summaryrefslogtreecommitdiff
path: root/fs/reiserfs/fix_node.c
blob: 6c13a8d9a73c9a481fe22a778ab73fb93dd30a78 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
/*
 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 */

#include <linux/time.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "reiserfs.h"
#include <linux/buffer_head.h>

/*
 * To make any changes in the tree we find a node that contains item
 * to be changed/deleted or position in the node we insert a new item
 * to. We call this node S. To do balancing we need to decide what we
 * will shift to left/right neighbor, or to a new node, where new item
 * will be etc. To make this analysis simpler we build virtual
 * node. Virtual node is an array of items, that will replace items of
 * node S. (For instance if we are going to delete an item, virtual
 * node does not contain it). Virtual node keeps information about
 * item sizes and types, mergeability of first and last items, sizes
 * of all entries in directory item. We use this array of items when
 * calculating what we can shift to neighbors and how many nodes we
 * have to have if we do not any shiftings, if we shift to left/right
 * neighbor or to both.
 */

/*
 * Takes item number in virtual node, returns number of item
 * that it has in source buffer
 */
static inline int old_item_num(int new_num, int affected_item_num, int mode)
{
	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
		return new_num;

	if (mode == M_INSERT) {

		RFALSE(new_num == 0,
		       "vs-8005: for INSERT mode and item number of inserted item");

		return new_num - 1;
	}

	RFALSE(mode != M_DELETE,
	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
	       mode);
	/* delete mode */
	return new_num + 1;
}

static void create_virtual_node(struct tree_balance *tb, int h)
{
	struct item_head *ih;
	struct virtual_node *vn = tb->tb_vn;
	int new_num;
	struct buffer_head *Sh;	/* this comes from tb->S[h] */

	Sh = PATH_H_PBUFFER(tb->tb_path, h);

	/* size of changed node */
	vn->vn_size =
	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];

	/* for internal nodes array if virtual items is not created */
	if (h) {
		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
		return;
	}

	/* number of items in virtual node  */
	vn->vn_nr_item =
	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
	    ((vn->vn_mode == M_DELETE) ? 1 : 0);

	/* first virtual item */
	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);

	/* first item in the node */
	ih = item_head(Sh, 0);

	/* define the mergeability for 0-th item (if it is not being deleted) */
	if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;

	/*
	 * go through all items that remain in the virtual
	 * node (except for the new (inserted) one)
	 */
	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
		int j;
		struct virtual_item *vi = vn->vn_vi + new_num;
		int is_affected =
		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);

		if (is_affected && vn->vn_mode == M_INSERT)
			continue;

		/* get item number in source node */
		j = old_item_num(new_num, vn->vn_affected_item_num,
				 vn->vn_mode);

		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
		vi->vi_ih = ih + j;
		vi->vi_item = ih_item_body(Sh, ih + j);
		vi->vi_uarea = vn->vn_free_ptr;

		/*
		 * FIXME: there is no check that item operation did not
		 * consume too much memory
		 */
		vn->vn_free_ptr +=
		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
			reiserfs_panic(tb->tb_sb, "vs-8030",
				       "virtual node space consumed");

		if (!is_affected)
			/* this is not being changed */
			continue;

		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
			/* pointer to data which is going to be pasted */
			vi->vi_new_data = vn->vn_data;
		}
	}

	/* virtual inserted item is not defined yet */
	if (vn->vn_mode == M_INSERT) {
		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;

		RFALSE(vn->vn_ins_ih == NULL,
		       "vs-8040: item header of inserted item is not specified");
		vi->vi_item_len = tb->insert_size[0];
		vi->vi_ih = vn->vn_ins_ih;
		vi->vi_item = vn->vn_data;
		vi->vi_uarea = vn->vn_free_ptr;

		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
			     tb->insert_size[0]);
	}

	/*
	 * set right merge flag we take right delimiting key and
	 * check whether it is a mergeable item
	 */
	if (tb->CFR[0]) {
		struct reiserfs_key *key;

		key = internal_key(tb->CFR[0], tb->rkey[0]);
		if (op_is_left_mergeable(key, Sh->b_size)
		    && (vn->vn_mode != M_DELETE
			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
			    VI_TYPE_RIGHT_MERGEABLE;

#ifdef CONFIG_REISERFS_CHECK
		if (op_is_left_mergeable(key, Sh->b_size) &&
		    !(vn->vn_mode != M_DELETE
		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
			/*
			 * we delete last item and it could be merged
			 * with right neighbor's first item
			 */
			if (!
			    (B_NR_ITEMS(Sh) == 1
			     && is_direntry_le_ih(item_head(Sh, 0))
			     && ih_entry_count(item_head(Sh, 0)) == 1)) {
				/*
				 * node contains more than 1 item, or item
				 * is not directory item, or this item
				 * contains more than 1 entry
				 */
				print_block(Sh, 0, -1, -1);
				reiserfs_panic(tb->tb_sb, "vs-8045",
					       "rdkey %k, affected item==%d "
					       "(mode==%c) Must be %c",
					       key, vn->vn_affected_item_num,
					       vn->vn_mode, M_DELETE);
			}
		}
#endif

	}
}

/*
 * Using virtual node check, how many items can be
 * shifted to left neighbor
 */
static void check_left(struct tree_balance *tb, int h, int cur_free)
{
	int i;
	struct virtual_node *vn = tb->tb_vn;
	struct virtual_item *vi;
	int d_size, ih_size;

	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);

	/* internal level */
	if (h > 0) {
		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
		return;
	}

	/* leaf level */

	if (!cur_free || !vn->vn_nr_item) {
		/* no free space or nothing to move */
		tb->lnum[h] = 0;
		tb->lbytes = -1;
		return;
	}

	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
	       "vs-8055: parent does not exist or invalid");

	vi = vn->vn_vi;
	if ((unsigned int)cur_free >=
	    (vn->vn_size -
	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
		/* all contents of S[0] fits into L[0] */

		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
		       "vs-8055: invalid mode or balance condition failed");

		tb->lnum[0] = vn->vn_nr_item;
		tb->lbytes = -1;
		return;
	}

	d_size = 0, ih_size = IH_SIZE;

	/* first item may be merge with last item in left neighbor */
	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
		d_size = -((int)IH_SIZE), ih_size = 0;

	tb->lnum[0] = 0;
	for (i = 0; i < vn->vn_nr_item;
	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
		d_size += vi->vi_item_len;
		if (cur_free >= d_size) {
			/* the item can be shifted entirely */
			cur_free -= d_size;
			tb->lnum[0]++;
			continue;
		}

		/* the item cannot be shifted entirely, try to split it */
		/*
		 * check whether L[0] can hold ih and at least one byte
		 * of the item body
		 */

		/* cannot shift even a part of the current item */
		if (cur_free <= ih_size) {
			tb->lbytes = -1;
			return;
		}
		cur_free -= ih_size;

		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
		if (tb->lbytes != -1)
			/* count partially shifted item */
			tb->lnum[0]++;

		break;
	}

	return;
}

/*
 * Using virtual node check, how many items can be
 * shifted to right neighbor
 */
static void check_right(struct tree_balance *tb, int h, int cur_free)
{
	int i;
	struct virtual_node *vn = tb->tb_vn;
	struct virtual_item *vi;
	int d_size, ih_size;

	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");

	/* internal level */
	if (h > 0) {
		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
		return;
	}

	/* leaf level */

	if (!cur_free || !vn->vn_nr_item) {
		/* no free space  */
		tb->rnum[h] = 0;
		tb->rbytes = -1;
		return;
	}

	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
	       "vs-8075: parent does not exist or invalid");

	vi = vn->vn_vi + vn->vn_nr_item - 1;
	if ((unsigned int)cur_free >=
	    (vn->vn_size -
	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
		/* all contents of S[0] fits into R[0] */

		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
		       "vs-8080: invalid mode or balance condition failed");

		tb->rnum[h] = vn->vn_nr_item;
		tb->rbytes = -1;
		return;
	}

	d_size = 0, ih_size = IH_SIZE;

	/* last item may be merge with first item in right neighbor */
	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
		d_size = -(int)IH_SIZE, ih_size = 0;

	tb->rnum[0] = 0;
	for (i = vn->vn_nr_item - 1; i >= 0;
	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
		d_size += vi->vi_item_len;
		if (cur_free >= d_size) {
			/* the item can be shifted entirely */
			cur_free -= d_size;
			tb->rnum[0]++;
			continue;
		}

		/*
		 * check whether R[0] can hold ih and at least one
		 * byte of the item body
		 */

		/* cannot shift even a part of the current item */
		if (cur_free <= ih_size) {
			tb->rbytes = -1;
			return;
		}

		/*
		 * R[0] can hold the header of the item and at least
		 * one byte of its body
		 */
		cur_free -= ih_size;	/* cur_free is still > 0 */

		tb->rbytes = op_check_right(vi, cur_free);
		if (tb->rbytes != -1)
			/* count partially shifted item */
			tb->rnum[0]++;

		break;
	}

	return;
}

/*
 * from - number of items, which are shifted to left neighbor entirely
 * to - number of item, which are shifted to right neighbor entirely
 * from_bytes - number of bytes of boundary item (or directory entries)
 *              which are shifted to left neighbor
 * to_bytes - number of bytes of boundary item (or directory entries)
 *            which are shifted to right neighbor
 */
static int get_num_ver(int mode, struct tree_balance *tb, int h,
		       int from, int from_bytes,
		       int to, int to_bytes, short *snum012, int flow)
{
	int i;
	int units;
	struct virtual_node *vn = tb->tb_vn;
	int total_node_size, max_node_size, current_item_size;
	int needed_nodes;

