summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/intel-nand-controller.c
blob: d4a0987e93ace7f0be0b75d249215821f9042a66 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (c) 2020 Intel Corporation. */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand.h>

#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/units.h>
#include <asm/unaligned.h>

#define EBU_CLC			0x000
#define EBU_CLC_RST		0x00000000u

#define EBU_ADDR_SEL(n)		(0x020 + (n) * 4)
/* 5 bits 26:22 included for comparison in the ADDR_SELx */
#define EBU_ADDR_MASK(x)	((x) << 4)
#define EBU_ADDR_SEL_REGEN	0x1

#define EBU_BUSCON(n)		(0x060 + (n) * 4)
#define EBU_BUSCON_CMULT_V4	0x1
#define EBU_BUSCON_RECOVC(n)	((n) << 2)
#define EBU_BUSCON_HOLDC(n)	((n) << 4)
#define EBU_BUSCON_WAITRDC(n)	((n) << 6)
#define EBU_BUSCON_WAITWRC(n)	((n) << 8)
#define EBU_BUSCON_BCGEN_CS	0x0
#define EBU_BUSCON_SETUP_EN	BIT(22)
#define EBU_BUSCON_ALEC		0xC000

#define EBU_CON			0x0B0
#define EBU_CON_NANDM_EN	BIT(0)
#define EBU_CON_NANDM_DIS	0x0
#define EBU_CON_CSMUX_E_EN	BIT(1)
#define EBU_CON_ALE_P_LOW	BIT(2)
#define EBU_CON_CLE_P_LOW	BIT(3)
#define EBU_CON_CS_P_LOW	BIT(4)
#define EBU_CON_SE_P_LOW	BIT(5)
#define EBU_CON_WP_P_LOW	BIT(6)
#define EBU_CON_PRE_P_LOW	BIT(7)
#define EBU_CON_IN_CS_S(n)	((n) << 8)
#define EBU_CON_OUT_CS_S(n)	((n) << 10)
#define EBU_CON_LAT_EN_CS_P	((0x3D) << 18)

#define EBU_WAIT		0x0B4
#define EBU_WAIT_RDBY		BIT(0)
#define EBU_WAIT_WR_C		BIT(3)

#define HSNAND_CTL1		0x110
#define HSNAND_CTL1_ADDR_SHIFT	24

#define HSNAND_CTL2		0x114
#define HSNAND_CTL2_ADDR_SHIFT	8
#define HSNAND_CTL2_CYC_N_V5	(0x2 << 16)

#define HSNAND_INT_MSK_CTL	0x124
#define HSNAND_INT_MSK_CTL_WR_C	BIT(4)

#define HSNAND_INT_STA		0x128
#define HSNAND_INT_STA_WR_C	BIT(4)

#define HSNAND_CTL		0x130
#define HSNAND_CTL_ENABLE_ECC	BIT(0)
#define HSNAND_CTL_GO		BIT(2)
#define HSNAND_CTL_CE_SEL_CS(n)	BIT(3 + (n))
#define HSNAND_CTL_RW_READ	0x0
#define HSNAND_CTL_RW_WRITE	BIT(10)
#define HSNAND_CTL_ECC_OFF_V8TH	BIT(11)
#define HSNAND_CTL_CKFF_EN	0x0
#define HSNAND_CTL_MSG_EN	BIT(17)

#define HSNAND_PARA0		0x13c
#define HSNAND_PARA0_PAGE_V8192	0x3
#define HSNAND_PARA0_PIB_V256	(0x3 << 4)
#define HSNAND_PARA0_BYP_EN_NP	0x0
#define HSNAND_PARA0_BYP_DEC_NP	0x0
#define HSNAND_PARA0_TYPE_ONFI	BIT(18)
#define HSNAND_PARA0_ADEP_EN	BIT(21)

#define HSNAND_CMSG_0		0x150
#define HSNAND_CMSG_1		0x154

#define HSNAND_ALE_OFFS		BIT(2)
#define HSNAND_CLE_OFFS		BIT(3)
#define HSNAND_CS_OFFS		BIT(4)

