1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Device tree based initialization code for reserved memory.
*
* Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
* Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
* http://www.samsung.com
* Author: Marek Szyprowski <m.szyprowski@samsung.com>
* Author: Josh Cartwright <joshc@codeaurora.org>
*/
#define pr_fmt(fmt) "OF: reserved mem: " fmt
#include <linux/err.h>
#include <linux/libfdt.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/mm.h>
#include <linux/sizes.h>
#include <linux/of_reserved_mem.h>
#include <linux/sort.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#include <linux/kmemleak.h>
#include <linux/cma.h>
#include "of_private.h"
static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
static int reserved_mem_count;
static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
phys_addr_t *res_base)
{
phys_addr_t base;
int err = 0;
end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
align = !align ? SMP_CACHE_BYTES : align;
base = memblock_phys_alloc_range(size, align, start, end);
if (!base)
return -ENOMEM;
*res_base = base;
if (nomap) {
err = memblock_mark_nomap(base, size);
if (err)
memblock_phys_free(base, size);
}
kmemleak_ignore_phys(base);
return err;
}
/*
* alloc_reserved_mem_array() - allocate memory for the reserved_mem
* array using memblock
*
* This function is used to allocate memory for the reserved_mem
* array according to the total number of reserved memory regions
* defined in the DT.
* After the new array is allocated, the information stored in
* the initial static array is copied over to this new array and
* the new array is used from this point on.
*/
static void __init alloc_reserved_mem_array(void)
{
struct reserved_mem *new_array;
size_t alloc_size, copy_size, memset_size;
alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
if (alloc_size == SIZE_MAX) {
pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
return;
}
new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
if (!new_array) {
pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
return;
}
copy_size = array_size(reserved_mem_count, sizeof(*new_array));
if (copy_size == SIZE_MAX) {
memblock_free(new_array, alloc_size);
total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
return;
}
memset_size = alloc_size - copy_size;
memcpy(new_array, reserved_mem, copy_size);
memset(new_array + reserved_mem_count, 0, memset_size);
reserved_mem = new_array;
}
static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
/*
* fdt_reserved_mem_save_node() - save fdt node for second pass initialization
*/
static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
phys_addr_t base, phys_addr_t size)
{
struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
if (reserved_mem_count == total_reserved_mem_cnt) {
pr_err("not enough space for all defined regions.\n");
return;
}
rmem->fdt_node = node;
rmem->name = uname;
rmem->base = base;
rmem->size = size;
/* Call the region specific initialization function */
fdt_init_reserved_mem_node(rmem);
reserved_mem_count++;
return;
}
static int __init early_init_dt_reserve_memory(phys_addr_t base,
phys_addr_t size, bool nomap)
{
if (nomap) {
/*
* If the memory is already reserved (by another region), we
* should not allow it to be marked nomap, but don't worry
* if the region isn't memory as it won't be mapped.
*/
if (memblock_overlaps_region(&memblock.memory, base, size) &&
memblock_is_region_reserved(base, size))
return -EBUSY;
return memblock_mark_nomap(base, size);
}
return memblock_reserve(base, size);
}
/*
* __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
*/
static int __init __reserved_mem_reserve_reg(unsigned long node,
const char *uname)
{
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
phys_addr_t base, size;
int len;
const __be32 *prop;
bool nomap;
prop = of_get_flat_dt_prop(node, "reg", &len);
if (!prop)
return -ENOENT;
if (len && len % t_len != 0) {
pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
uname);
return -EINVAL;
}
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
while (len >= t_len) {
base = dt_mem_next_cell(dt_root_addr_cells, &prop);
size = dt_mem_next_cell(dt_root_size_cells, &prop);
if (size &&
early_init_dt_reserve_memory(base, size, nomap) == 0)
pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
uname, &base, (unsigned long)(size / SZ_1M));
else
pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
uname, &base, (unsigned long)(size / SZ_1M));
len -= t_len;
}
return 0;
}
/*
* __reserved_mem_check_root() - check if #size-cells, #address-cells provided
* in /reserved-memory matches the values supported by the current implementation,
* also check if ranges property has been provided
*/
static int __init __reserved_mem_check_root(unsigned long node)
{
const __be32 *prop;
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
return -EINVAL;
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
return -EINVAL;
prop = of_get_flat_dt_prop(node, "ranges", NULL);
if (!prop)
return -EINVAL;
return 0;
}
static void __init __rmem_check_for_overlap(void);
/**
* fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
* reserved memory regions.