	/* position of item we start filling node from */
	int start_item;

	/* position of item we finish filling node by */
	int end_item;

	/*
	 * number of first bytes (entries for directory) of start_item-th item
	 * we do not include into node that is being filled
	 */
	int start_bytes;

	/*
	 * number of last bytes (entries for directory) of end_item-th item
	 * we do node include into node that is being filled
	 */
	int end_bytes;

	/*
	 * these are positions in virtual item of items, that are split
	 * between S[0] and S1new and S1new and S2new
	 */
	int split_item_positions[2];

	split_item_positions[0] = -1;
	split_item_positions[1] = -1;

	/*
	 * We only create additional nodes if we are in insert or paste mode
	 * or we are in replace mode at the internal level. If h is 0 and
	 * the mode is M_REPLACE then in fix_nodes we change the mode to
	 * paste or insert before we get here in the code.
	 */
	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
	       "vs-8100: insert_size < 0 in overflow");

	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));

	/*
	 * snum012 [0-2] - number of items, that lay
	 * to S[0], first new node and second new node
	 */
	snum012[3] = -1;	/* s1bytes */
	snum012[4] = -1;	/* s2bytes */

	/* internal level */
	if (h > 0) {
		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
		if (i == max_node_size)
			return 1;
		return (i / max_node_size + 1);
	}

	/* leaf level */
	needed_nodes = 1;
	total_node_size = 0;

	/* start from 'from'-th item */
	start_item = from;
	/* skip its first 'start_bytes' units */
	start_bytes = ((from_bytes != -1) ? from_bytes : 0);

	/* last included item is the 'end_item'-th one */
	end_item = vn->vn_nr_item - to - 1;
	/* do not count last 'end_bytes' units of 'end_item'-th item */
	end_bytes = (to_bytes != -1) ? to_bytes : 0;

	/*
	 * go through all item beginning from the start_item-th item
	 * and ending by the end_item-th item. Do not count first
	 * 'start_bytes' units of 'start_item'-th item and last
	 * 'end_bytes' of 'end_item'-th item
	 */
	for (i = start_item; i <= end_item; i++) {
		struct virtual_item *vi = vn->vn_vi + i;
		int skip_from_end = ((i == end_item) ? end_bytes : 0);

		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");

		/* get size of current item */
		current_item_size = vi->vi_item_len;

		/*
		 * do not take in calculation head part (from_bytes)
		 * of from-th item
		 */
		current_item_size -=
		    op_part_size(vi, 0 /*from start */ , start_bytes);

		/* do not take in calculation tail part of last item */
		current_item_size -=
		    op_part_size(vi, 1 /*from end */ , skip_from_end);

		/* if item fits into current node entierly */
		if (total_node_size + current_item_size <= max_node_size) {
			snum012[needed_nodes - 1]++;
			total_node_size += current_item_size;
			start_bytes = 0;
			continue;
		}

		/*
		 * virtual item length is longer, than max size of item in
		 * a node. It is impossible for direct item
		 */
		if (current_item_size > max_node_size) {
			RFALSE(is_direct_le_ih(vi->vi_ih),
			       "vs-8110: "
			       "direct item length is %d. It can not be longer than %d",
			       current_item_size, max_node_size);
			/* we will try to split it */
			flow = 1;
		}

		/* as we do not split items, take new node and continue */
		if (!flow) {
			needed_nodes++;
			i--;
			total_node_size = 0;
			continue;
		}

		/*
		 * calculate number of item units which fit into node being
		 * filled
		 */
		{
			int free_space;

			free_space = max_node_size - total_node_size - IH_SIZE;
			units =
			    op_check_left(vi, free_space, start_bytes,
					  skip_from_end);
			/*
			 * nothing fits into current node, take new
			 * node and continue
			 */
			if (units == -1) {
				needed_nodes++, i--, total_node_size = 0;
				continue;
			}
		}

		/* something fits into the current node */
		start_bytes += units;
		snum012[needed_nodes - 1 + 3] = units;

		if (needed_nodes > 2)
			reiserfs_warning(tb->tb_sb, "vs-8111",
					 "split_item_position is out of range");
		snum012[needed_nodes - 1]++;
		split_item_positions[needed_nodes - 1] = i;
		needed_nodes++;
		/* continue from the same item with start_bytes != -1 */
		start_item = i;
		i--;
		total_node_size = 0;
	}

	/*
	 * sum012[4] (if it is not -1) contains number of units of which
	 * are to be in S1new, snum012[3] - to be in S0. They are supposed
	 * to be S1bytes and S2bytes correspondingly, so recalculate
	 */
	if (snum012[4] > 0) {
		int split_item_num;
		int bytes_to_r, bytes_to_l;
		int bytes_to_S1new;

		split_item_num = split_item_positions[1];
		bytes_to_l =
		    ((from == split_item_num
		      && from_bytes != -1) ? from_bytes : 0);
		bytes_to_r =
		    ((end_item == split_item_num
		      && end_bytes != -1) ? end_bytes : 0);
		bytes_to_S1new =
		    ((split_item_positions[0] ==
		      split_item_positions[1]) ? snum012[3] : 0);

		/* s2bytes */
		snum012[4] =
		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
		    bytes_to_r - bytes_to_l - bytes_to_S1new;

		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
			reiserfs_warning(tb->tb_sb, "vs-8115",
					 "not directory or indirect item");
	}

	/* now we know S2bytes, calculate S1bytes */
	if (snum012[3] > 0) {
		int split_item_num;
		int bytes_to_r, bytes_to_l;
		int bytes_to_S2new;

		split_item_num = split_item_positions[0];
		bytes_to_l =
		    ((from == split_item_num
		      && from_bytes != -1) ? from_bytes : 0);
		bytes_to_r =
		    ((end_item == split_item_num
		      && end_bytes != -1) ? end_bytes : 0);
		bytes_to_S2new =
		    ((split_item_positions[0] == split_item_positions[1]
		      && snum012[4] != -1) ? snum012[4] : 0);

		/* s1bytes */
		snum012[3] =
		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
		    bytes_to_r - bytes_to_l - bytes_to_S2new;
	}

	return needed_nodes;
}


/*
 * Set parameters for balancing.
 * Performs write of results of analysis of balancing into structure tb,
 * where it will later be used by the functions that actually do the balancing.
 * Parameters:
 *	tb	tree_balance structure;
 *	h	current level of the node;
 *	lnum	number of items from S[h] that must be shifted to L[h];
 *	rnum	number of items from S[h] that must be shifted to R[h];
 *	blk_num	number of blocks that S[h] will be splitted into;
 *	s012	number of items that fall into splitted nodes.
 *	lbytes	number of bytes which flow to the left neighbor from the
 *              item that is not shifted entirely
 *	rbytes	number of bytes which flow to the right neighbor from the
 *              item that is not shifted entirely
 *	s1bytes	number of bytes which flow to the first  new node when
 *              S[0] splits (this number is contained in s012 array)
 */

static void set_parameters(struct tree_balance *tb, int h, int lnum,
			   int rnum, int blk_num, short *s012, int lb, int rb)
{

	tb->lnum[h] = lnum;
	tb->rnum[h] = rnum;
	tb->blknum[h] = blk_num;

	/* only for leaf level */
	if (h == 0) {
		if (s012 != NULL) {
			tb->s0num = *s012++;
			tb->snum[0] = *s012++;
			tb->snum[1] = *s012++;
			tb->sbytes[0] = *s012++;
			tb->sbytes[1] = *s012;
		}
		tb->lbytes = lb;
		tb->rbytes = rb;
	}
	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);

	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
}

/*
 * check if node disappears if we shift tb->lnum[0] items to left
 * neighbor and tb->rnum[0] to the right one.
 */
static int is_leaf_removable(struct tree_balance *tb)
{
	struct virtual_node *vn = tb->tb_vn;
	int to_left, to_right;
	int size;
	int remain_items;

	/*
	 * number of items that will be shifted to left (right) neighbor
	 * entirely
	 */
	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
	remain_items = vn->vn_nr_item;

	/* how many items remain in S[0] after shiftings to neighbors */
	remain_items -= (to_left + to_right);

	/* all content of node can be shifted to neighbors */
	if (remain_items < 1) {
		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
			       NULL, -1, -1);
		return 1;
	}

	/* S[0] is not removable */
	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
		return 0;

	/* check whether we can divide 1 remaining item between neighbors */

	/* get size of remaining item (in item units) */
	size = op_unit_num(&vn->vn_vi[to_left]);

	if (tb->lbytes + tb->rbytes >= size) {
		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
			       tb->lbytes, -1);
		return 1;
	}

	return 0;
}

/* check whether L, S, R can be joined in one node */
static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
{
	struct virtual_node *vn = tb->tb_vn;
	int ih_size;
	struct buffer_head *S0;

	S0 = PATH_H_PBUFFER(tb->tb_path, 0);

	ih_size = 0;
	if (vn->vn_nr_item) {
		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
			ih_size += IH_SIZE;

		if (vn->vn_vi[vn->vn_nr_item - 1].
		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
			ih_size += IH_SIZE;
	} else {
		/* there was only one item and it will be deleted */
		struct item_head *ih;

		RFALSE(B_NR_ITEMS(S0) != 1,
		       "vs-8125: item number must be 1: it is %d",
		       B_NR_ITEMS(S0));

		ih = item_head(S0, 0);
		if (tb->CFR[0]
		    && !comp_short_le_keys(&ih->ih_key,
					   internal_key(tb->CFR[0],
							  tb->rkey[0])))
			/*
			 * Directory must be in correct state here: that is
			 * somewhere at the left side should exist first
			 * directory item. But the item being deleted can
			 * not be that first one because its right neighbor
			 * is item of the same directory. (But first item
			 * always gets deleted in last turn). So, neighbors
			 * of deleted item can be merged, so we can save
			 * ih_size
			 */
			if (is_direntry_le_ih(ih)) {
				ih_size = IH_SIZE;