#define HSNAND_ECC_OFFSET	0x008

#define MAX_CS	2

#define USEC_PER_SEC	1000000L

struct ebu_nand_cs {
	void __iomem *chipaddr;
	u32 addr_sel;
};

struct ebu_nand_controller {
	struct nand_controller controller;
	struct nand_chip chip;
	struct device *dev;
	void __iomem *ebu;
	void __iomem *hsnand;
	struct dma_chan *dma_tx;
	struct dma_chan *dma_rx;
	struct completion dma_access_complete;
	struct clk *clk;
	u32 nd_para0;
	u8 cs_num;
	struct ebu_nand_cs cs[MAX_CS];
};

static inline struct ebu_nand_controller *nand_to_ebu(struct nand_chip *chip)
{
	return container_of(chip, struct ebu_nand_controller, chip);
}

static int ebu_nand_waitrdy(struct nand_chip *chip, int timeout_ms)
{
	struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
	u32 status;

	return readl_poll_timeout(ctrl->ebu + EBU_WAIT, status,
				  (status & EBU_WAIT_RDBY) ||
				  (status & EBU_WAIT_WR_C), 20, timeout_ms);
}

static u8 ebu_nand_readb(struct nand_chip *chip)
{
	struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
	u8 cs_num = ebu_host->cs_num;
	u8 val;

	val = readb(ebu_host->cs[cs_num].chipaddr + HSNAND_CS_OFFS);
	ebu_nand_waitrdy(chip, 1000);
	return val;
}

static void ebu_nand_writeb(struct nand_chip *chip, u32 offset, u8 value)
{
	struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
	u8 cs_num = ebu_host->cs_num;

	writeb(value, ebu_host->cs[cs_num].chipaddr + offset);
	ebu_nand_waitrdy(chip, 1000);
}

static void ebu_read_buf(struct nand_chip *chip, u_char *buf, unsigned int len)
{
	int i;

	for (i = 0; i < len; i++)
		buf[i] = ebu_nand_readb(chip);
}

static void ebu_write_buf(struct nand_chip *chip, const u_char *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		ebu_nand_writeb(chip, HSNAND_CS_OFFS, buf[i]);
}

static void ebu_nand_disable(struct nand_chip *chip)
{
	struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);

	writel(0, ebu_host->ebu + EBU_CON);
}

static void ebu_select_chip(struct nand_chip *chip)
{
	struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
	void __iomem *nand_con = ebu_host->ebu + EBU_CON;
	u32 cs = ebu_host->cs_num;

	writel(EBU_CON_NANDM_EN | EBU_CON_CSMUX_E_EN | EBU_CON_CS_P_LOW |
	       EBU_CON_SE_P_LOW | EBU_CON_WP_P_LOW | EBU_CON_PRE_P_LOW |
	       EBU_CON_IN_CS_S(cs) | EBU_CON_OUT_CS_S(cs) |
	       EBU_CON_LAT_EN_CS_P, nand_con);
}

static int ebu_nand_set_timings(struct nand_chip *chip, int csline,
				const struct nand_interface_config *conf)
{
	struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
	unsigned int rate = clk_get_rate(ctrl->clk) / HZ_PER_MHZ;
	unsigned int period = DIV_ROUND_UP(USEC_PER_SEC, rate);
	const struct nand_sdr_timings *timings;
	u32 trecov, thold, twrwait, trdwait;
	u32 reg = 0;

	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return PTR_ERR(timings);