*
* This function is used to scan through the DT and store the
* information for the reserved memory regions that are defined using
* the "reg" property. The region node number, name, base address, and
* size are all stored in the reserved_mem array by calling the
* fdt_reserved_mem_save_node() function.
*/
void __init fdt_scan_reserved_mem_reg_nodes(void)
{
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
const void *fdt = initial_boot_params;
phys_addr_t base, size;
const __be32 *prop;
int node, child;
int len;
if (!fdt)
return;
node = fdt_path_offset(fdt, "/reserved-memory");
if (node < 0) {
pr_info("Reserved memory: No reserved-memory node in the DT\n");
return;
}
/* Attempt dynamic allocation of a new reserved_mem array */
alloc_reserved_mem_array();
if (__reserved_mem_check_root(node)) {
pr_err("Reserved memory: unsupported node format, ignoring\n");
return;
}
fdt_for_each_subnode(child, fdt, node) {
const char *uname;
prop = of_get_flat_dt_prop(child, "reg", &len);
if (!prop)
continue;
if (!of_fdt_device_is_available(fdt, child))
continue;
uname = fdt_get_name(fdt, child, NULL);
if (len && len % t_len != 0) {
pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
uname);
continue;
}
base = dt_mem_next_cell(dt_root_addr_cells, &prop);
size = dt_mem_next_cell(dt_root_size_cells, &prop);
if (size)
fdt_reserved_mem_save_node(child, uname, base, size);
}
/* check for overlapping reserved regions */
__rmem_check_for_overlap();
}
static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
/*
* fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
*/
int __init fdt_scan_reserved_mem(void)
{
int node, child;
int dynamic_nodes_cnt = 0, count = 0;
int dynamic_nodes[MAX_RESERVED_REGIONS];
const void *fdt = initial_boot_params;
node = fdt_path_offset(fdt, "/reserved-memory");
if (node < 0)
return -ENODEV;
if (__reserved_mem_check_root(node) != 0) {
pr_err("Reserved memory: unsupported node format, ignoring\n");
return -EINVAL;
}
fdt_for_each_subnode(child, fdt, node) {
const char *uname;
int err;
if (!of_fdt_device_is_available(fdt, child))
continue;
uname = fdt_get_name(fdt, child, NULL);
err = __reserved_mem_reserve_reg(child, uname);
if (!err)
count++;
/*
* Save the nodes for the dynamically-placed regions
* into an array which will be used for allocation right
* after all the statically-placed regions are reserved
* or marked as no-map. This is done to avoid dynamically
* allocating from one of the statically-placed regions.
*/
if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
dynamic_nodes[dynamic_nodes_cnt] = child;
dynamic_nodes_cnt++;
}
}
for (int i = 0; i < dynamic_nodes_cnt; i++) {
const char *uname;
int err;
child = dynamic_nodes[i];
uname = fdt_get_name(fdt, child, NULL);
err = __reserved_mem_alloc_size(child, uname);
if (!err)
count++;
}
total_reserved_mem_cnt = count;
return 0;
}
/*
* __reserved_mem_alloc_in_range() - allocate reserved memory described with
* 'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
* reserved regions to keep the reserved memory contiguous if possible.
*/
static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
phys_addr_t *res_base)
{
bool prev_bottom_up = memblock_bottom_up();
bool bottom_up = false, top_down = false;
int ret, i;
for (i = 0; i < reserved_mem_count; i++) {
struct reserved_mem *rmem = &reserved_mem[i];
/* Skip regions that were not reserved yet */
if (rmem->size == 0)
continue;
/*
* If range starts next to an existing reservation, use bottom-up:
* |....RRRR................RRRRRRRR..............|
* --RRRR------
*/
if (start >= rmem->base && start <= (rmem->base + rmem->size))
bottom_up = true;
/*
* If range ends next to an existing reservation, use top-down:
* |....RRRR................RRRRRRRR..............|
* -------RRRR-----
*/
if (end >= rmem->base && end <= (rmem->base + rmem->size))
top_down = true;
}
/* Change setting only if either bottom-up or top-down was selected */
if (bottom_up != top_down)
memblock_set_bottom_up(bottom_up);
ret = early_init_dt_alloc_reserved_memory_arch(size, align,
start, end, nomap, res_base);
/* Restore old setting if needed */
if (bottom_up != top_down)
memblock_set_bottom_up(prev_bottom_up);
return ret;
}
/*
* __reserved_mem_alloc_size() - allocate reserved memory described by
* 'size', 'alignment' and 'alloc-ranges' properties.