				/*
				 * we might check that left neighbor exists
				 * and is of the same directory
				 */
				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
				       "vs-8130: first directory item can not be removed until directory is not empty");
			}

	}

	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
		PROC_INFO_INC(tb->tb_sb, leaves_removable);
		return 1;
	}
	return 0;

}

/* when we do not split item, lnum and rnum are numbers of entire items */
#define SET_PAR_SHIFT_LEFT \
if (h)\
{\
   int to_l;\
   \
   to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
	      (MAX_NR_KEY(Sh) + 1 - lpar);\
	      \
	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
}\
else \
{\
   if (lset==LEFT_SHIFT_FLOW)\
     set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
		     tb->lbytes, -1);\
   else\
     set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
		     -1, -1);\
}

#define SET_PAR_SHIFT_RIGHT \
if (h)\
{\
   int to_r;\
   \
   to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
   \
   set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
}\
else \
{\
   if (rset==RIGHT_SHIFT_FLOW)\
     set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
		  -1, tb->rbytes);\
   else\
     set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
		  -1, -1);\
}

static void free_buffers_in_tb(struct tree_balance *tb)
{
	int i;

	pathrelse(tb->tb_path);

	for (i = 0; i < MAX_HEIGHT; i++) {
		brelse(tb->L[i]);
		brelse(tb->R[i]);
		brelse(tb->FL[i]);
		brelse(tb->FR[i]);
		brelse(tb->CFL[i]);
		brelse(tb->CFR[i]);

		tb->L[i] = NULL;
		tb->R[i] = NULL;
		tb->FL[i] = NULL;
		tb->FR[i] = NULL;
		tb->CFL[i] = NULL;
		tb->CFR[i] = NULL;
	}
}

/*
 * Get new buffers for storing new nodes that are created while balancing.
 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
 *	        CARRY_ON - schedule didn't occur while the function worked;
 *	        NO_DISK_SPACE - no disk space.
 */
/* The function is NOT SCHEDULE-SAFE! */
static int get_empty_nodes(struct tree_balance *tb, int h)
{
	struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
	int counter, number_of_freeblk;
	int  amount_needed;	/* number of needed empty blocks */
	int  retval = CARRY_ON;
	struct super_block *sb = tb->tb_sb;

	/*
	 * number_of_freeblk is the number of empty blocks which have been
	 * acquired for use by the balancing algorithm minus the number of
	 * empty blocks used in the previous levels of the analysis,
	 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
	 * occurs after empty blocks are acquired, and the balancing analysis
	 * is then restarted, amount_needed is the number needed by this
	 * level (h) of the balancing analysis.
	 *
	 * Note that for systems with many processes writing, it would be
	 * more layout optimal to calculate the total number needed by all
	 * levels and then to run reiserfs_new_blocks to get all of them at
	 * once.
	 */

	/*
	 * Initiate number_of_freeblk to the amount acquired prior to the
	 * restart of the analysis or 0 if not restarted, then subtract the
	 * amount needed by all of the levels of the tree below h.
	 */
	/* blknum includes S[h], so we subtract 1 in this calculation */
	for (counter = 0, number_of_freeblk = tb->cur_blknum;
	     counter < h; counter++)
		number_of_freeblk -=
		    (tb->blknum[counter]) ? (tb->blknum[counter] -
						   1) : 0;

	/* Allocate missing empty blocks. */
	/* if Sh == 0  then we are getting a new root */
	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
	/*
	 * Amount_needed = the amount that we need more than the
	 * amount that we have.
	 */
	if (amount_needed > number_of_freeblk)
		amount_needed -= number_of_freeblk;
	else	/* If we have enough already then there is nothing to do. */
		return CARRY_ON;

	/*
	 * No need to check quota - is not allocated for blocks used
	 * for formatted nodes
	 */
	if (reiserfs_new_form_blocknrs(tb, blocknrs,
				       amount_needed) == NO_DISK_SPACE)
		return NO_DISK_SPACE;

	/* for each blocknumber we just got, get a buffer and stick it on FEB */
	for (blocknr = blocknrs, counter = 0;
	     counter < amount_needed; blocknr++, counter++) {

		RFALSE(!*blocknr,
		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");

		new_bh = sb_getblk(sb, *blocknr);
		RFALSE(buffer_dirty(new_bh) ||
		       buffer_journaled(new_bh) ||
		       buffer_journal_dirty(new_bh),
		       "PAP-8140: journaled or dirty buffer %b for the new block",
		       new_bh);

		/* Put empty buffers into the array. */
		RFALSE(tb->FEB[tb->cur_blknum],
		       "PAP-8141: busy slot for new buffer");

		set_buffer_journal_new(new_bh);
		tb->FEB[tb->cur_blknum++] = new_bh;
	}

	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
		retval = REPEAT_SEARCH;

	return retval;
}

/*
 * Get free space of the left neighbor, which is stored in the parent
 * node of the left neighbor.
 */
static int get_lfree(struct tree_balance *tb, int h)
{
	struct buffer_head *l, *f;
	int order;

	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
	    (l = tb->FL[h]) == NULL)
		return 0;

	if (f == l)
		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
	else {
		order = B_NR_ITEMS(l);
		f = l;
	}

	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
}

/*
 * Get free space of the right neighbor,
 * which is stored in the parent node of the right neighbor.
 */
static int get_rfree(struct tree_balance *tb, int h)
{
	struct buffer_head *r, *f;
	int order;

	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
	    (r = tb->FR[h]) == NULL)
		return 0;

	if (f == r)
		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
	else {
		order = 0;
		f = r;
	}

	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));

}

/* Check whether left neighbor is in memory. */
static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
{
	struct buffer_head *father, *left;
	struct super_block *sb = tb->tb_sb;
	b_blocknr_t left_neighbor_blocknr;
	int left_neighbor_position;

	/* Father of the left neighbor does not exist. */
	if (!tb->FL[h])
		return 0;

	/* Calculate father of the node to be balanced. */
	father = PATH_H_PBUFFER(tb->tb_path, h + 1);

	RFALSE(!father ||
	       !B_IS_IN_TREE(father) ||
	       !B_IS_IN_TREE(tb->FL[h]) ||
	       !buffer_uptodate(father) ||
	       !buffer_uptodate(tb->FL[h]),
	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
	       father, tb->FL[h]);

	/*
	 * Get position of the pointer to the left neighbor
	 * into the left father.
	 */
	left_neighbor_position = (father == tb->FL[h]) ?
	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
	/* Get left neighbor block number. */
	left_neighbor_blocknr =
	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
	/* Look for the left neighbor in the cache. */
	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {

		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
		       "vs-8170: left neighbor (%b %z) is not in the tree",
		       left, left);
		put_bh(left);
		return 1;
	}

	return 0;
}

#define LEFT_PARENTS  'l'
#define RIGHT_PARENTS 'r'

static void decrement_key(struct cpu_key *key)
{
	/* call item specific function for this key */
	item_ops[cpu_key_k_type(key)]->decrement_key(key);
}

/*
 * Calculate far left/right parent of the left/right neighbor of the
 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
 * of the parent F[h].
 * Calculate left/right common parent of the current node and L[h]/R[h].
 * Calculate left/right delimiting key position.
 * Returns:	PATH_INCORRECT    - path in the tree is not correct
 *		SCHEDULE_OCCURRED - schedule occurred while the function worked
 *	        CARRY_ON          - schedule didn't occur while the function
 *				    worked
 */
static int get_far_parent(struct tree_balance *tb,
			  int h,
			  struct buffer_head **pfather,
			  struct buffer_head **pcom_father, char c_lr_par)
{
	struct buffer_head *parent;
	INITIALIZE_PATH(s_path_to_neighbor_father);
	struct treepath *path = tb->tb_path;
	struct cpu_key s_lr_father_key;
	int counter,
	    position = INT_MAX,
	    first_last_position = 0,
	    path_offset = PATH_H_PATH_OFFSET(path, h);

	/*
	 * Starting from F[h] go upwards in the tree, and look for the common
	 * ancestor of F[h], and its neighbor l/r, that should be obtained.
	 */

	counter = path_offset;

	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
	       "PAP-8180: invalid path length");

	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
		/*
		 * Check whether parent of the current buffer in the path
		 * is really parent in the tree.
		 */
		if (!B_IS_IN_TREE
		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
			return REPEAT_SEARCH;

		/* Check whether position in the parent is correct. */
		if ((position =
		     PATH_OFFSET_POSITION(path,
					  counter - 1)) >
		    B_NR_ITEMS(parent))
			return REPEAT_SEARCH;

		/*
		 * Check whether parent at the path really points
		 * to the child.
		 */
		if (B_N_CHILD_NUM(parent, position) !=
		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
			return REPEAT_SEARCH;

		/*
		 * Return delimiting key if position in the parent is not
		 * equal to first/last one.
		 */
		if (c_lr_par == RIGHT_PARENTS)
			first_last_position = B_NR_ITEMS(parent);
		if (position != first_last_position) {
			*pcom_father = parent;
			get_bh(*pcom_father);
			/*(*pcom_father = parent)->b_count++; */
			break;
		}
	}

	/* if we are in the root of the tree, then there is no common father */
	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
		/*
		 * Check whether first buffer in the path is the
		 * root of the tree.
		 */
		if (PATH_OFFSET_PBUFFER
		    (tb->tb_path,
		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
		    SB_ROOT_BLOCK(tb->tb_sb)) {
			*pfather = *pcom_father = NULL;
			return CARRY_ON;
		}
		return REPEAT_SEARCH;
	}

