summaryrefslogtreecommitdiff
path: root/include/linux/sched/signal.h
blob: 38a0f0785323759dcf9c0dcdc8b0a897600c61e4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SCHED_SIGNAL_H
#define _LINUX_SCHED_SIGNAL_H

#include <linux/rculist.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/sched/jobctl.h>
#include <linux/sched/task.h>
#include <linux/cred.h>
#include <linux/refcount.h>

/*
 * Types defining task->signal and task->sighand and APIs using them:
 */

struct sighand_struct {
	refcount_t		count;
	struct k_sigaction	action[_NSIG];
	spinlock_t		siglock;
	wait_queue_head_t	signalfd_wqh;
};

/*
 * Per-process accounting stats:
 */
struct pacct_struct {
	int			ac_flag;
	long			ac_exitcode;
	unsigned long		ac_mem;
	u64			ac_utime, ac_stime;
	unsigned long		ac_minflt, ac_majflt;
};

struct cpu_itimer {
	u64 expires;
	u64 incr;
};

/*
 * This is the atomic variant of task_cputime, which can be used for
 * storing and updating task_cputime statistics without locking.
 */
struct task_cputime_atomic {
	atomic64_t utime;
	atomic64_t stime;
	atomic64_t sum_exec_runtime;
};

#define INIT_CPUTIME_ATOMIC \
	(struct task_cputime_atomic) {				\
		.utime = ATOMIC64_INIT(0),			\
		.stime = ATOMIC64_INIT(0),			\
		.sum_exec_runtime = ATOMIC64_INIT(0),		\
	}
/**
 * struct thread_group_cputimer - thread group interval timer counts
 * @cputime_atomic:	atomic thread group interval timers.
 * @running:		true when there are timers running and
 *			@cputime_atomic receives updates.
 * @checking_timer:	true when a thread in the group is in the
 *			process of checking for thread group timers.
 *
 * This structure contains the version of task_cputime, above, that is
 * used for thread group CPU timer calculations.
 */
struct thread_group_cputimer {
	struct task_cputime_atomic cputime_atomic;
	bool running;
	bool checking_timer;
};

struct multiprocess_signals {
	sigset_t signal;
	struct hlist_node node;
};

/*
 * NOTE! "signal_struct" does not have its own
 * locking, because a shared signal_struct always
 * implies a shared sighand_struct, so locking
 * sighand_struct is always a proper superset of
 * the locking of signal_struct.
 */
struct signal_struct {
	refcount_t		sigcnt;
	atomic_t		live;
	int			nr_threads;
	struct list_head	thread_head;

	wait_queue_head_t	wait_chldexit;	/* for wait4() */

	/* current thread group signal load-balancing target: */
	struct task_struct	*curr_target;

	/* shared signal handling: */
	struct sigpending	shared_pending;

	/* For collecting multiprocess signals during fork */
	struct hlist_head	multiprocess;

	/* thread group exit support */
	int			group_exit_code;
	/* overloaded:
	 * - notify group_exit_task when ->count is equal to notify_count
	 * - everyone except group_exit_task is stopped during signal delivery
	 *   of fatal signals, group_exit_task processes the signal.
	 */
	int			notify_count;
	struct task_struct	*group_exit_task;

	/* thread group stop support, overloads group_exit_code too */
	int			group_stop_count;
	unsigned int		flags; /* see SIGNAL_* flags below */

	/*
	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
	 * manager, to re-parent orphan (double-forking) child processes
	 * to this process instead of 'init'. The service manager is
	 * able to receive SIGCHLD signals and is able to investigate
	 * the process until it calls wait(). All children of this
	 * process will inherit a flag if they should look for a
	 * child_subreaper process at exit.
	 */
	unsigned int		is_child_subreaper:1;
	unsigned int		has_child_subreaper:1;

#ifdef CONFIG_POSIX_TIMERS

	/* POSIX.1b Interval Timers */
	int			posix_timer_id;
	struct list_head	posix_timers;

	/* ITIMER_REAL timer for the process */
	struct hrtimer real_timer;
	ktime_t it_real_incr;

	/*
	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
	 * values are defined to 0 and 1 respectively
	 */
	struct cpu_itimer it[2];

	/*
	 * Thread group totals for process CPU timers.
	 * See thread_group_cputimer(), et al, for details.
	 */
	struct thread_group_cputimer cputimer;

	/* Earliest-expiration cache. */
	struct task_cputime cputime_expires;

	struct list_head cpu_timers[3];

#endif

	/* PID/PID hash table linkage. */
	struct pid *pids[PIDTYPE_MAX];

