn;
	int ret = VM_FAULT_MINOR;

	pte_unmap(page_table);
	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
	BUG_ON(is_cow_mapping(vma->vm_flags));

	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
	if (pfn == NOPFN_OOM)
		return VM_FAULT_OOM;
	if (pfn == NOPFN_SIGBUS)
		return VM_FAULT_SIGBUS;

	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);

	/* Only go through if we didn't race with anybody else... */
	if (pte_none(*page_table)) {
		entry = pfn_pte(pfn, vma->vm_page_prot);
		if (write_access)
			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		set_pte_at(mm, address, page_table, entry);
	}
	pte_unmap_unlock(page_table, ptl);
	return ret;
}

/*
 * Fault of a previously existing named mapping. Repopulate the pte
 * from the encoded file_pte if possible. This enables swappable
 * nonlinear vmas.
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
		int write_access, pte_t orig_pte)
{
	pgoff_t pgoff;
	int err;

	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
		return VM_FAULT_MINOR;

	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
		/*
		 * Page table corrupted: show pte and kill process.
		 */
		print_bad_pte(vma, orig_pte, address);
		return VM_FAULT_OOM;
	}
	/* We can then assume vm->vm_ops && vma->vm_ops->populate */

	pgoff = pte_to_pgoff(orig_pte);
	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
					vma->vm_page_prot, pgoff, 0);
	if (err == -ENOMEM)
		return VM_FAULT_OOM;
	if (err)
		return VM_FAULT_SIGBUS;
	return VM_FAULT_MAJOR;
}

/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
 */
static inline int handle_pte_fault(struct mm_struct *mm,
		struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, pmd_t *pmd, int write_access)
{
	pte_t entry;
	pte_t old_entry;
	spinlock_t *ptl;

	old_entry = entry = *pte;
	if (!pte_present(entry)) {
		if (pte_none(entry)) {
			if (vma->vm_ops) {
				if (vma->vm_ops->nopage)
					return do_no_page(mm, vma, address,
							  pte, pmd,
							  write_access);
				if (unlikely(vma->vm_ops->nopfn))
					return do_no_pfn(mm, vma, address, pte,
							 pmd, write_access);
			}
			return do_anonymous_page(mm, vma, address,
						 pte, pmd, write_access);
		}
		if (pte_file(entry))
			return do_file_page(mm, vma, address,
					pte, pmd, write_access, entry);
		return do_swap_page(mm, vma, address,
					pte, pmd, write_access, entry);
	}

	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
	if (unlikely(!pte_same(*pte, entry)))
		goto unlock;
	if (write_access) {
		if (!pte_write(entry))
			return do_wp_page(mm, vma, address,
					pte, pmd, ptl, entry);
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (!pte_same(old_entry, entry)) {
		ptep_set_access_flags(vma, address, pte, entry, write_access);
		update_mmu_cache(vma, address, entry);
		lazy_mmu_prot_update(entry);
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
		if (write_access)
			flush_tlb_page(vma, address);
	}
unlock:
	pte_unmap_unlock(pte, ptl);
	return VM_FAULT_MINOR;
}

/*
 * By the time we get here, we already hold the mm semaphore
 */
int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, int write_access)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);

	if (unlikely(is_vm_hugetlb_page(vma)))
		return hugetlb_fault(mm, vma, address, write_access);

	pgd = pgd_offset(mm, address);
	pud = pud_alloc(mm, pgd, address);
	if (!pud)
		return VM_FAULT_OOM;
	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
		return VM_FAULT_OOM;
	pte = pte_alloc_map(mm, pmd, address);
	if (!pte)
		return VM_FAULT_OOM;

	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
}

EXPORT_SYMBOL_GPL(__handle_mm_fault);

