summaryrefslogtreecommitdiff
path: root/drivers/mmc/host/mmci_stm32_sdmmc.c
blob: 9c13f2c313658b5dd05ef23b7796b42a93c8117a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
 * Author: Ludovic.barre@st.com for STMicroelectronics.
 */
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/of_address.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include "mmci.h"

#define SDMMC_LLI_BUF_LEN	PAGE_SIZE
#define SDMMC_IDMA_BURST	BIT(MMCI_STM32_IDMABNDT_SHIFT)

#define DLYB_CR			0x0
#define DLYB_CR_DEN		BIT(0)
#define DLYB_CR_SEN		BIT(1)

#define DLYB_CFGR		0x4
#define DLYB_CFGR_SEL_MASK	GENMASK(3, 0)
#define DLYB_CFGR_UNIT_MASK	GENMASK(14, 8)
#define DLYB_CFGR_LNG_MASK	GENMASK(27, 16)
#define DLYB_CFGR_LNGF		BIT(31)

#define DLYB_NB_DELAY		11
#define DLYB_CFGR_SEL_MAX	(DLYB_NB_DELAY + 1)
#define DLYB_CFGR_UNIT_MAX	127

#define DLYB_LNG_TIMEOUT_US	1000
#define SDMMC_VSWEND_TIMEOUT_US 10000

struct sdmmc_lli_desc {
	u32 idmalar;
	u32 idmabase;
	u32 idmasize;
};

struct sdmmc_idma {
	dma_addr_t sg_dma;
	void *sg_cpu;
};

struct sdmmc_dlyb {
	void __iomem *base;
	u32 unit;
	u32 max;
};

static int sdmmc_idma_validate_data(struct mmci_host *host,
				    struct mmc_data *data)
{
	struct scatterlist *sg;
	int i;

	/*
	 * idma has constraints on idmabase & idmasize for each element
	 * excepted the last element which has no constraint on idmasize
	 */
	for_each_sg(data->sg, sg, data->sg_len - 1, i) {
		if (!IS_ALIGNED(data->sg->offset, sizeof(u32)) ||
		    !IS_ALIGNED(data->sg->length, SDMMC_IDMA_BURST)) {
			dev_err(mmc_dev(host->mmc),
				"unaligned scatterlist: ofst:%x length:%d\n",
				data->sg->offset, data->sg->length);
			return -EINVAL;
		}
	}

	if (!IS_ALIGNED(data->sg->offset, sizeof(u32))) {
		dev_err(mmc_dev(host->mmc),
			"unaligned last scatterlist: ofst:%x length:%d\n",
			data->sg->offset, data->sg->length);
		return -EINVAL;
	}

	return 0;
}

static int _sdmmc_idma_prep_data(struct mmci_host *host,
				 struct mmc_data *data)
{
	int n_elem;

	n_elem = dma_map_sg(mmc_dev(host->mmc),
			    data->sg,
			    data->sg_len,
			    mmc_get_dma_dir(data));

	if (!n_elem) {
		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
		return -EINVAL;
	}

	return 0;
}

static int sdmmc_idma_prep_data(struct mmci_host *host,
				struct mmc_data *data, bool next)
{
	/* Check if job is already prepared. */
	if (!next && data->host_cookie == host->next_cookie)
		return 0;

	return _sdmmc_idma_prep_data(host, data);
}

static void sdmmc_idma_unprep_data(struct mmci_host *host,
				   struct mmc_data *data, int err)
{
	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
		     mmc_get_dma_dir(data));
}

static int sdmmc_idma_setup(struct mmci_host *host)
{
	struct sdmmc_idma *idma;
	struct device *dev = mmc_dev(host->mmc);

	idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
	if (!idma)
		return -ENOMEM;

	host->dma_priv = idma;

	if (host->variant->dma_lli) {
		idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
						   &idma->sg_dma, GFP_KERNEL);
		if (!idma->sg_cpu) {
			dev_err(dev, "Failed to alloc IDMA descriptor\n");
			return -ENOMEM;
		}
		host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
			sizeof(struct sdmmc_lli_desc);
		host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
	} else {
		host->mmc->max_segs = 1;
		host->mmc->max_seg_size = host->mmc->max_req_size;
	}

	return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
}

static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)