	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	trecov = DIV_ROUND_UP(max(timings->tREA_max, timings->tREH_min),
			      period);
	reg |= EBU_BUSCON_RECOVC(trecov);

	thold = DIV_ROUND_UP(max(timings->tDH_min, timings->tDS_min), period);
	reg |= EBU_BUSCON_HOLDC(thold);

	trdwait = DIV_ROUND_UP(max(timings->tRC_min, timings->tREH_min),
			       period);
	reg |= EBU_BUSCON_WAITRDC(trdwait);

	twrwait = DIV_ROUND_UP(max(timings->tWC_min, timings->tWH_min), period);
	reg |= EBU_BUSCON_WAITWRC(twrwait);

	reg |= EBU_BUSCON_CMULT_V4 | EBU_BUSCON_BCGEN_CS | EBU_BUSCON_ALEC |
		EBU_BUSCON_SETUP_EN;

	writel(reg, ctrl->ebu + EBU_BUSCON(ctrl->cs_num));

	return 0;
}

static int ebu_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = HSNAND_ECC_OFFSET;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int ebu_nand_ooblayout_free(struct mtd_info *mtd, int section,
				   struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + HSNAND_ECC_OFFSET;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops ebu_nand_ooblayout_ops = {
	.ecc = ebu_nand_ooblayout_ecc,
	.free = ebu_nand_ooblayout_free,
};

static void ebu_dma_rx_callback(void *cookie)
{
	struct ebu_nand_controller *ebu_host = cookie;

	dmaengine_terminate_async(ebu_host->dma_rx);

	complete(&ebu_host->dma_access_complete);
}

static void ebu_dma_tx_callback(void *cookie)
{
	struct ebu_nand_controller *ebu_host = cookie;

	dmaengine_terminate_async(ebu_host->dma_tx);

	complete(&ebu_host->dma_access_complete);
}

static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir,
			 const u8 *buf, u32 len)
{
	struct dma_async_tx_descriptor *tx;
	struct completion *dma_completion;
	dma_async_tx_callback callback;
	struct dma_chan *chan;
	dma_cookie_t cookie;
	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
	dma_addr_t buf_dma;
	int ret;
	u32 timeout;

	if (dir == DMA_DEV_TO_MEM) {
		chan = ebu_host->dma_rx;
		dma_completion = &ebu_host->dma_access_complete;
		callback = ebu_dma_rx_callback;
	} else {
		chan = ebu_host->dma_tx;
		dma_completion = &ebu_host->dma_access_complete;
		callback = ebu_dma_tx_callback;
	}

	buf_dma = dma_map_single(chan->device->dev, (void *)buf, len, dir);
	if (dma_mapping_error(chan->device->dev, buf_dma)) {
		dev_err(ebu_host->dev, "Failed to map DMA buffer\n");
		ret = -EIO;
		goto err_unmap;
	}

	tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags);
	if (!tx) {
		ret = -ENXIO;
		goto err_unmap;
	}

	tx->callback = callback;
	tx->callback_param = ebu_host;
	cookie = tx->tx_submit(tx);

	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(ebu_host->dev, "dma_submit_error %d\n", cookie);
		ret = -EIO;
		goto err_unmap;
	}

	init_completion(dma_completion);
	dma_async_issue_pending(chan);

	/* Wait DMA to finish the data transfer.*/
	timeout = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
	if (!timeout) {
		dev_err(ebu_host->dev, "I/O Error in DMA RX (status %d)\n",
			dmaengine_tx_status(chan, cookie, NULL));
		dmaengine_terminate_sync(chan);
		ret = -ETIMEDOUT;
		goto err_unmap;
	}

	return 0;

err_unmap:
	dma_unmap_single(ebu_host->dev, buf_dma, len, dir);

	return ret;
}

static void ebu_nand_trigger(struct ebu_nand_controller *ebu_host,
			     int page, u32 cmd)
{
	unsigned int val;

	val = cmd | (page & 0xFF) << HSNAND_CTL1_ADDR_SHIFT;
	writel(val, ebu_host->hsnand + HSNAND_CTL1);
	val = (page & 0xFFFF00) >> 8 | HSNAND_CTL2_CYC_N_V5;
	writel(val, ebu_host->hsnand + HSNAND_CTL2);

	writel(ebu_host->nd_para0, ebu_host->hsnand + HSNAND_PARA0);