*/
static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
{
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
phys_addr_t start = 0, end = 0;
phys_addr_t base = 0, align = 0, size;
int len;
const __be32 *prop;
bool nomap;
int ret;
prop = of_get_flat_dt_prop(node, "size", &len);
if (!prop)
return -EINVAL;
if (len != dt_root_size_cells * sizeof(__be32)) {
pr_err("invalid size property in '%s' node.\n", uname);
return -EINVAL;
}
size = dt_mem_next_cell(dt_root_size_cells, &prop);
prop = of_get_flat_dt_prop(node, "alignment", &len);
if (prop) {
if (len != dt_root_addr_cells * sizeof(__be32)) {
pr_err("invalid alignment property in '%s' node.\n",
uname);
return -EINVAL;
}
align = dt_mem_next_cell(dt_root_addr_cells, &prop);
}
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
/* Need adjust the alignment to satisfy the CMA requirement */
if (IS_ENABLED(CONFIG_CMA)
&& of_flat_dt_is_compatible(node, "shared-dma-pool")
&& of_get_flat_dt_prop(node, "reusable", NULL)
&& !nomap)
align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
if (prop) {
if (len % t_len != 0) {
pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
uname);
return -EINVAL;
}
base = 0;
while (len > 0) {
start = dt_mem_next_cell(dt_root_addr_cells, &prop);
end = start + dt_mem_next_cell(dt_root_size_cells,
&prop);
ret = __reserved_mem_alloc_in_range(size, align,
start, end, nomap, &base);
if (ret == 0) {
pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
uname, &base,
(unsigned long)(size / SZ_1M));
break;
}
len -= t_len;
}
} else {
ret = early_init_dt_alloc_reserved_memory_arch(size, align,
0, 0, nomap, &base);
if (ret == 0)
pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
uname, &base, (unsigned long)(size / SZ_1M));
}
if (base == 0) {
pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
uname, (unsigned long)(size / SZ_1M));
return -ENOMEM;
}
/* Save region in the reserved_mem array */
fdt_reserved_mem_save_node(node, uname, base, size);
return 0;
}
static const struct of_device_id __rmem_of_table_sentinel
__used __section("__reservedmem_of_table_end");
/*
* __reserved_mem_init_node() - call region specific reserved memory init code
*/
static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
{
extern const struct of_device_id __reservedmem_of_table[];
const struct of_device_id *i;
int ret = -ENOENT;
for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
reservedmem_of_init_fn initfn = i->data;
const char *compat = i->compatible;
if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
continue;
ret = initfn(rmem);
if (ret == 0) {
pr_info("initialized node %s, compatible id %s\n",
rmem->name, compat);
break;
}
}
return ret;
}
static int __init __rmem_cmp(const void *a, const void *b)
{
const struct reserved_mem *ra = a, *rb = b;
if (ra->base < rb->base)
return -1;
if (ra->base > rb->base)
return 1;
/*
* Put the dynamic allocations (address == 0, size == 0) before static
* allocations at address 0x0 so that overlap detection works
* correctly.
*/
if (ra->size < rb->size)
return -1;
if (ra->size > rb->size)
return 1;
if (ra->fdt_node < rb->fdt_node)
return -1;
if (ra->fdt_node > rb->fdt_node)
return 1;
return 0;
}
static void __init __rmem_check_for_overlap(void)
{
int i;
if (reserved_mem_count < 2)
return;
sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
__rmem_cmp, NULL);
for (i = 0; i < reserved_mem_count - 1; i++) {
struct reserved_mem *this, *next;
this = &reserved_mem[i];
next = &reserved_mem[i + 1];
if (this->base + this->size > next->base) {
phys_addr_t this_end, next_end;
this_end = this->base + this->size;
next_end = next->base + next->size;
pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
this->name, &this->base, &this_end,
next->name, &next->base, &next_end);
}
}
}
/**
* fdt_init_reserved_mem_node() - Initialize a reserved memory region
* @rmem: reserved_mem struct of the memory region to be initialized.