#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
 * We've already handled the fast-path in-line.
 */
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
	if (pgd_present(*pgd))		/* Another has populated it */
		pud_free(new);
	else
		pgd_populate(mm, pgd, new);
	spin_unlock(&mm->page_table_lock);
	return 0;
}
#else
/* Workaround for gcc 2.96 */
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	return 0;
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
 * We've already handled the fast-path in-line.
 */
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
#ifndef __ARCH_HAS_4LEVEL_HACK
	if (pud_present(*pud))		/* Another has populated it */
		pmd_free(new);
	else
		pud_populate(mm, pud, new);
#else
	if (pgd_present(*pud))		/* Another has populated it */
		pmd_free(new);
	else
		pgd_populate(mm, pud, new);
#endif /* __ARCH_HAS_4LEVEL_HACK */
	spin_unlock(&mm->page_table_lock);
	return 0;
}
#else
/* Workaround for gcc 2.96 */
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
	return 0;
}
#endif /* __PAGETABLE_PMD_FOLDED */

int make_pages_present(unsigned long addr, unsigned long end)
{
	int ret, len, write;
	struct vm_area_struct * vma;

	vma = find_vma(current->mm, addr);
	if (!vma)
		return -1;
	write = (vma->vm_flags & VM_WRITE) != 0;
	BUG_ON(addr >= end);
	BUG_ON(end > vma->vm_end);
	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
	ret = get_user_pages(current, current->mm, addr,
			len, write, 0, NULL, NULL);
	if (ret < 0)
		return ret;
	return ret == len ? 0 : -1;
}

/* 
 * Map a vmalloc()-space virtual address to the physical page.
 */
struct page * vmalloc_to_page(void * vmalloc_addr)
{
	unsigned long addr = (unsigned long) vmalloc_addr;
	struct page *page = NULL;
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
  
	if (!pgd_none(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (!pud_none(*pud)) {
			pmd = pmd_offset(pud, addr);
			if (!pmd_none(*pmd)) {
				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
					page = pte_page(pte);
				pte_unmap(ptep);
			}
		}
	}
	return page;
}

EXPORT_SYMBOL(vmalloc_to_page);

/*
 * Map a vmalloc()-space virtual address to the physical page frame number.
 */
unsigned long vmalloc_to_pfn(void * vmalloc_addr)
{
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}

EXPORT_SYMBOL(vmalloc_to_pfn);

#if !defined(__HAVE_ARCH_GATE_AREA)

#if defined(AT_SYSINFO_EHDR)
static struct vm_area_struct gate_vma;

static int __init gate_vma_init(void)
{
	gate_vma.vm_mm = NULL;
	gate_vma.vm_start = FIXADDR_USER_START;
	gate_vma.vm_end = FIXADDR_USER_END;
	gate_vma.vm_page_prot = PAGE_READONLY;
	gate_vma.vm_flags = 0;
	return 0;
}
__initcall(gate_vma_init);
#endif

struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef AT_SYSINFO_EHDR
	return &gate_vma;
#else
	return NULL;
#endif
}

int in_gate_area_no_task(unsigned long addr)
{
#ifdef AT_SYSINFO_EHDR
	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
		return 1;
#endif
	return 0;
}

#endif	/* __HAVE_ARCH_GATE_AREA */

/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
{
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	struct page *page;
	void *old_buf = buf;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

	down_read(&mm->mmap_sem);
	/* ignore errors, just check how much was sucessfully transfered */
	while (len) {
		int bytes, ret, offset;
		void *maddr;

		ret = get_user_pages(tsk, mm, addr, 1,
				write, 1, &page, &vma);
		if (ret <= 0)
			break;

		bytes = len;
		offset = addr & (PAGE_SIZE-1);
		if (bytes > PAGE_SIZE-offset)
			bytes = PAGE_SIZE-offset;

		maddr = kmap(page);
		if (write) {
			copy_to_user_page(vma, page, addr,
					  maddr + offset, buf, bytes);
			set_page_dirty_lock(page);
		} else {
			copy_from_user_page(vma, page, addr,
					    buf, maddr + offset, bytes);
		}
		kunmap(page);
		page_cache_release(page);
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);
	mmput(mm);

	return buf - old_buf;
}