	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
	       "PAP-8185: (%b %z) level too small",
	       *pcom_father, *pcom_father);

	/* Check whether the common parent is locked. */

	if (buffer_locked(*pcom_father)) {

		/* Release the write lock while the buffer is busy */
		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
		__wait_on_buffer(*pcom_father);
		reiserfs_write_lock_nested(tb->tb_sb, depth);
		if (FILESYSTEM_CHANGED_TB(tb)) {
			brelse(*pcom_father);
			return REPEAT_SEARCH;
		}
	}

	/*
	 * So, we got common parent of the current node and its
	 * left/right neighbor.  Now we are getting the parent of the
	 * left/right neighbor.
	 */

	/* Form key to get parent of the left/right neighbor. */
	le_key2cpu_key(&s_lr_father_key,
		       internal_key(*pcom_father,
				      (c_lr_par ==
				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
							position -
							1) : (tb->rkey[h -
									   1] =
							      position)));

	if (c_lr_par == LEFT_PARENTS)
		decrement_key(&s_lr_father_key);

	if (search_by_key
	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
	     h + 1) == IO_ERROR)
		/* path is released */
		return IO_ERROR;

	if (FILESYSTEM_CHANGED_TB(tb)) {
		pathrelse(&s_path_to_neighbor_father);
		brelse(*pcom_father);
		return REPEAT_SEARCH;
	}

	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);

	RFALSE(B_LEVEL(*pfather) != h + 1,
	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
	RFALSE(s_path_to_neighbor_father.path_length <
	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");

	s_path_to_neighbor_father.path_length--;
	pathrelse(&s_path_to_neighbor_father);
	return CARRY_ON;
}

/*
 * Get parents of neighbors of node in the path(S[path_offset]) and
 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
 * CFR[path_offset].
 * Calculate numbers of left and right delimiting keys position:
 * lkey[path_offset], rkey[path_offset].
 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked
 *	        CARRY_ON - schedule didn't occur while the function worked
 */
static int get_parents(struct tree_balance *tb, int h)
{
	struct treepath *path = tb->tb_path;
	int position,
	    ret,
	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
	struct buffer_head *curf, *curcf;

	/* Current node is the root of the tree or will be root of the tree */
	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
		/*
		 * The root can not have parents.
		 * Release nodes which previously were obtained as
		 * parents of the current node neighbors.
		 */
		brelse(tb->FL[h]);
		brelse(tb->CFL[h]);
		brelse(tb->FR[h]);
		brelse(tb->CFR[h]);
		tb->FL[h]  = NULL;
		tb->CFL[h] = NULL;
		tb->FR[h]  = NULL;
		tb->CFR[h] = NULL;
		return CARRY_ON;
	}

	/* Get parent FL[path_offset] of L[path_offset]. */
	position = PATH_OFFSET_POSITION(path, path_offset - 1);
	if (position) {
		/* Current node is not the first child of its parent. */
		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
		get_bh(curf);
		get_bh(curf);
		tb->lkey[h] = position - 1;
	} else {
		/*
		 * Calculate current parent of L[path_offset], which is the
		 * left neighbor of the current node.  Calculate current
		 * common parent of L[path_offset] and the current node.
		 * Note that CFL[path_offset] not equal FL[path_offset] and
		 * CFL[path_offset] not equal F[path_offset].
		 * Calculate lkey[path_offset].
		 */
		if ((ret = get_far_parent(tb, h + 1, &curf,
						  &curcf,
						  LEFT_PARENTS)) != CARRY_ON)
			return ret;
	}

	brelse(tb->FL[h]);
	tb->FL[h] = curf;	/* New initialization of FL[h]. */
	brelse(tb->CFL[h]);
	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */

	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
	       (curcf && !B_IS_IN_TREE(curcf)),
	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);

	/* Get parent FR[h] of R[h]. */

	/* Current node is the last child of F[h]. FR[h] != F[h]. */
	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
		/*
		 * Calculate current parent of R[h], which is the right
		 * neighbor of F[h].  Calculate current common parent of
		 * R[h] and current node. Note that CFR[h] not equal
		 * FR[path_offset] and CFR[h] not equal F[h].
		 */
		if ((ret =
		     get_far_parent(tb, h + 1, &curf, &curcf,
				    RIGHT_PARENTS)) != CARRY_ON)
			return ret;
	} else {
		/* Current node is not the last child of its parent F[h]. */
		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
		get_bh(curf);
		get_bh(curf);
		tb->rkey[h] = position;
	}

	brelse(tb->FR[h]);
	/* New initialization of FR[path_offset]. */
	tb->FR[h] = curf;

	brelse(tb->CFR[h]);
	/* New initialization of CFR[path_offset]. */
	tb->CFR[h] = curcf;

	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
	       (curcf && !B_IS_IN_TREE(curcf)),
	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);

	return CARRY_ON;
}

/*
 * it is possible to remove node as result of shiftings to
 * neighbors even when we insert or paste item.
 */
static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
				      struct tree_balance *tb, int h)
{
	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
	int levbytes = tb->insert_size[h];
	struct item_head *ih;
	struct reiserfs_key *r_key = NULL;

	ih = item_head(Sh, 0);
	if (tb->CFR[h])
		r_key = internal_key(tb->CFR[h], tb->rkey[h]);

	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
	    /* shifting may merge items which might save space */
	    -
	    ((!h
	      && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
	    -
	    ((!h && r_key
	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
	    + ((h) ? KEY_SIZE : 0)) {
		/* node can not be removed */
		if (sfree >= levbytes) {
			/* new item fits into node S[h] without any shifting */
			if (!h)
				tb->s0num =
				    B_NR_ITEMS(Sh) +
				    ((mode == M_INSERT) ? 1 : 0);
			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
			return NO_BALANCING_NEEDED;
		}
	}
	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
	return !NO_BALANCING_NEEDED;
}

/*
 * Check whether current node S[h] is balanced when increasing its size by
 * Inserting or Pasting.
 * Calculate parameters for balancing for current level h.
 * Parameters:
 *	tb	tree_balance structure;
 *	h	current level of the node;
 *	inum	item number in S[h];
 *	mode	i - insert, p - paste;
 * Returns:	1 - schedule occurred;
 *	        0 - balancing for higher levels needed;
 *	       -1 - no balancing for higher levels needed;
 *	       -2 - no disk space.
 */
/* ip means Inserting or Pasting */
static int ip_check_balance(struct tree_balance *tb, int h)
{
	struct virtual_node *vn = tb->tb_vn;
	/*
	 * Number of bytes that must be inserted into (value is negative
	 * if bytes are deleted) buffer which contains node being balanced.
	 * The mnemonic is that the attempted change in node space used
	 * level is levbytes bytes.
	 */
	int levbytes;
	int ret;

	int lfree, sfree, rfree /* free space in L, S and R */ ;

	/*
	 * nver is short for number of vertixes, and lnver is the number if
	 * we shift to the left, rnver is the number if we shift to the
	 * right, and lrnver is the number if we shift in both directions.
	 * The goal is to minimize first the number of vertixes, and second,
	 * the number of vertixes whose contents are changed by shifting,
	 * and third the number of uncached vertixes whose contents are
	 * changed by shifting and must be read from disk.
	 */
	int nver, lnver, rnver, lrnver;

	/*
	 * used at leaf level only, S0 = S[0] is the node being balanced,
	 * sInum [ I = 0,1,2 ] is the number of items that will
	 * remain in node SI after balancing.  S1 and S2 are new
	 * nodes that might be created.
	 */

	/*
	 * we perform 8 calls to get_num_ver().  For each call we
	 * calculate five parameters.  where 4th parameter is s1bytes
	 * and 5th - s2bytes
	 *
	 * s0num, s1num, s2num for 8 cases
	 * 0,1 - do not shift and do not shift but bottle
	 * 2   - shift only whole item to left
	 * 3   - shift to left and bottle as much as possible
	 * 4,5 - shift to right (whole items and as much as possible
	 * 6,7 - shift to both directions (whole items and as much as possible)
	 */
	short snum012[40] = { 0, };

	/* Sh is the node whose balance is currently being checked */
	struct buffer_head *Sh;

	Sh = PATH_H_PBUFFER(tb->tb_path, h);
	levbytes = tb->insert_size[h];

	/* Calculate balance parameters for creating new root. */
	if (!Sh) {
		if (!h)
			reiserfs_panic(tb->tb_sb, "vs-8210",
				       "S[0] can not be 0");
		switch (ret = get_empty_nodes(tb, h)) {
		/* no balancing for higher levels needed */
		case CARRY_ON:
			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
			return NO_BALANCING_NEEDED;

		case NO_DISK_SPACE:
		case REPEAT_SEARCH:
			return ret;
		default:
			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
				       "return value of get_empty_nodes");
		}
	}

	/* get parents of S[h] neighbors. */
	ret = get_parents(tb, h);
	if (ret != CARRY_ON)
		return ret;

	sfree = B_FREE_SPACE(Sh);

	/* get free space of neighbors */
	rfree = get_rfree(tb, h);
	lfree = get_lfree(tb, h);

	/* and new item fits into node S[h] without any shifting */
	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
	    NO_BALANCING_NEEDED)
		return NO_BALANCING_NEEDED;

	create_virtual_node(tb, h);

	/*
	 * determine maximal number of items we can shift to the left
	 * neighbor (in tb structure) and the maximal number of bytes
	 * that can flow to the left neighbor from the left most liquid
	 * item that cannot be shifted from S[0] entirely (returned value)
	 */
	check_left(tb, h, lfree);