	/* clear first, will update later */
	writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_0);
	writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_1);

	writel(HSNAND_INT_MSK_CTL_WR_C,
	       ebu_host->hsnand + HSNAND_INT_MSK_CTL);

	if (!cmd)
		val = HSNAND_CTL_RW_READ;
	else
		val = HSNAND_CTL_RW_WRITE;

	writel(HSNAND_CTL_MSG_EN | HSNAND_CTL_CKFF_EN |
	       HSNAND_CTL_ECC_OFF_V8TH | HSNAND_CTL_CE_SEL_CS(ebu_host->cs_num) |
	       HSNAND_CTL_ENABLE_ECC | HSNAND_CTL_GO | val,
	       ebu_host->hsnand + HSNAND_CTL);
}

static int ebu_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
				    int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
	int ret, reg_data;

	ebu_nand_trigger(ebu_host, page, NAND_CMD_READ0);

	ret = ebu_dma_start(ebu_host, DMA_DEV_TO_MEM, buf, mtd->writesize);
	if (ret)
		return ret;

	if (oob_required)
		chip->ecc.read_oob(chip, page);

	reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
	reg_data &= ~HSNAND_CTL_GO;
	writel(reg_data, ebu_host->hsnand + HSNAND_CTL);

	return 0;
}

static int ebu_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
				     int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
	void __iomem *int_sta = ebu_host->hsnand + HSNAND_INT_STA;
	int reg_data, ret, val;
	u32 reg;

	ebu_nand_trigger(ebu_host, page, NAND_CMD_SEQIN);

	ret = ebu_dma_start(ebu_host, DMA_MEM_TO_DEV, buf, mtd->writesize);
	if (ret)
		return ret;

	if (oob_required) {
		reg = get_unaligned_le32(chip->oob_poi);
		writel(reg, ebu_host->hsnand + HSNAND_CMSG_0);

		reg = get_unaligned_le32(chip->oob_poi + 4);
		writel(reg, ebu_host->hsnand + HSNAND_CMSG_1);
	}

	ret = readl_poll_timeout_atomic(int_sta, val, !(val & HSNAND_INT_STA_WR_C),
					10, 1000);
	if (ret)
		return ret;

	reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
	reg_data &= ~HSNAND_CTL_GO;
	writel(reg_data, ebu_host->hsnand + HSNAND_CTL);

	return 0;
}

static const u8 ecc_strength[] = { 1, 1, 4, 8, 24, 32, 40, 60, };

static int ebu_nand_attach_chip(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
	u32 ecc_steps, ecc_bytes, ecc_total, pagesize, pg_per_blk;
	u32 ecc_strength_ds = chip->ecc.strength;
	u32 ecc_size = chip->ecc.size;
	u32 writesize = mtd->writesize;
	u32 blocksize = mtd->erasesize;
	int bch_algo, start, val;

	/* Default to an ECC size of 512 */
	if (!chip->ecc.size)
		chip->ecc.size = 512;

	switch (ecc_size) {
	case 512:
		start = 1;
		if (!ecc_strength_ds)
			ecc_strength_ds = 4;
		break;
	case 1024:
		start = 4;
		if (!ecc_strength_ds)
			ecc_strength_ds = 32;
		break;
	default:
		return -EINVAL;
	}

	/* BCH ECC algorithm Settings for number of bits per 512B/1024B */
	bch_algo = round_up(start + 1, 4);
	for (val = start; val < bch_algo; val++) {
		if (ecc_strength_ds == ecc_strength[val])
			break;
	}
	if (val == bch_algo)
		return -EINVAL;

	if (ecc_strength_ds == 8)
		ecc_bytes = 14;
	else
		ecc_bytes = DIV_ROUND_UP(ecc_strength_ds * fls(8 * ecc_size), 8);

	ecc_steps = writesize / ecc_size;
	ecc_total = ecc_steps * ecc_bytes;
	if ((ecc_total + 8) > mtd->oobsize)
		return -ERANGE;

	chip->ecc.total = ecc_total;
	pagesize = fls(writesize >> 11);
	if (pagesize > HSNAND_PARA0_PAGE_V8192)
		return -ERANGE;