{
	struct sdmmc_idma *idma = host->dma_priv;
	struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
	struct mmc_data *data = host->data;
	struct scatterlist *sg;
	int i;

	if (!host->variant->dma_lli || data->sg_len == 1) {
		writel_relaxed(sg_dma_address(data->sg),
			       host->base + MMCI_STM32_IDMABASE0R);
		writel_relaxed(MMCI_STM32_IDMAEN,
			       host->base + MMCI_STM32_IDMACTRLR);
		return 0;
	}

	for_each_sg(data->sg, sg, data->sg_len, i) {
		desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
		desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
			| MMCI_STM32_ABR;
		desc[i].idmabase = sg_dma_address(sg);
		desc[i].idmasize = sg_dma_len(sg);
	}

	/* notice the end of link list */
	desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;

	dma_wmb();
	writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
	writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
	writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
	writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
	writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
		       host->base + MMCI_STM32_IDMACTRLR);

	return 0;
}

static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
{
	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);

	if (!data->host_cookie)
		sdmmc_idma_unprep_data(host, data, 0);
}

static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
{
	unsigned int clk = 0, ddr = 0;

	if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
	    host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
		ddr = MCI_STM32_CLK_DDR;

	/*
	 * cclk = mclk / (2 * clkdiv)
	 * clkdiv 0 => bypass
	 * in ddr mode bypass is not possible
	 */
	if (desired) {
		if (desired >= host->mclk && !ddr) {
			host->cclk = host->mclk;
		} else {
			clk = DIV_ROUND_UP(host->mclk, 2 * desired);
			if (clk > MCI_STM32_CLK_CLKDIV_MSK)
				clk = MCI_STM32_CLK_CLKDIV_MSK;
			host->cclk = host->mclk / (2 * clk);
		}
	} else {
		/*
		 * while power-on phase the clock can't be define to 0,
		 * Only power-off and power-cyc deactivate the clock.
		 * if desired clock is 0, set max divider
		 */
		clk = MCI_STM32_CLK_CLKDIV_MSK;
		host->cclk = host->mclk / (2 * clk);
	}

	/* Set actual clock for debug */
	if (host->mmc->ios.power_mode == MMC_POWER_ON)
		host->mmc->actual_clock = host->cclk;
	else
		host->mmc->actual_clock = 0;

	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
		clk |= MCI_STM32_CLK_WIDEBUS_4;
	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
		clk |= MCI_STM32_CLK_WIDEBUS_8;

	clk |= MCI_STM32_CLK_HWFCEN;
	clk |= host->clk_reg_add;
	clk |= ddr;

	/*
	 * SDMMC_FBCK is selected when an external Delay Block is needed
	 * with SDR104 or HS200.
	 */
	if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
		clk |= MCI_STM32_CLK_BUSSPEED;
		if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
		    host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
			clk &= ~MCI_STM32_CLK_SEL_MSK;
			clk |= MCI_STM32_CLK_SELFBCK;
		}
	}

	mmci_write_clkreg(host, clk);
}

static void sdmmc_dlyb_input_ck(struct sdmmc_dlyb *dlyb)
{
	if (!dlyb || !dlyb->base)
		return;

	/* Output clock = Input clock */
	writel_relaxed(0, dlyb->base + DLYB_CR);
}

static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
{
	struct mmc_ios ios = host->mmc->ios;
	struct sdmmc_dlyb *dlyb = host->variant_priv;

	/* adds OF options */
	pwr = host->pwr_reg_add;

	sdmmc_dlyb_input_ck(dlyb);

	if (ios.power_mode == MMC_POWER_OFF) {
		/* Only a reset could power-off sdmmc */
		reset_control_assert(host->rst);
		udelay(2);
		reset_control_deassert(host->rst);

		/*
		 * Set the SDMMC in Power-cycle state.
		 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
		 * are driven low, to prevent the Card from being supplied
		 * through the signal lines.
		 */
		mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
	} else if (ios.power_mode == MMC_POWER_ON) {
		/*
		 * After power-off (reset): the irq mask defined in probe
		 * functionis lost
		 * ault irq mask (probe) must be activated
		 */
		writel(MCI_IRQENABLE | host->variant->start_err,
		       host->base + MMCIMASK0);