	/*
	 * determine maximal number of items we can shift to the right
	 * neighbor (in tb structure) and the maximal number of bytes
	 * that can flow to the right neighbor from the right most liquid
	 * item that cannot be shifted from S[0] entirely (returned value)
	 */
	check_right(tb, h, rfree);

	/*
	 * all contents of internal node S[h] can be moved into its
	 * neighbors, S[h] will be removed after balancing
	 */
	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
		int to_r;

		/*
		 * Since we are working on internal nodes, and our internal
		 * nodes have fixed size entries, then we can balance by the
		 * number of items rather than the space they consume.  In this
		 * routine we set the left node equal to the right node,
		 * allowing a difference of less than or equal to 1 child
		 * pointer.
		 */
		to_r =
		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
						tb->rnum[h]);
		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
			       -1, -1);
		return CARRY_ON;
	}

	/*
	 * this checks balance condition, that any two neighboring nodes
	 * can not fit in one node
	 */
	RFALSE(h &&
	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
		tb->rnum[h] >= vn->vn_nr_item + 1),
	       "vs-8220: tree is not balanced on internal level");
	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
	       "vs-8225: tree is not balanced on leaf level");

	/*
	 * all contents of S[0] can be moved into its neighbors
	 * S[0] will be removed after balancing.
	 */
	if (!h && is_leaf_removable(tb))
		return CARRY_ON;

	/*
	 * why do we perform this check here rather than earlier??
	 * Answer: we can win 1 node in some cases above. Moreover we
	 * checked it above, when we checked, that S[0] is not removable
	 * in principle
	 */

	 /* new item fits into node S[h] without any shifting */
	if (sfree >= levbytes) {
		if (!h)
			tb->s0num = vn->vn_nr_item;
		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
		return NO_BALANCING_NEEDED;
	}

	{
		int lpar, rpar, nset, lset, rset, lrset;
		/* regular overflowing of the node */

		/*
		 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
		 * lpar, rpar - number of items we can shift to left/right
		 *              neighbor (including splitting item)
		 * nset, lset, rset, lrset - shows, whether flowing items
		 *                           give better packing
		 */
#define FLOW 1
#define NO_FLOW 0		/* do not any splitting */

		/* we choose one of the following */
#define NOTHING_SHIFT_NO_FLOW	0
#define NOTHING_SHIFT_FLOW	5
#define LEFT_SHIFT_NO_FLOW	10
#define LEFT_SHIFT_FLOW		15
#define RIGHT_SHIFT_NO_FLOW	20
#define RIGHT_SHIFT_FLOW	25
#define LR_SHIFT_NO_FLOW	30
#define LR_SHIFT_FLOW		35

		lpar = tb->lnum[h];
		rpar = tb->rnum[h];

		/*
		 * calculate number of blocks S[h] must be split into when
		 * nothing is shifted to the neighbors, as well as number of
		 * items in each part of the split node (s012 numbers),
		 * and number of bytes (s1bytes) of the shared drop which
		 * flow to S1 if any
		 */
		nset = NOTHING_SHIFT_NO_FLOW;
		nver = get_num_ver(vn->vn_mode, tb, h,
				   0, -1, h ? vn->vn_nr_item : 0, -1,
				   snum012, NO_FLOW);

		if (!h) {
			int nver1;

			/*
			 * note, that in this case we try to bottle
			 * between S[0] and S1 (S1 - the first new node)
			 */
			nver1 = get_num_ver(vn->vn_mode, tb, h,
					    0, -1, 0, -1,
					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
			if (nver > nver1)
				nset = NOTHING_SHIFT_FLOW, nver = nver1;
		}

		/*
		 * calculate number of blocks S[h] must be split into when
		 * l_shift_num first items and l_shift_bytes of the right
		 * most liquid item to be shifted are shifted to the left
		 * neighbor, as well as number of items in each part of the
		 * splitted node (s012 numbers), and number of bytes
		 * (s1bytes) of the shared drop which flow to S1 if any
		 */
		lset = LEFT_SHIFT_NO_FLOW;
		lnver = get_num_ver(vn->vn_mode, tb, h,
				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
				    -1, h ? vn->vn_nr_item : 0, -1,
				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
		if (!h) {
			int lnver1;

			lnver1 = get_num_ver(vn->vn_mode, tb, h,
					     lpar -
					     ((tb->lbytes != -1) ? 1 : 0),
					     tb->lbytes, 0, -1,
					     snum012 + LEFT_SHIFT_FLOW, FLOW);
			if (lnver > lnver1)
				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
		}

		/*
		 * calculate number of blocks S[h] must be split into when
		 * r_shift_num first items and r_shift_bytes of the left most
		 * liquid item to be shifted are shifted to the right neighbor,
		 * as well as number of items in each part of the splitted
		 * node (s012 numbers), and number of bytes (s1bytes) of the
		 * shared drop which flow to S1 if any
		 */
		rset = RIGHT_SHIFT_NO_FLOW;
		rnver = get_num_ver(vn->vn_mode, tb, h,
				    0, -1,
				    h ? (vn->vn_nr_item - rpar) : (rpar -
								   ((tb->
								     rbytes !=
								     -1) ? 1 :
								    0)), -1,
				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
		if (!h) {
			int rnver1;

			rnver1 = get_num_ver(vn->vn_mode, tb, h,
					     0, -1,
					     (rpar -
					      ((tb->rbytes != -1) ? 1 : 0)),
					     tb->rbytes,
					     snum012 + RIGHT_SHIFT_FLOW, FLOW);

			if (rnver > rnver1)
				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
		}

		/*
		 * calculate number of blocks S[h] must be split into when
		 * items are shifted in both directions, as well as number
		 * of items in each part of the splitted node (s012 numbers),
		 * and number of bytes (s1bytes) of the shared drop which
		 * flow to S1 if any
		 */
		lrset = LR_SHIFT_NO_FLOW;
		lrnver = get_num_ver(vn->vn_mode, tb, h,
				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
				     -1,
				     h ? (vn->vn_nr_item - rpar) : (rpar -
								    ((tb->
								      rbytes !=
								      -1) ? 1 :
								     0)), -1,
				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
		if (!h) {
			int lrnver1;

			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
					      lpar -
					      ((tb->lbytes != -1) ? 1 : 0),
					      tb->lbytes,
					      (rpar -
					       ((tb->rbytes != -1) ? 1 : 0)),
					      tb->rbytes,
					      snum012 + LR_SHIFT_FLOW, FLOW);
			if (lrnver > lrnver1)
				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
		}

		/*
		 * Our general shifting strategy is:
		 * 1) to minimized number of new nodes;
		 * 2) to minimized number of neighbors involved in shifting;
		 * 3) to minimized number of disk reads;
		 */

		/* we can win TWO or ONE nodes by shifting in both directions */
		if (lrnver < lnver && lrnver < rnver) {
			RFALSE(h &&
			       (tb->lnum[h] != 1 ||
				tb->rnum[h] != 1 ||
				lrnver != 1 || rnver != 2 || lnver != 2
				|| h != 1), "vs-8230: bad h");
			if (lrset == LR_SHIFT_FLOW)
				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
					       lrnver, snum012 + lrset,
					       tb->lbytes, tb->rbytes);
			else
				set_parameters(tb, h,
					       tb->lnum[h] -
					       ((tb->lbytes == -1) ? 0 : 1),
					       tb->rnum[h] -
					       ((tb->rbytes == -1) ? 0 : 1),
					       lrnver, snum012 + lrset, -1, -1);

			return CARRY_ON;
		}

		/*
		 * if shifting doesn't lead to better packing
		 * then don't shift
		 */
		if (nver == lrnver) {
			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
				       -1);
			return CARRY_ON;
		}

		/*
		 * now we know that for better packing shifting in only one
		 * direction either to the left or to the right is required
		 */

		/*
		 * if shifting to the left is better than
		 * shifting to the right
		 */
		if (lnver < rnver) {
			SET_PAR_SHIFT_LEFT;
			return CARRY_ON;
		}

		/*
		 * if shifting to the right is better than
		 * shifting to the left
		 */
		if (lnver > rnver) {
			SET_PAR_SHIFT_RIGHT;
			return CARRY_ON;
		}

		/*
		 * now shifting in either direction gives the same number
		 * of nodes and we can make use of the cached neighbors
		 */
		if (is_left_neighbor_in_cache(tb, h)) {
			SET_PAR_SHIFT_LEFT;
			return CARRY_ON;
		}

		/*
		 * shift to the right independently on whether the
		 * right neighbor in cache or not
		 */
		SET_PAR_SHIFT_RIGHT;
		return CARRY_ON;
	}
}

/*
 * Check whether current node S[h] is balanced when Decreasing its size by
 * Deleting or Cutting for INTERNAL node of S+tree.
 * Calculate parameters for balancing for current level h.
 * Parameters:
 *	tb	tree_balance structure;
 *	h	current level of the node;
 *	inum	item number in S[h];
 *	mode	i - insert, p - paste;
 * Returns:	1 - schedule occurred;
 *	        0 - balancing for higher levels needed;
 *	       -1 - no balancing for higher levels needed;
 *	       -2 - no disk space.
 *
 * Note: Items of internal nodes have fixed size, so the balance condition for
 * the internal part of S+tree is as for the B-trees.
 */
static int dc_check_balance_internal(struct tree_balance *tb, int h)
{
	struct virtual_node *vn = tb->tb_vn;

	/*
	 * Sh is the node whose balance is currently being checked,
	 * and Fh is its father.
	 */
	struct buffer_head *Sh, *Fh;
	int ret;
	int lfree, rfree /* free space in L and R */ ;

