blob: e5af028c08b4945a2572e5f797ed33d46e4b0123 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SCHED_RT_H
#define _LINUX_SCHED_RT_H
#include <linux/sched.h>
struct task_struct;
static inline int rt_prio(int prio)
{
if (unlikely(prio < MAX_RT_PRIO))
return 1;
return 0;
}
static inline int rt_task(struct task_struct *p)
{
return rt_prio(p->prio);
}
static inline bool task_is_realtime(struct task_struct *tsk)
{
int policy = tsk->policy;
if (policy == SCHED_FIFO || policy == SCHED_RR)
return true;
if (policy == SCHED_DEADLINE)
return true;
return false;
}
#ifdef CONFIG_RT_MUTEXES
/*
* Must hold either p->pi_lock or task_rq(p)->lock.
*/
static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *p)
{
return p->pi_top_task;
}
extern void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task);
extern void rt_mutex_adjust_pi(struct task_struct *p);
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
{
return tsk->pi_blocked_on != NULL;
}
#else
static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
{
return NULL;
}
# define rt_mutex_adjust_pi(p) do { } while (0)
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
{
return false;
}
#endif
extern void normalize_rt_tasks(void);
/*
* default timeslice is 100 msecs (used only for SCHED_RR tasks).
* Timeslices get refilled after they expire.
*/
#define RR_TIMESLICE (100 * HZ / 1000)
#endif /* _LINUX_SCHED_RT_H */
|