	pg_per_blk = fls((blocksize / writesize) >> 6) / 8;
	if (pg_per_blk > HSNAND_PARA0_PIB_V256)
		return -ERANGE;

	ebu_host->nd_para0 = pagesize | pg_per_blk | HSNAND_PARA0_BYP_EN_NP |
			     HSNAND_PARA0_BYP_DEC_NP | HSNAND_PARA0_ADEP_EN |
			     HSNAND_PARA0_TYPE_ONFI | (val << 29);

	mtd_set_ooblayout(mtd, &ebu_nand_ooblayout_ops);
	chip->ecc.read_page = ebu_nand_read_page_hwecc;
	chip->ecc.write_page = ebu_nand_write_page_hwecc;

	return 0;
}

static int ebu_nand_exec_op(struct nand_chip *chip,
			    const struct nand_operation *op, bool check_only)
{
	const struct nand_op_instr *instr = NULL;
	unsigned int op_id;
	int i, timeout_ms, ret = 0;

	if (check_only)
		return 0;

	ebu_select_chip(chip);
	for (op_id = 0; op_id < op->ninstrs; op_id++) {
		instr = &op->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			ebu_nand_writeb(chip, HSNAND_CLE_OFFS | HSNAND_CS_OFFS,
					instr->ctx.cmd.opcode);
			break;

		case NAND_OP_ADDR_INSTR:
			for (i = 0; i < instr->ctx.addr.naddrs; i++)
				ebu_nand_writeb(chip,
						HSNAND_ALE_OFFS | HSNAND_CS_OFFS,
						instr->ctx.addr.addrs[i]);
			break;

		case NAND_OP_DATA_IN_INSTR:
			ebu_read_buf(chip, instr->ctx.data.buf.in,
				     instr->ctx.data.len);
			break;

		case NAND_OP_DATA_OUT_INSTR:
			ebu_write_buf(chip, instr->ctx.data.buf.out,
				      instr->ctx.data.len);
			break;

		case NAND_OP_WAITRDY_INSTR:
			timeout_ms = instr->ctx.waitrdy.timeout_ms * 1000;
			ret = ebu_nand_waitrdy(chip, timeout_ms);
			break;
		}
	}

	return ret;
}

static const struct nand_controller_ops ebu_nand_controller_ops = {
	.attach_chip = ebu_nand_attach_chip,
	.setup_interface = ebu_nand_set_timings,
	.exec_op = ebu_nand_exec_op,
};

static void ebu_dma_cleanup(struct ebu_nand_controller *ebu_host)
{
	if (ebu_host->dma_rx)
		dma_release_channel(ebu_host->dma_rx);

	if (ebu_host->dma_tx)
		dma_release_channel(ebu_host->dma_tx);
}

static int ebu_nand_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct ebu_nand_controller *ebu_host;
	struct device_node *chip_np;
	struct nand_chip *nand;
	struct mtd_info *mtd;
	struct resource *res;
	char *resname;
	int ret;
	u32 cs;

	ebu_host = devm_kzalloc(dev, sizeof(*ebu_host), GFP_KERNEL);
	if (!ebu_host)
		return -ENOMEM;

	ebu_host->dev = dev;
	nand_controller_init(&ebu_host->controller);

	ebu_host->ebu = devm_platform_ioremap_resource_byname(pdev, "ebunand");
	if (IS_ERR(ebu_host->ebu))
		return PTR_ERR(ebu_host->ebu);

	ebu_host->hsnand = devm_platform_ioremap_resource_byname(pdev, "hsnand");
	if (IS_ERR(ebu_host->hsnand))
		return PTR_ERR(ebu_host->hsnand);

	chip_np = of_get_next_child(dev->of_node, NULL);
	if (!chip_np)
		return dev_err_probe(dev, -EINVAL,
				     "Could not find child node for the NAND chip\n");

	ret = of_property_read_u32(chip_np, "reg", &cs);
	if (ret) {
		dev_err(dev, "failed to get chip select: %d\n", ret);
		return ret;
	}
	if (cs >= MAX_CS) {
		dev_err(dev, "got invalid chip select: %d\n", cs);
		return -EINVAL;
	}

