summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-bitbang-txrx.h
blob: 2dcbe166df63e31d782be489a1d59a65b3165e6e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Mix this utility code with some glue code to get one of several types of
 * simple SPI master driver.  Two do polled word-at-a-time I/O:
 *
 *   -	GPIO/parport bitbangers.  Provide chipselect() and txrx_word[](),
 *	expanding the per-word routines from the inline templates below.
 *
 *   -	Drivers for controllers resembling bare shift registers.  Provide
 *	chipselect() and txrx_word[](), with custom setup()/cleanup() methods
 *	that use your controller's clock and chipselect registers.
 *
 * Some hardware works well with requests at spi_transfer scope:
 *
 *   -	Drivers leveraging smarter hardware, with fifos or DMA; or for half
 *	duplex (MicroWire) controllers.  Provide chipselect() and txrx_bufs(),
 *	and custom setup()/cleanup() methods.
 */

/*
 * The code that knows what GPIO pins do what should have declared four
 * functions, ideally as inlines, before including this header:
 *
 *  void setsck(struct spi_device *, int is_on);
 *  void setmosi(struct spi_device *, int is_on);
 *  int getmiso(struct spi_device *);
 *  void spidelay(unsigned);
 *
 * setsck()'s is_on parameter is a zero/nonzero boolean.
 *
 * setmosi()'s is_on parameter is a zero/nonzero boolean.
 *
 * getmiso() is required to return 0 or 1 only. Any other value is invalid
 * and will result in improper operation.
 *
 * A non-inlined routine would call bitbang_txrx_*() routines.  The
 * main loop could easily compile down to a handful of instructions,
 * especially if the delay is a NOP (to run at peak speed).
 *
 * Since this is software, the timings may not be exactly what your board's
 * chips need ... there may be several reasons you'd need to tweak timings
 * in these routines, not just to make it faster or slower to match a
 * particular CPU clock rate.
 *
 * ToDo: Maybe the bitrev macros can be used to improve the code?
 */

static inline u32
bitbang_txrx_be_cpha0(struct spi_device *spi,
		unsigned nsecs, unsigned cpol, unsigned flags,
		u32 word, u8 bits)
{
	/* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */

	u32 oldbit = (!(word & (1<<(bits-1)))) << 31;
	/* clock starts at inactive polarity */
	for (word <<= (32 - bits); likely(bits); bits--) {

		/* setup MSB (to slave) on trailing edge */
		if ((flags & SPI_MASTER_NO_TX) == 0) {
			if ((word & (1 << 31)) != oldbit) {
				setmosi(spi, word & (1 << 31));
				oldbit = word & (1 << 31);
			}
		}
		spidelay(nsecs);	/* T(setup) */

		setsck(spi, !cpol);
		spidelay(nsecs);

		/* sample MSB (from slave) on leading edge */
		word <<= 1;
		if ((flags & SPI_MASTER_NO_RX) == 0)
			word |= getmiso(spi);
		setsck(spi, cpol);
	}
	return word;
}

static inline u32
bitbang_txrx_be_cpha1(struct spi_device *spi,
		unsigned nsecs, unsigned cpol, unsigned flags,
		u32 word, u8 bits)
{
	/* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */

	u32 oldbit = (!(word & (1<<(bits-1)))) << 31;
	/* clock starts at inactive polarity */
	for (word <<= (32 - bits); likely(bits); bits--) {

		/* setup MSB (to slave) on leading edge */
		setsck(spi, !cpol);
		if ((flags & SPI_MASTER_NO_TX) == 0) {
			if ((word & (1 << 31)) != oldbit) {
				setmosi(spi, word & (1 << 31));
				oldbit = word & (1 << 31);
			}
		}
		spidelay(nsecs); /* T(setup) */

		setsck(spi, cpol);
		spidelay(nsecs);

		/* sample MSB (from slave) on trailing edge */
		word <<= 1;
		if ((flags & SPI_MASTER_NO_RX) == 0)
			word |= getmiso(spi);
	}
	return word;
}

static inline u32
bitbang_txrx_le_cpha0(struct spi_device *spi,
		unsigned int nsecs, unsigned int cpol, unsigned int flags,
		u32 word, u8 bits)
{
	/* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */

	u8 rxbit = bits - 1;
	u32 oldbit = !(word & 1);
	/* clock starts at inactive polarity */
	for (; likely(bits); bits--) {

		/* setup LSB (to slave) on trailing edge */
		if ((flags & SPI_MASTER_NO_TX) == 0) {
			if ((word & 1) != oldbit) {
				setmosi(spi, word & 1);
				oldbit = word & 1;
			}
		}
		spidelay(nsecs);	/* T(setup) */

		setsck(spi, !cpol);
		spidelay(nsecs);

		/* sample LSB (from slave) on leading edge */
		word >>= 1;
		if ((flags & SPI_MASTER_NO_RX) == 0)
			word |= getmiso(spi) << rxbit;
		setsck(spi, cpol);
	}
	return word;
}

static inline u32
bitbang_txrx_le_cpha1(struct spi_device *spi,
		unsigned int nsecs, unsigned int cpol, unsigned int flags,
		u32 word, u8 bits)
{
	/* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */

	u8 rxbit = bits - 1;
	u32 oldbit = !(word & 1);
	/* clock starts at inactive polarity */
	for (; likely(bits); bits--) {

		/* setup LSB (to slave) on leading edge */
		setsck(spi, !cpol);
		if ((flags & SPI_MASTER_NO_TX) == 0) {
			if ((word & 1) != oldbit) {
				setmosi(spi, word & 1);
				oldbit = word & 1;
			}
		}
		spidelay(nsecs); /* T(setup) */

		setsck(spi, cpol);
		spidelay(nsecs);

		/* sample LSB (from slave) on trailing edge */
		word >>= 1;
		if ((flags & SPI_MASTER_NO_RX) == 0)
			word |= getmiso(spi) << rxbit;
	}
	return word;
}