*
* This function is used to call the region specific initialization
* function for a reserved memory region.
*/
static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
{
unsigned long node = rmem->fdt_node;
int err = 0;
bool nomap;
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
err = __reserved_mem_init_node(rmem);
if (err != 0 && err != -ENOENT) {
pr_info("node %s compatible matching fail\n", rmem->name);
if (nomap)
memblock_clear_nomap(rmem->base, rmem->size);
else
memblock_phys_free(rmem->base, rmem->size);
} else {
phys_addr_t end = rmem->base + rmem->size - 1;
bool reusable =
(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
nomap ? "nomap" : "map",
reusable ? "reusable" : "non-reusable",
rmem->name ? rmem->name : "unknown");
}
}
struct rmem_assigned_device {
struct device *dev;
struct reserved_mem *rmem;
struct list_head list;
};
static LIST_HEAD(of_rmem_assigned_device_list);
static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
/**
* of_reserved_mem_device_init_by_idx() - assign reserved memory region to
* given device
* @dev: Pointer to the device to configure
* @np: Pointer to the device_node with 'reserved-memory' property
* @idx: Index of selected region
*
* This function assigns respective DMA-mapping operations based on reserved
* memory region specified by 'memory-region' property in @np node to the @dev
* device. When driver needs to use more than one reserved memory region, it
* should allocate child devices and initialize regions by name for each of
* child device.
*
* Returns error code or zero on success.
*/
int of_reserved_mem_device_init_by_idx(struct device *dev,
struct device_node *np, int idx)
{
struct rmem_assigned_device *rd;
struct device_node *target;
struct reserved_mem *rmem;
int ret;
if (!np || !dev)
return -EINVAL;
target = of_parse_phandle(np, "memory-region", idx);
if (!target)
return -ENODEV;
if (!of_device_is_available(target)) {
of_node_put(target);
return 0;
}
rmem = of_reserved_mem_lookup(target);
of_node_put(target);
if (!rmem || !rmem->ops || !rmem->ops->device_init)
return -EINVAL;
rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
if (!rd)
return -ENOMEM;
ret = rmem->ops->device_init(rmem, dev);
if (ret == 0) {
rd->dev = dev;
rd->rmem = rmem;
mutex_lock(&of_rmem_assigned_device_mutex);
list_add(&rd->list, &of_rmem_assigned_device_list);
mutex_unlock(&of_rmem_assigned_device_mutex);
dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
} else {
kfree(rd);
}
return ret;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
/**
* of_reserved_mem_device_init_by_name() - assign named reserved memory region
* to given device
* @dev: pointer to the device to configure
* @np: pointer to the device node with 'memory-region' property
* @name: name of the selected memory region
*
* Returns: 0 on success or a negative error-code on failure.
*/
int of_reserved_mem_device_init_by_name(struct device *dev,
struct device_node *np,
const char *name)
{
int idx = of_property_match_string(np, "memory-region-names", name);
return of_reserved_mem_device_init_by_idx(dev, np, idx);
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
/**
* of_reserved_mem_device_release() - release reserved memory device structures
* @dev: Pointer to the device to deconfigure
*
* This function releases structures allocated for memory region handling for
* the given device.
*/
void of_reserved_mem_device_release(struct device *dev)
{
struct rmem_assigned_device *rd, *tmp;
LIST_HEAD(release_list);
mutex_lock(&of_rmem_assigned_device_mutex);
list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
if (rd->dev == dev)
list_move_tail(&rd->list, &release_list);
}
mutex_unlock(&of_rmem_assigned_device_mutex);
list_for_each_entry_safe(rd, tmp, &release_list, list) {
if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
rd->rmem->ops->device_release(rd->rmem, dev);
kfree(rd);
}
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
/**
* of_reserved_mem_lookup() - acquire reserved_mem from a device node
* @np: node pointer of the desired reserved-memory region
*
* This function allows drivers to acquire a reference to the reserved_mem
* struct based on a device node handle.
*
* Returns a reserved_mem reference, or NULL on error.
*/
struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
{
const char *name;
int i;
if (!np->full_name)
return NULL;
name = kbasename(np->full_name);
for (i = 0; i < reserved_mem_count; i++)
if (!strcmp(reserved_mem[i].name, name))
return &reserved_mem[i];
return NULL;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
|