summaryrefslogtreecommitdiff
path: root/kernel/bpf/devmap.c
blob: 1a878356bd372802b893918c36219e21c9a4eb47 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */

/* Devmaps primary use is as a backend map for XDP BPF helper call
 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
 * spent some effort to ensure the datapath with redirect maps does not use
 * any locking. This is a quick note on the details.
 *
 * We have three possible paths to get into the devmap control plane bpf
 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
 * will invoke an update, delete, or lookup operation. To ensure updates and
 * deletes appear atomic from the datapath side xchg() is used to modify the
 * netdev_map array. Then because the datapath does a lookup into the netdev_map
 * array (read-only) from an RCU critical section we use call_rcu() to wait for
 * an rcu grace period before free'ing the old data structures. This ensures the
 * datapath always has a valid copy. However, the datapath does a "flush"
 * operation that pushes any pending packets in the driver outside the RCU
 * critical section. Each bpf_dtab_netdev tracks these pending operations using
 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
 * until all bits are cleared indicating outstanding flush operations have
 * completed.
 *
 * BPF syscalls may race with BPF program calls on any of the update, delete
 * or lookup operations. As noted above the xchg() operation also keep the
 * netdev_map consistent in this case. From the devmap side BPF programs
 * calling into these operations are the same as multiple user space threads
 * making system calls.
 */
#include <linux/bpf.h>
#include <linux/jhash.h>
#include <linux/filter.h>
#include <linux/rculist_nulls.h>
#include "percpu_freelist.h"
#include "bpf_lru_list.h"
#include "map_in_map.h"

struct bpf_dtab_netdev {
	struct net_device *dev;
	int key;
	struct rcu_head rcu;
	struct bpf_dtab *dtab;
};

struct bpf_dtab {
	struct bpf_map map;
	struct bpf_dtab_netdev **netdev_map;
};

static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
{
	struct bpf_dtab *dtab;
	u64 cost;
	int err;

	/* check sanity of attributes */
	if (attr->max_entries == 0 || attr->key_size != 4 ||
	    attr->value_size != 4 || attr->map_flags)
		return ERR_PTR(-EINVAL);

	/* if value_size is bigger, the user space won't be able to
	 * access the elements.
	 */
	if (attr->value_size > KMALLOC_MAX_SIZE)
		return ERR_PTR(-E2BIG);

	dtab = kzalloc(sizeof(*dtab), GFP_USER);
	if (!dtab)
		return ERR_PTR(-ENOMEM);

	/* mandatory map attributes */
	dtab->map.map_type = attr->map_type;
	dtab->map.key_size = attr->key_size;
	dtab->map.value_size = attr->value_size;
	dtab->map.max_entries = attr->max_entries;
	dtab->map.map_flags = attr->map_flags;

	err = -ENOMEM;

	/* make sure page count doesn't overflow */
	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
	if (cost >= U32_MAX - PAGE_SIZE)
		goto free_dtab;

	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;

	/* if map size is larger than memlock limit, reject it early */
	err = bpf_map_precharge_memlock(dtab->map.pages);
	if (err)
		goto free_dtab;

	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
					      sizeof(struct bpf_dtab_netdev *));
	if (!dtab->netdev_map)
		goto free_dtab;

	return &dtab->map;

free_dtab:
	kfree(dtab);
	return ERR_PTR(err);
}

static void dev_map_free(struct bpf_map *map)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	int i;

	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
	 * so the programs (can be more than one that used this map) were
	 * disconnected from events. Wait for outstanding critical sections in
	 * these programs to complete. The rcu critical section only guarantees
	 * no further reads against netdev_map. It does __not__ ensure pending
	 * flush operations (if any) are complete.
	 */
	synchronize_rcu();

	for (i = 0; i < dtab->map.max_entries; i++) {
		struct bpf_dtab_netdev *dev;

		dev = dtab->netdev_map[i];
		if (!dev)
			continue;

		dev_put(dev->dev);
		kfree(dev);
	}

	/* At this point bpf program is detached and all pending operations
	 * _must_ be complete
	 */
	bpf_map_area_free(dtab->netdev_map);
	kfree(dtab);
}

static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	u32 index = key ? *(u32 *)key : U32_MAX;
	u32 *next = (u32 *)next_key;

	if (index >= dtab->map.max_entries) {
		*next = 0;
		return 0;
	}

	if (index == dtab->map.max_entries - 1)
		return -ENOENT;

	*next = index + 1;
	return 0;
}

/* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
 * update happens in parallel here a dev_put wont happen until after reading the
 * ifindex.
 */
static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	struct bpf_dtab_netdev *dev;
	u32 i = *(u32 *)key;

	if (i >= map->max_entries)
		return NULL;

	dev = READ_ONCE(dtab->netdev_map[i]);
	return dev ? &dev->dev->ifindex : NULL;
}

static void __dev_map_entry_free(struct rcu_head *rcu)
{
	struct bpf_dtab_netdev *old_dev;

	old_dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
	dev_put(old_dev->dev);
	kfree(old_dev);
}

static int dev_map_delete_elem(struct bpf_map *map, void *key)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	struct bpf_dtab_netdev *old_dev;
	int k = *(u32 *)key;

	if (k >= map->max_entries)
		return -EINVAL;

	/* Use synchronize_rcu() here to ensure any rcu critical sections
	 * have completed, but this does not guarantee a flush has happened
	 * yet. Because driver side rcu_read_lock/unlock only protects the
	 * running XDP program. However, for pending flush operations the
	 * dev and ctx are stored in another per cpu map. And additionally,
	 * the driver tear down ensures all soft irqs are complete before
	 * removing the net device in the case of dev_put equals zero.
	 */
	old_dev = xchg(&dtab->netdev_map[k], NULL);
	if (old_dev)
		call_rcu(&old_dev->rcu, __dev_map_entry_free);
	return 0;
}

static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
				u64 map_flags)
{
	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
	struct net *net = current->nsproxy->net_ns;
	struct bpf_dtab_netdev *dev, *old_dev;
	u32 i = *(u32 *)key;
	u32 ifindex = *(u32 *)value;

	if (unlikely(map_flags > BPF_EXIST))
		return -EINVAL;

	if (unlikely(i >= dtab->map.max_entries))
		return -E2BIG;

	if (unlikely(map_flags == BPF_NOEXIST))
		return -EEXIST;

	if (!ifindex) {
		dev = NULL;
	} else {
		dev = kmalloc(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN);
		if (!dev)
			return -ENOMEM;

		dev->dev = dev_get_by_index(net, ifindex);
		if (!dev->dev) {
			kfree(dev);
			return -EINVAL;
		}

		dev->key = i;
		dev->dtab = dtab;
	}

	/* Use call_rcu() here to ensure rcu critical sections have completed
	 * Remembering the driver side flush operation will happen before the
	 * net device is removed.
	 */
	old_dev = xchg(&dtab->netdev_map[i], dev);
	if (old_dev)
		call_rcu(&old_dev->rcu, __dev_map_entry_free);

	return 0;
}

const struct bpf_map_ops dev_map_ops = {
	.map_alloc = dev_map_alloc,
	.map_free = dev_map_free,
	.map_get_next_key = dev_map_get_next_key,
	.map_lookup_elem = dev_map_lookup_elem,
	.map_update_elem = dev_map_update_elem,
	.map_delete_elem = dev_map_delete_elem,
};