#ifdef CONFIG_NO_HZ_FULL
	atomic_t tick_dep_mask;
#endif

	struct pid *tty_old_pgrp;

	/* boolean value for session group leader */
	int leader;

	struct tty_struct *tty; /* NULL if no tty */

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif
	/*
	 * Cumulative resource counters for dead threads in the group,
	 * and for reaped dead child processes forked by this group.
	 * Live threads maintain their own counters and add to these
	 * in __exit_signal, except for the group leader.
	 */
	seqlock_t stats_lock;
	u64 utime, stime, cutime, cstime;
	u64 gtime;
	u64 cgtime;
	struct prev_cputime prev_cputime;
	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
	unsigned long inblock, oublock, cinblock, coublock;
	unsigned long maxrss, cmaxrss;
	struct task_io_accounting ioac;

	/*
	 * Cumulative ns of schedule CPU time fo dead threads in the
	 * group, not including a zombie group leader, (This only differs
	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
	 * other than jiffies.)
	 */
	unsigned long long sum_sched_runtime;

	/*
	 * We don't bother to synchronize most readers of this at all,
	 * because there is no reader checking a limit that actually needs
	 * to get both rlim_cur and rlim_max atomically, and either one
	 * alone is a single word that can safely be read normally.
	 * getrlimit/setrlimit use task_lock(current->group_leader) to
	 * protect this instead of the siglock, because they really
	 * have no need to disable irqs.
	 */
	struct rlimit rlim[RLIM_NLIMITS];

#ifdef CONFIG_BSD_PROCESS_ACCT
	struct pacct_struct pacct;	/* per-process accounting information */
#endif
#ifdef CONFIG_TASKSTATS
	struct taskstats *stats;
#endif
#ifdef CONFIG_AUDIT
	unsigned audit_tty;
	struct tty_audit_buf *tty_audit_buf;
#endif

	/*
	 * Thread is the potential origin of an oom condition; kill first on
	 * oom
	 */
	bool oom_flag_origin;
	short oom_score_adj;		/* OOM kill score adjustment */
	short oom_score_adj_min;	/* OOM kill score adjustment min value.
					 * Only settable by CAP_SYS_RESOURCE. */
	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
					 * killed by the oom killer */

	struct mutex cred_guard_mutex;	/* guard against foreign influences on
					 * credential calculations
					 * (notably. ptrace) */
} __randomize_layout;

/*
 * Bits in flags field of signal_struct.
 */
#define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
#define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
/*
 * Pending notifications to parent.
 */
#define SIGNAL_CLD_STOPPED	0x00000010
#define SIGNAL_CLD_CONTINUED	0x00000020
#define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)

#define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */

#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
			  SIGNAL_STOP_CONTINUED)

static inline void signal_set_stop_flags(struct signal_struct *sig,
					 unsigned int flags)
{
	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
}

/* If true, all threads except ->group_exit_task have pending SIGKILL */
static inline int signal_group_exit(const struct signal_struct *sig)
{
	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
		(sig->group_exit_task != NULL);
}

extern void flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *task,
			  sigset_t *mask, kernel_siginfo_t *info);

static inline int kernel_dequeue_signal(void)
{
	struct task_struct *task = current;
	kernel_siginfo_t __info;
	int ret;

	spin_lock_irq(&task->sighand->siglock);
	ret = dequeue_signal(task, &task->blocked, &__info);
	spin_unlock_irq(&task->sighand->siglock);

	return ret;
}

static inline void kernel_signal_stop(void)
{
	spin_lock_irq(&current->sighand->siglock);
	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
		set_special_state(TASK_STOPPED);
	spin_unlock_irq(&current->sighand->siglock);

	schedule();
}
#ifdef __ARCH_SI_TRAPNO
# define ___ARCH_SI_TRAPNO(_a1) , _a1
#else
# define ___ARCH_SI_TRAPNO(_a1)
#endif
#ifdef __ia64__
# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
#else
# define ___ARCH_SI_IA64(_a1, _a2, _a3)
#endif

int force_sig_fault(int sig, int code, void __user *addr
	___ARCH_SI_TRAPNO(int trapno)
	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
	, struct task_struct *t);
int send_sig_fault(int sig, int code, void __user *addr
	___ARCH_SI_TRAPNO(int trapno)
	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
	, struct task_struct *t);

int force_sig_mceerr(int code, void __user *, short, struct task_struct *);
int send_sig_mceerr(int code, void __user *, short, struct task_struct *);

int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
int force_sig_pkuerr(void __user *addr, u32 pkey);

int force_sig_ptrace_errno_trap(int errno, void __user *addr);

extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
extern void force_sigsegv(int sig, struct task_struct *p);
extern int force_sig_info(int, struct kernel_siginfo *, struct task_struct *);
extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
extern int kill_pid_info_as_cred(int, struct kernel_siginfo *, struct pid *,
				const struct cred *);
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern __must_check bool do_notify_parent(struct task_struct *, int);
extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
extern void force_sig(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern int zap_other_threads(struct task_struct *p);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);

static inline int restart_syscall(void)
{
	set_tsk_thread_flag(current, TIF_SIGPENDING);
	return -ERESTARTNOINTR;
}

static inline int signal_pending(struct task_struct *p)
{
	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}

static inline int __fatal_signal_pending(struct task_struct *p)
{
	return unlikely(sigismember(&p->pending.signal, SIGKILL));
}

static inline int fatal_signal_pending(struct task_struct *p)
{
	return signal_pending(p) && __fatal_signal_pending(p);
}

static inline int signal_pending_state(long state, struct task_struct *p)
{
	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
		return 0;
	if (!signal_pending(p))
		return 0;

	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
}

/*
 * Reevaluate whether the task has signals pending delivery.
 * Wake the task if so.
 * This is required every time the blocked sigset_t changes.
 * callers must hold sighand->siglock.
 */
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);
extern void calculate_sigpending(void);

extern void signal_wake_up_state(struct task_struct *t, unsigned int state);

static inline void signal_wake_up(struct task_struct *t, bool resume)
{
	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
}
static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
{
	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
}

void task_join_group_stop(struct task_struct *task);

#ifdef TIF_RESTORE_SIGMASK
/*
 * Legacy restore_sigmask accessors.  These are inefficient on
 * SMP architectures because they require atomic operations.
 */

/**
 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 *
 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 * will run before returning to user mode, to process the flag.  For
 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 * arch code will notice on return to user mode, in case those bits
 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 */
static inline void set_restore_sigmask(void)
{
	set_thread_flag(TIF_RESTORE_SIGMASK);
	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
}

static inline void clear_tsk_restore_sigmask(struct task_struct *task)
{
	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
}

static inline void clear_restore_sigmask(void)
{
	clear_thread_flag(TIF_RESTORE_SIGMASK);
}
static inline bool test_tsk_restore_sigmask(struct task_struct *task)
{
	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
}
static inline bool test_restore_sigmask(void)
{
	return test_thread_flag(TIF_RESTORE_SIGMASK);
}
static inline bool test_and_clear_restore_sigmask(void)
{
	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
}

#else	/* TIF_RESTORE_SIGMASK */

/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
static inline void set_restore_sigmask(void)
{
	current->restore_sigmask = true;
	WARN_ON(!test_thread_flag(TIF_SIGPENDING));
}
static inline void clear_tsk_restore_sigmask(struct task_struct *task)
{
	task->restore_sigmask = false;
}
static inline void clear_restore_sigmask(void)
{
	current->restore_sigmask = false;
}
static inline bool test_restore_sigmask(void)
{
	return current->restore_sigmask;
}
static inline bool test_tsk_restore_sigmask(struct task_struct *task)
{
	return task->restore_sigmask;
}
static inline bool test_and_clear_restore_sigmask(void)
{
	if (!current->restore_sigmask)
		return false;
	current->restore_sigmask = false;
	return true;
}
#endif

static inline void restore_saved_sigmask(void)
{
	if (test_and_clear_restore_sigmask())
		__set_current_blocked(&current->saved_sigmask);
}

static inline sigset_t *sigmask_to_save(void)
{
	sigset_t *res = &current->blocked;
	if (unlikely(test_restore_sigmask()))
		res = &current->saved_sigmask;
	return res;
}

static inline int kill_cad_pid(int sig, int priv)
{
	return kill_pid(cad_pid, sig, priv);
}

/* These can be the second arg to send_sig_info/send_group_sig_info.  */
#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
#define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)

/*
 * True if we are on the alternate signal stack.
 */
static inline int on_sig_stack(unsigned long sp)
{
	/*
	 * If the signal stack is SS_AUTODISARM then, by construction, we
	 * can't be on the signal stack unless user code deliberately set
	 * SS_AUTODISARM when we were already on it.
	 *
	 * This improves reliability: if user state gets corrupted such that
	 * the stack pointer points very close to the end of the signal stack,
	 * then this check will enable the signal to be handled anyway.
	 */
	if (current->sas_ss_flags & SS_AUTODISARM)
		return 0;