	Sh = PATH_H_PBUFFER(tb->tb_path, h);
	Fh = PATH_H_PPARENT(tb->tb_path, h);

	/*
	 * using tb->insert_size[h], which is negative in this case,
	 * create_virtual_node calculates:
	 * new_nr_item = number of items node would have if operation is
	 * performed without balancing (new_nr_item);
	 */
	create_virtual_node(tb, h);

	if (!Fh) {		/* S[h] is the root. */
		/* no balancing for higher levels needed */
		if (vn->vn_nr_item > 0) {
			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
			return NO_BALANCING_NEEDED;
		}
		/*
		 * new_nr_item == 0.
		 * Current root will be deleted resulting in
		 * decrementing the tree height.
		 */
		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
		return CARRY_ON;
	}

	if ((ret = get_parents(tb, h)) != CARRY_ON)
		return ret;

	/* get free space of neighbors */
	rfree = get_rfree(tb, h);
	lfree = get_lfree(tb, h);

	/* determine maximal number of items we can fit into neighbors */
	check_left(tb, h, lfree);
	check_right(tb, h, rfree);

	/*
	 * Balance condition for the internal node is valid.
	 * In this case we balance only if it leads to better packing.
	 */
	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
		/*
		 * Here we join S[h] with one of its neighbors,
		 * which is impossible with greater values of new_nr_item.
		 */
		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
			/* All contents of S[h] can be moved to L[h]. */
			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
				int n;
				int order_L;

				order_L =
				    ((n =
				      PATH_H_B_ITEM_ORDER(tb->tb_path,
							  h)) ==
				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
				    (DC_SIZE + KEY_SIZE);
				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
					       -1);
				return CARRY_ON;
			}

			/* All contents of S[h] can be moved to R[h]. */
			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
				int n;
				int order_R;

				order_R =
				    ((n =
				      PATH_H_B_ITEM_ORDER(tb->tb_path,
							  h)) ==
				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
				    (DC_SIZE + KEY_SIZE);
				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
					       -1);
				return CARRY_ON;
			}
		}

		/*
		 * All contents of S[h] can be moved to the neighbors
		 * (L[h] & R[h]).
		 */
		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
			int to_r;

			to_r =
			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
				       0, NULL, -1, -1);
			return CARRY_ON;
		}

		/* Balancing does not lead to better packing. */
		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
		return NO_BALANCING_NEEDED;
	}

	/*
	 * Current node contain insufficient number of items.
	 * Balancing is required.
	 */
	/* Check whether we can merge S[h] with left neighbor. */
	if (tb->lnum[h] >= vn->vn_nr_item + 1)
		if (is_left_neighbor_in_cache(tb, h)
		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
			int n;
			int order_L;

			order_L =
			    ((n =
			      PATH_H_B_ITEM_ORDER(tb->tb_path,
						  h)) ==
			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
								      KEY_SIZE);
			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
			return CARRY_ON;
		}

	/* Check whether we can merge S[h] with right neighbor. */
	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
		int n;
		int order_R;

		order_R =
		    ((n =
		      PATH_H_B_ITEM_ORDER(tb->tb_path,
					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
							      KEY_SIZE);
		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
		return CARRY_ON;
	}

	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
		int to_r;

		to_r =
		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
						tb->rnum[h]);
		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
			       -1, -1);
		return CARRY_ON;
	}

	/* For internal nodes try to borrow item from a neighbor */
	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");

	/* Borrow one or two items from caching neighbor */
	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
		int from_l;

		from_l =
		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
		     1) / 2 - (vn->vn_nr_item + 1);
		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
		return CARRY_ON;
	}

	set_parameters(tb, h, 0,
		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
	return CARRY_ON;
}

/*
 * Check whether current node S[h] is balanced when Decreasing its size by
 * Deleting or Truncating for LEAF node of S+tree.
 * Calculate parameters for balancing for current level h.
 * Parameters:
 *	tb	tree_balance structure;
 *	h	current level of the node;
 *	inum	item number in S[h];
 *	mode	i - insert, p - paste;
 * Returns:	1 - schedule occurred;
 *	        0 - balancing for higher levels needed;
 *	       -1 - no balancing for higher levels needed;
 *	       -2 - no disk space.
 */
static int dc_check_balance_leaf(struct tree_balance *tb, int h)
{
	struct virtual_node *vn = tb->tb_vn;

	/*
	 * Number of bytes that must be deleted from
	 * (value is negative if bytes are deleted) buffer which
	 * contains node being balanced.  The mnemonic is that the
	 * attempted change in node space used level is levbytes bytes.
	 */
	int levbytes;

	/* the maximal item size */
	int maxsize, ret;

	/*
	 * S0 is the node whose balance is currently being checked,
	 * and F0 is its father.
	 */
	struct buffer_head *S0, *F0;
	int lfree, rfree /* free space in L and R */ ;

	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
	F0 = PATH_H_PPARENT(tb->tb_path, 0);

	levbytes = tb->insert_size[h];

	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */

	if (!F0) {		/* S[0] is the root now. */

		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
		       "vs-8240: attempt to create empty buffer tree");

		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
		return NO_BALANCING_NEEDED;
	}

	if ((ret = get_parents(tb, h)) != CARRY_ON)
		return ret;

	/* get free space of neighbors */
	rfree = get_rfree(tb, h);
	lfree = get_lfree(tb, h);

	create_virtual_node(tb, h);

	/* if 3 leaves can be merge to one, set parameters and return */
	if (are_leaves_removable(tb, lfree, rfree))
		return CARRY_ON;

	/*
	 * determine maximal number of items we can shift to the left/right
	 * neighbor and the maximal number of bytes that can flow to the
	 * left/right neighbor from the left/right most liquid item that
	 * cannot be shifted from S[0] entirely
	 */
	check_left(tb, h, lfree);
	check_right(tb, h, rfree);

	/* check whether we can merge S with left neighbor. */
	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
		    !tb->FR[h]) {

			RFALSE(!tb->FL[h],
			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");

			/* set parameter to merge S[0] with its left neighbor */
			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
			return CARRY_ON;
		}

	/* check whether we can merge S[0] with right neighbor. */
	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
		return CARRY_ON;
	}

	/*
	 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
	 * Set parameters and return
	 */
	if (is_leaf_removable(tb))
		return CARRY_ON;

	/* Balancing is not required. */
	tb->s0num = vn->vn_nr_item;
	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
	return NO_BALANCING_NEEDED;
}

/*
 * Check whether current node S[h] is balanced when Decreasing its size by
 * Deleting or Cutting.
 * Calculate parameters for balancing for current level h.
 * Parameters:
 *	tb	tree_balance structure;
 *	h	current level of the node;
 *	inum	item number in S[h];
 *	mode	d - delete, c - cut.
 * Returns:	1 - schedule occurred;
 *	        0 - balancing for higher levels needed;
 *	       -1 - no balancing for higher levels needed;
 *	       -2 - no disk space.
 */
static int dc_check_balance(struct tree_balance *tb, int h)
{
	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
	       "vs-8250: S is not initialized");

	if (h)
		return dc_check_balance_internal(tb, h);
	else
		return dc_check_balance_leaf(tb, h);
}

/*
 * Check whether current node S[h] is balanced.
 * Calculate parameters for balancing for current level h.
 * Parameters:
 *
 *	tb	tree_balance structure:
 *
 *              tb is a large structure that must be read about in the header
 *		file at the same time as this procedure if the reader is
 *		to successfully understand this procedure
 *
 *	h	current level of the node;
 *	inum	item number in S[h];
 *	mode	i - insert, p - paste, d - delete, c - cut.
 * Returns:	1 - schedule occurred;
 *	        0 - balancing for higher levels needed;
 *	       -1 - no balancing for higher levels needed;
 *	       -2 - no disk space.
 */
static int check_balance(int mode,
			 struct tree_balance *tb,
			 int h,
			 int inum,
			 int pos_in_item,
			 struct item_head *ins_ih, const void *data)
{
	struct virtual_node *vn;

	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
	vn->vn_mode = mode;
	vn->vn_affected_item_num = inum;
	vn->vn_pos_in_item = pos_in_item;
	vn->vn_ins_ih = ins_ih;
	vn->vn_data = data;

	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
	       "vs-8255: ins_ih can not be 0 in insert mode");

	/* Calculate balance parameters when size of node is increasing. */
	if (tb->insert_size[h] > 0)
		return ip_check_balance(tb, h);

	/* Calculate balance parameters when  size of node is decreasing. */
	return dc_check_balance(tb, h);
}

/* Check whether parent at the path is the really parent of the current node.*/
static int get_direct_parent(struct tree_balance *tb, int h)
{
	struct buffer_head *bh;
	struct treepath *path = tb->tb_path;
	int position,
	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);

	/* We are in the root or in the new root. */
	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {

		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
		       "PAP-8260: invalid offset in the path");

		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
			/* Root is not changed. */
			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
			return CARRY_ON;
		}
		/* Root is changed and we must recalculate the path. */
		return REPEAT_SEARCH;
	}

	/* Parent in the path is not in the tree. */
	if (!B_IS_IN_TREE
	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
		return REPEAT_SEARCH;

	if ((position =
	     PATH_OFFSET_POSITION(path,
				  path_offset - 1)) > B_NR_ITEMS(bh))
		return REPEAT_SEARCH;

	/* Parent in the path is not parent of the current node in the tree. */
	if (B_N_CHILD_NUM(bh, position) !=
	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
		return REPEAT_SEARCH;

	if (buffer_locked(bh)) {
		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
		__wait_on_buffer(bh);
		reiserfs_write_lock_nested(tb->tb_sb, depth);
		if (FILESYSTEM_CHANGED_TB(tb))
			return REPEAT_SEARCH;
	}