	ebu_host->cs_num = cs;

	resname = devm_kasprintf(dev, GFP_KERNEL, "nand_cs%d", cs);
	ebu_host->cs[cs].chipaddr = devm_platform_ioremap_resource_byname(pdev,
									  resname);
	if (IS_ERR(ebu_host->cs[cs].chipaddr))
		return PTR_ERR(ebu_host->cs[cs].chipaddr);

	ebu_host->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(ebu_host->clk))
		return dev_err_probe(dev, PTR_ERR(ebu_host->clk),
				     "failed to get clock\n");

	ret = clk_prepare_enable(ebu_host->clk);
	if (ret) {
		dev_err(dev, "failed to enable clock: %d\n", ret);
		return ret;
	}

	ebu_host->dma_tx = dma_request_chan(dev, "tx");
	if (IS_ERR(ebu_host->dma_tx)) {
		ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_tx),
				    "failed to request DMA tx chan!.\n");
		goto err_disable_unprepare_clk;
	}

	ebu_host->dma_rx = dma_request_chan(dev, "rx");
	if (IS_ERR(ebu_host->dma_rx)) {
		ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_rx),
				    "failed to request DMA rx chan!.\n");
		ebu_host->dma_rx = NULL;
		goto err_cleanup_dma;
	}

	resname = devm_kasprintf(dev, GFP_KERNEL, "addr_sel%d", cs);
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname);
	if (!res) {
		ret = -EINVAL;
		goto err_cleanup_dma;
	}
	ebu_host->cs[cs].addr_sel = res->start;
	writel(ebu_host->cs[cs].addr_sel | EBU_ADDR_MASK(5) | EBU_ADDR_SEL_REGEN,
	       ebu_host->ebu + EBU_ADDR_SEL(cs));

	nand_set_flash_node(&ebu_host->chip, chip_np);

	mtd = nand_to_mtd(&ebu_host->chip);
	if (!mtd->name) {
		dev_err(ebu_host->dev, "NAND label property is mandatory\n");
		ret = -EINVAL;
		goto err_cleanup_dma;
	}

	mtd->dev.parent = dev;
	ebu_host->dev = dev;

	platform_set_drvdata(pdev, ebu_host);
	nand_set_controller_data(&ebu_host->chip, ebu_host);

	nand = &ebu_host->chip;
	nand->controller = &ebu_host->controller;
	nand->controller->ops = &ebu_nand_controller_ops;

	/* Scan to find existence of the device */
	ret = nand_scan(&ebu_host->chip, 1);
	if (ret)
		goto err_cleanup_dma;

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret)
		goto err_clean_nand;

	return 0;

err_clean_nand:
	nand_cleanup(&ebu_host->chip);
err_cleanup_dma:
	ebu_dma_cleanup(ebu_host);
err_disable_unprepare_clk:
	clk_disable_unprepare(ebu_host->clk);

	return ret;
}

static int ebu_nand_remove(struct platform_device *pdev)
{
	struct ebu_nand_controller *ebu_host = platform_get_drvdata(pdev);
	int ret;

	ret = mtd_device_unregister(nand_to_mtd(&ebu_host->chip));
	WARN_ON(ret);
	nand_cleanup(&ebu_host->chip);
	ebu_nand_disable(&ebu_host->chip);
	ebu_dma_cleanup(ebu_host);
	clk_disable_unprepare(ebu_host->clk);

	return 0;
}

static const struct of_device_id ebu_nand_match[] = {
	{ .compatible = "intel,lgm-ebunand" },
	{}
};
MODULE_DEVICE_TABLE(of, ebu_nand_match);

static struct platform_driver ebu_nand_driver = {
	.probe = ebu_nand_probe,
	.remove = ebu_nand_remove,
	.driver = {
		.name = "intel-nand-controller",
		.of_match_table = ebu_nand_match,
	},

};
module_platform_driver(ebu_nand_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_DESCRIPTION("Intel's LGM External Bus NAND Controller driver");