#ifdef CONFIG_STACK_GROWSUP
	return sp >= current->sas_ss_sp &&
		sp - current->sas_ss_sp < current->sas_ss_size;
#else
	return sp > current->sas_ss_sp &&
		sp - current->sas_ss_sp <= current->sas_ss_size;
#endif
}

static inline int sas_ss_flags(unsigned long sp)
{
	if (!current->sas_ss_size)
		return SS_DISABLE;

	return on_sig_stack(sp) ? SS_ONSTACK : 0;
}

static inline void sas_ss_reset(struct task_struct *p)
{
	p->sas_ss_sp = 0;
	p->sas_ss_size = 0;
	p->sas_ss_flags = SS_DISABLE;
}

static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
{
	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
#ifdef CONFIG_STACK_GROWSUP
		return current->sas_ss_sp;
#else
		return current->sas_ss_sp + current->sas_ss_size;
#endif
	return sp;
}

extern void __cleanup_sighand(struct sighand_struct *);
extern void flush_itimer_signals(void);

#define tasklist_empty() \
	list_empty(&init_task.tasks)

#define next_task(p) \
	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)

#define for_each_process(p) \
	for (p = &init_task ; (p = next_task(p)) != &init_task ; )

extern bool current_is_single_threaded(void);

/*
 * Careful: do_each_thread/while_each_thread is a double loop so
 *          'break' will not work as expected - use goto instead.
 */
#define do_each_thread(g, t) \
	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
	while ((t = next_thread(t)) != g)

#define __for_each_thread(signal, t)	\
	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)

#define for_each_thread(p, t)		\
	__for_each_thread((p)->signal, t)

/* Careful: this is a double loop, 'break' won't work as expected. */
#define for_each_process_thread(p, t)	\
	for_each_process(p) for_each_thread(p, t)

typedef int (*proc_visitor)(struct task_struct *p, void *data);
void walk_process_tree(struct task_struct *top, proc_visitor, void *);

static inline
struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
{
	struct pid *pid;
	if (type == PIDTYPE_PID)
		pid = task_pid(task);
	else
		pid = task->signal->pids[type];
	return pid;
}

static inline struct pid *task_tgid(struct task_struct *task)
{
	return task->signal->pids[PIDTYPE_TGID];
}

/*
 * Without tasklist or RCU lock it is not safe to dereference
 * the result of task_pgrp/task_session even if task == current,
 * we can race with another thread doing sys_setsid/sys_setpgid.
 */
static inline struct pid *task_pgrp(struct task_struct *task)
{
	return task->signal->pids[PIDTYPE_PGID];
}

static inline struct pid *task_session(struct task_struct *task)
{
	return task->signal->pids[PIDTYPE_SID];
}

static inline int get_nr_threads(struct task_struct *task)
{
	return task->signal->nr_threads;
}

static inline bool thread_group_leader(struct task_struct *p)
{
	return p->exit_signal >= 0;
}

/* Do to the insanities of de_thread it is possible for a process
 * to have the pid of the thread group leader without actually being
 * the thread group leader.  For iteration through the pids in proc
 * all we care about is that we have a task with the appropriate
 * pid, we don't actually care if we have the right task.
 */
static inline bool has_group_leader_pid(struct task_struct *p)
{
	return task_pid(p) == task_tgid(p);
}

static inline
bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
{
	return p1->signal == p2->signal;
}

static inline struct task_struct *next_thread(const struct task_struct *p)
{
	return list_entry_rcu(p->thread_group.next,
			      struct task_struct, thread_group);
}

static inline int thread_group_empty(struct task_struct *p)
{
	return list_empty(&p->thread_group);
}

#define delay_group_leader(p) \
		(thread_group_leader(p) && !thread_group_empty(p))

extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
							unsigned long *flags);

static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
						       unsigned long *flags)
{
	struct sighand_struct *ret;

	ret = __lock_task_sighand(task, flags);
	(void)__cond_lock(&task->sighand->siglock, ret);
	return ret;
}

static inline void unlock_task_sighand(struct task_struct *task,
						unsigned long *flags)
{
	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
}

static inline unsigned long task_rlimit(const struct task_struct *task,
		unsigned int limit)
{
	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
}

static inline unsigned long task_rlimit_max(const struct task_struct *task,
		unsigned int limit)
{
	return READ_ONCE(task->signal->rlim[limit].rlim_max);
}

static inline unsigned long rlimit(unsigned int limit)
{
	return task_rlimit(current, limit);
}

static inline unsigned long rlimit_max(unsigned int limit)
{
	return task_rlimit_max(current, limit);
}

#endif /* _LINUX_SCHED_SIGNAL_H */