	/*
	 * Parent in the path is unlocked and really parent
	 * of the current node.
	 */
	return CARRY_ON;
}

/*
 * Using lnum[h] and rnum[h] we should determine what neighbors
 * of S[h] we
 * need in order to balance S[h], and get them if necessary.
 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
 *	        CARRY_ON - schedule didn't occur while the function worked;
 */
static int get_neighbors(struct tree_balance *tb, int h)
{
	int child_position,
	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
	unsigned long son_number;
	struct super_block *sb = tb->tb_sb;
	struct buffer_head *bh;
	int depth;

	PROC_INFO_INC(sb, get_neighbors[h]);

	if (tb->lnum[h]) {
		/* We need left neighbor to balance S[h]. */
		PROC_INFO_INC(sb, need_l_neighbor[h]);
		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);

		RFALSE(bh == tb->FL[h] &&
		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
		       "PAP-8270: invalid position in the parent");

		child_position =
		    (bh ==
		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
								       FL[h]);
		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
		depth = reiserfs_write_unlock_nested(tb->tb_sb);
		bh = sb_bread(sb, son_number);
		reiserfs_write_lock_nested(tb->tb_sb, depth);
		if (!bh)
			return IO_ERROR;
		if (FILESYSTEM_CHANGED_TB(tb)) {
			brelse(bh);
			PROC_INFO_INC(sb, get_neighbors_restart[h]);
			return REPEAT_SEARCH;
		}

		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
		       child_position > B_NR_ITEMS(tb->FL[h]) ||
		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
		       bh->b_blocknr, "PAP-8275: invalid parent");
		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
		RFALSE(!h &&
		       B_FREE_SPACE(bh) !=
		       MAX_CHILD_SIZE(bh) -
		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
		       "PAP-8290: invalid child size of left neighbor");

		brelse(tb->L[h]);
		tb->L[h] = bh;
	}

	/* We need right neighbor to balance S[path_offset]. */
	if (tb->rnum[h]) {
		PROC_INFO_INC(sb, need_r_neighbor[h]);
		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);

		RFALSE(bh == tb->FR[h] &&
		       PATH_OFFSET_POSITION(tb->tb_path,
					    path_offset) >=
		       B_NR_ITEMS(bh),
		       "PAP-8295: invalid position in the parent");

		child_position =
		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
		depth = reiserfs_write_unlock_nested(tb->tb_sb);
		bh = sb_bread(sb, son_number);
		reiserfs_write_lock_nested(tb->tb_sb, depth);
		if (!bh)
			return IO_ERROR;
		if (FILESYSTEM_CHANGED_TB(tb)) {
			brelse(bh);
			PROC_INFO_INC(sb, get_neighbors_restart[h]);
			return REPEAT_SEARCH;
		}
		brelse(tb->R[h]);
		tb->R[h] = bh;

		RFALSE(!h
		       && B_FREE_SPACE(bh) !=
		       MAX_CHILD_SIZE(bh) -
		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
		       dc_size(B_N_CHILD(tb->FR[0], child_position)));

	}
	return CARRY_ON;
}

static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
{
	int max_num_of_items;
	int max_num_of_entries;
	unsigned long blocksize = sb->s_blocksize;

#define MIN_NAME_LEN 1

	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
	    (DEH_SIZE + MIN_NAME_LEN);

	return sizeof(struct virtual_node) +
	    max(max_num_of_items * sizeof(struct virtual_item),
		sizeof(struct virtual_item) +
		struct_size_t(struct direntry_uarea, entry_sizes,
			      max_num_of_entries));
}

/*
 * maybe we should fail balancing we are going to perform when kmalloc
 * fails several times. But now it will loop until kmalloc gets
 * required memory
 */
static int get_mem_for_virtual_node(struct tree_balance *tb)
{
	int check_fs = 0;
	int size;
	char *buf;

	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));

	/* we have to allocate more memory for virtual node */
	if (size > tb->vn_buf_size) {
		if (tb->vn_buf) {
			/* free memory allocated before */
			kfree(tb->vn_buf);
			/* this is not needed if kfree is atomic */
			check_fs = 1;
		}

		/* virtual node requires now more memory */
		tb->vn_buf_size = size;

		/* get memory for virtual item */
		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
		if (!buf) {
			/*
			 * getting memory with GFP_KERNEL priority may involve
			 * balancing now (due to indirect_to_direct conversion
			 * on dcache shrinking). So, release path and collected
			 * resources here
			 */
			free_buffers_in_tb(tb);
			buf = kmalloc(size, GFP_NOFS);
			if (!buf) {
				tb->vn_buf_size = 0;
			}
			tb->vn_buf = buf;
			schedule();
			return REPEAT_SEARCH;
		}

		tb->vn_buf = buf;
	}

	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
		return REPEAT_SEARCH;

	return CARRY_ON;
}

#ifdef CONFIG_REISERFS_CHECK
static void tb_buffer_sanity_check(struct super_block *sb,
				   struct buffer_head *bh,
				   const char *descr, int level)
{
	if (bh) {
		if (atomic_read(&(bh->b_count)) <= 0)

			reiserfs_panic(sb, "jmacd-1", "negative or zero "
				       "reference counter for buffer %s[%d] "
				       "(%b)", descr, level, bh);

		if (!buffer_uptodate(bh))
			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
				       "to date %s[%d] (%b)",
				       descr, level, bh);

		if (!B_IS_IN_TREE(bh))
			reiserfs_panic(sb, "jmacd-3", "buffer is not "
				       "in tree %s[%d] (%b)",
				       descr, level, bh);

		if (bh->b_bdev != sb->s_bdev)
			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
				       "device %s[%d] (%b)",
				       descr, level, bh);

		if (bh->b_size != sb->s_blocksize)
			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
				       "blocksize %s[%d] (%b)",
				       descr, level, bh);

		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
			reiserfs_panic(sb, "jmacd-6", "buffer block "
				       "number too high %s[%d] (%b)",
				       descr, level, bh);
	}
}
#else
static void tb_buffer_sanity_check(struct super_block *sb,
				   struct buffer_head *bh,
				   const char *descr, int level)
{;
}
#endif

static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
{
	return reiserfs_prepare_for_journal(s, bh, 0);
}

static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
{
	struct buffer_head *locked;
#ifdef CONFIG_REISERFS_CHECK
	int repeat_counter = 0;
#endif
	int i;

	do {

		locked = NULL;

		for (i = tb->tb_path->path_length;
		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
				/*
				 * if I understand correctly, we can only
				 * be sure the last buffer in the path is
				 * in the tree --clm
				 */
#ifdef CONFIG_REISERFS_CHECK
				if (PATH_PLAST_BUFFER(tb->tb_path) ==
				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
					tb_buffer_sanity_check(tb->tb_sb,
							       PATH_OFFSET_PBUFFER
							       (tb->tb_path,
								i), "S",
							       tb->tb_path->
							       path_length - i);
#endif
				if (!clear_all_dirty_bits(tb->tb_sb,
							  PATH_OFFSET_PBUFFER
							  (tb->tb_path,
							   i))) {
					locked =
					    PATH_OFFSET_PBUFFER(tb->tb_path,
								i);
				}
			}
		}

		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
		     i++) {

			if (tb->lnum[i]) {

				if (tb->L[i]) {
					tb_buffer_sanity_check(tb->tb_sb,
							       tb->L[i],
							       "L", i);
					if (!clear_all_dirty_bits
					    (tb->tb_sb, tb->L[i]))
						locked = tb->L[i];
				}

				if (!locked && tb->FL[i]) {
					tb_buffer_sanity_check(tb->tb_sb,
							       tb->FL[i],
							       "FL", i);
					if (!clear_all_dirty_bits
					    (tb->tb_sb, tb->FL[i]))
						locked = tb->FL[i];
				}

				if (!locked && tb->CFL[i]) {
					tb_buffer_sanity_check(tb->tb_sb,
							       tb->CFL[i],
							       "CFL", i);
					if (!clear_all_dirty_bits
					    (tb->tb_sb, tb->CFL[i]))
						locked = tb->CFL[i];
				}

			}

			if (!locked && (tb->rnum[i])) {

				if (tb->R[i]) {
					tb_buffer_sanity_check(tb->tb_sb,
							       tb->R[i],
							       "R", i);
					if (!clear_all_dirty_bits
					    (tb->tb_sb, tb->R[i]))
						locked = tb->R[i];
				}

				if (!locked && tb->FR[i]) {
					tb_buffer_sanity_check(tb->tb_sb,
							       tb->FR[i],
							       "FR", i);
					if (!clear_all_dirty_bits
					    (tb->tb_sb, tb->FR[i]))
						locked = tb->FR[i];
				}

				if (!locked && tb->CFR[i]) {
					tb_buffer_sanity_check(tb->tb_sb,
							       tb->CFR[i],
							       "CFR", i);
					if (!clear_all_dirty_bits
					    (tb->tb_sb, tb->CFR[i]))
						locked = tb->CFR[i];
				}
			}
		}

		/*
		 * as far as I can tell, this is not required.  The FEB list
		 * seems to be full of newly allocated nodes, which will
		 * never be locked, dirty, or anything else.
		 * To be safe, I'm putting in the checks and waits in.
		 * For the moment, they are needed to keep the code in
		 * journal.c from complaining about the buffer.
		 * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
		 */
		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
			if (tb->FEB[i]) {
				if (!clear_all_dirty_bits
				    (tb->tb_sb, tb->FEB[i]))
					locked = tb->FEB[i];
			}
		}

		if (locked) {
			int depth;
#ifdef CONFIG_REISERFS_CHECK
			repeat_counter++;
			if ((repeat_counter % 10000) == 0) {
				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
						 "too many iterations waiting "
						 "for buffer to unlock "
						 "(%b)", locked);

				/* Don't loop forever.  Try to recover from possible error. */

				return (FILESYSTEM_CHANGED_TB(tb)) ?
				    REPEAT_SEARCH : CARRY_ON;
			}
#endif
			depth = reiserfs_write_unlock_nested(tb->tb_sb);
			__wait_on_buffer(locked);
			reiserfs_write_lock_nested(tb->tb_sb, depth);
			if (FILESYSTEM_CHANGED_TB(tb))
				return REPEAT_SEARCH;
		}

	} while (locked);

	return CARRY_ON;
}

/*
 * Prepare for balancing, that is
 *	get all necessary parents, and neighbors;
 *	analyze what and where should be moved;
 *	get sufficient number of new nodes;
 * Balancing will start only after all resources will be collected at a time.
 *
 * When ported to SMP kernels, only at the last moment after all needed nodes
 * are collected in cache, will the resources be locked using the usual
 * textbook ordered lock acquisition algorithms.  Note that ensuring that
 * this code neither write locks what it does not need to write lock nor locks
 * out of order will be a pain in the butt that could have been avoided.
 * Grumble grumble. -Hans
 *
 * fix is meant in the sense of render unchanging
 *
 * Latency might be improved by first gathering a list of what buffers
 * are needed and then getting as many of them in parallel as possible? -Hans
 *
 * Parameters:
 *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
 *	tb	tree_balance structure;
 *	inum	item number in S[h];
 *      pos_in_item - comment this if you can
 *      ins_ih	item head of item being inserted
 *	data	inserted item or data to be pasted
 * Returns:	1 - schedule occurred while the function worked;
 *	        0 - schedule didn't occur while the function worked;
 *             -1 - if no_disk_space
 */

int fix_nodes(int op_mode, struct tree_balance *tb,
	      struct item_head *ins_ih, const void *data)
{
	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
	int pos_in_item;

	/*
	 * we set wait_tb_buffers_run when we have to restore any dirty
	 * bits cleared during wait_tb_buffers_run
	 */
	int wait_tb_buffers_run = 0;
	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);

	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;

	pos_in_item = tb->tb_path->pos_in_item;

	tb->fs_gen = get_generation(tb->tb_sb);

	/*
	 * we prepare and log the super here so it will already be in the
	 * transaction when do_balance needs to change it.
	 * This way do_balance won't have to schedule when trying to prepare
	 * the super for logging
	 */
	reiserfs_prepare_for_journal(tb->tb_sb,
				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
	journal_mark_dirty(tb->transaction_handle,
			   SB_BUFFER_WITH_SB(tb->tb_sb));
	if (FILESYSTEM_CHANGED_TB(tb))
		return REPEAT_SEARCH;

	/* if it possible in indirect_to_direct conversion */
	if (buffer_locked(tbS0)) {
		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
		__wait_on_buffer(tbS0);
		reiserfs_write_lock_nested(tb->tb_sb, depth);
		if (FILESYSTEM_CHANGED_TB(tb))
			return REPEAT_SEARCH;
	}
#ifdef CONFIG_REISERFS_CHECK
	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
		print_cur_tb("fix_nodes");
		reiserfs_panic(tb->tb_sb, "PAP-8305",
			       "there is pending do_balance");
	}

	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
			       "not uptodate at the beginning of fix_nodes "
			       "or not in tree (mode %c)",
			       tbS0, tbS0, op_mode);

	/* Check parameters. */
	switch (op_mode) {
	case M_INSERT:
		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
				       "item number %d (in S0 - %d) in case "
				       "of insert", item_num,
				       B_NR_ITEMS(tbS0));
		break;
	case M_PASTE:
	case M_DELETE:
	case M_CUT:
		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
			print_block(tbS0, 0, -1, -1);
			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
				       "item number(%d); mode = %c "
				       "insert_size = %d",
				       item_num, op_mode,
				       tb->insert_size[0]);
		}
		break;
	default:
		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
			       "of operation");
	}
#endif

	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
		/* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
		return REPEAT_SEARCH;

	/* Starting from the leaf level; for all levels h of the tree. */
	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
		ret = get_direct_parent(tb, h);
		if (ret != CARRY_ON)
			goto repeat;

		ret = check_balance(op_mode, tb, h, item_num,
				    pos_in_item, ins_ih, data);
		if (ret != CARRY_ON) {
			if (ret == NO_BALANCING_NEEDED) {
				/* No balancing for higher levels needed. */
				ret = get_neighbors(tb, h);
				if (ret != CARRY_ON)
					goto repeat;
				if (h != MAX_HEIGHT - 1)
					tb->insert_size[h + 1] = 0;
				/*
				 * ok, analysis and resource gathering
				 * are complete
				 */
				break;
			}
			goto repeat;
		}

		ret = get_neighbors(tb, h);
		if (ret != CARRY_ON)
			goto repeat;

		/*
		 * No disk space, or schedule occurred and analysis may be
		 * invalid and needs to be redone.
		 */
		ret = get_empty_nodes(tb, h);
		if (ret != CARRY_ON)
			goto repeat;

		/*
		 * We have a positive insert size but no nodes exist on this
		 * level, this means that we are creating a new root.
		 */
		if (!PATH_H_PBUFFER(tb->tb_path, h)) {

			RFALSE(tb->blknum[h] != 1,
			       "PAP-8350: creating new empty root");

			if (h < MAX_HEIGHT - 1)
				tb->insert_size[h + 1] = 0;
		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
			/*
			 * The tree needs to be grown, so this node S[h]
			 * which is the root node is split into two nodes,
			 * and a new node (S[h+1]) will be created to
			 * become the root node.
			 */
			if (tb->blknum[h] > 1) {

				RFALSE(h == MAX_HEIGHT - 1,
				       "PAP-8355: attempt to create too high of a tree");

				tb->insert_size[h + 1] =
				    (DC_SIZE +
				     KEY_SIZE) * (tb->blknum[h] - 1) +
				    DC_SIZE;
			} else if (h < MAX_HEIGHT - 1)
				tb->insert_size[h + 1] = 0;
		} else
			tb->insert_size[h + 1] =
			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
	}

	ret = wait_tb_buffers_until_unlocked(tb);
	if (ret == CARRY_ON) {
		if (FILESYSTEM_CHANGED_TB(tb)) {
			wait_tb_buffers_run = 1;
			ret = REPEAT_SEARCH;
			goto repeat;
		} else {
			return CARRY_ON;
		}
	} else {
		wait_tb_buffers_run = 1;
		goto repeat;
	}

repeat:
	/*
	 * fix_nodes was unable to perform its calculation due to
	 * filesystem got changed under us, lack of free disk space or i/o
	 * failure. If the first is the case - the search will be
	 * repeated. For now - free all resources acquired so far except
	 * for the new allocated nodes
	 */
	{
		int i;

		/* Release path buffers. */
		if (wait_tb_buffers_run) {
			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
		} else {
			pathrelse(tb->tb_path);
		}
		/* brelse all resources collected for balancing */
		for (i = 0; i < MAX_HEIGHT; i++) {
			if (wait_tb_buffers_run) {
				reiserfs_restore_prepared_buffer(tb->tb_sb,
								 tb->L[i]);
				reiserfs_restore_prepared_buffer(tb->tb_sb,
								 tb->R[i]);
				reiserfs_restore_prepared_buffer(tb->tb_sb,
								 tb->FL[i]);
				reiserfs_restore_prepared_buffer(tb->tb_sb,
								 tb->FR[i]);
				reiserfs_restore_prepared_buffer(tb->tb_sb,
								 tb->
								 CFL[i]);
				reiserfs_restore_prepared_buffer(tb->tb_sb,
								 tb->
								 CFR[i]);
			}

			brelse(tb->L[i]);
			brelse(tb->R[i]);
			brelse(tb->FL[i]);
			brelse(tb->FR[i]);
			brelse(tb->CFL[i]);
			brelse(tb->CFR[i]);

			tb->L[i] = NULL;
			tb->R[i] = NULL;
			tb->FL[i] = NULL;
			tb->FR[i] = NULL;
			tb->CFL[i] = NULL;
			tb->CFR[i] = NULL;
		}

		if (wait_tb_buffers_run) {
			for (i = 0; i < MAX_FEB_SIZE; i++) {
				if (tb->FEB[i])
					reiserfs_restore_prepared_buffer
					    (tb->tb_sb, tb->FEB[i]);
			}
		}
		return ret;
	}

}

void unfix_nodes(struct tree_balance *tb)
{
	int i;

	/* Release path buffers. */
	pathrelse_and_restore(tb->tb_sb, tb->tb_path);

	/* brelse all resources collected for balancing */
	for (i = 0; i < MAX_HEIGHT; i++) {
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);

		brelse(tb->L[i]);
		brelse(tb->R[i]);
		brelse(tb->FL[i]);
		brelse(tb->FR[i]);
		brelse(tb->CFL[i]);
		brelse(tb->CFR[i]);
	}

	/* deal with list of allocated (used and unused) nodes */
	for (i = 0; i < MAX_FEB_SIZE; i++) {
		if (tb->FEB[i]) {
			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
			/*
			 * de-allocated block which was not used by
			 * balancing and bforget about buffer for it
			 */
			brelse(tb->FEB[i]);
			reiserfs_free_block(tb->transaction_handle, NULL,
					    blocknr, 0);
		}
		if (tb->used[i]) {
			/* release used as new nodes including a new root */
			brelse(tb->used[i]);
		}
	}

	kfree(tb->vn_buf);

}