		/* preserves voltage switch bits */
		pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
					MCI_STM32_VSWITCH);

		/*
		 * After a power-cycle state, we must set the SDMMC in
		 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
		 * driven high. Then we can set the SDMMC to Power-on state
		 */
		mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
		mdelay(1);
		mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
	}
}

static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
{
	u32 datactrl;

	datactrl = mmci_dctrl_blksz(host);

	if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
	    host->data->blocks == 1)
		datactrl |= MCI_DPSM_STM32_MODE_SDIO;
	else if (host->data->stop && !host->mrq->sbc)
		datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
	else
		datactrl |= MCI_DPSM_STM32_MODE_BLOCK;

	return datactrl;
}

static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
{
	void __iomem *base = host->base;
	u32 busy_d0, busy_d0end, mask, sdmmc_status;

	mask = readl_relaxed(base + MMCIMASK0);
	sdmmc_status = readl_relaxed(base + MMCISTATUS);
	busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
	busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;

	/* complete if there is an error or busy_d0end */
	if ((status & err_msk) || busy_d0end)
		goto complete;

	/*
	 * On response the busy signaling is reflected in the BUSYD0 flag.
	 * if busy_d0 is in-progress we must activate busyd0end interrupt
	 * to wait this completion. Else this request has no busy step.
	 */
	if (busy_d0) {
		if (!host->busy_status) {
			writel_relaxed(mask | host->variant->busy_detect_mask,
				       base + MMCIMASK0);
			host->busy_status = status &
				(MCI_CMDSENT | MCI_CMDRESPEND);
		}
		return false;
	}

complete:
	if (host->busy_status) {
		writel_relaxed(mask & ~host->variant->busy_detect_mask,
			       base + MMCIMASK0);
		host->busy_status = 0;
	}

	writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);

	return true;
}

static void sdmmc_dlyb_set_cfgr(struct sdmmc_dlyb *dlyb,
				int unit, int phase, bool sampler)
{
	u32 cfgr;

	writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);

	cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
	       FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
	writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);

	if (!sampler)
		writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
}

static int sdmmc_dlyb_lng_tuning(struct mmci_host *host)
{
	struct sdmmc_dlyb *dlyb = host->variant_priv;
	u32 cfgr;
	int i, lng, ret;

	for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
		sdmmc_dlyb_set_cfgr(dlyb, i, DLYB_CFGR_SEL_MAX, true);

		ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
						 (cfgr & DLYB_CFGR_LNGF),
						 1, DLYB_LNG_TIMEOUT_US);
		if (ret) {
			dev_warn(mmc_dev(host->mmc),
				 "delay line cfg timeout unit:%d cfgr:%d\n",
				 i, cfgr);
			continue;
		}

		lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
		if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
			break;
	}

	if (i > DLYB_CFGR_UNIT_MAX)
		return -EINVAL;

	dlyb->unit = i;
	dlyb->max = __fls(lng);

	return 0;
}

static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
{
	struct sdmmc_dlyb *dlyb = host->variant_priv;
	int cur_len = 0, max_len = 0, end_of_len = 0;
	int phase;

	for (phase = 0; phase <= dlyb->max; phase++) {
		sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);

		if (mmc_send_tuning(host->mmc, opcode, NULL)) {
			cur_len = 0;
		} else {
			cur_len++;
			if (cur_len > max_len) {
				max_len = cur_len;
				end_of_len = phase;
			}
		}
	}

	if (!max_len) {
		dev_err(mmc_dev(host->mmc), "no tuning point found\n");
		return -EINVAL;
	}

	writel_relaxed(0, dlyb->base + DLYB_CR);

	phase = end_of_len - max_len / 2;
	sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);

	dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
		dlyb->unit, dlyb->max, phase);

	return 0;
}

static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
	struct mmci_host *host = mmc_priv(mmc);
	struct sdmmc_dlyb *dlyb = host->variant_priv;

	if (!dlyb || !dlyb->base)
		return -EINVAL;

	if (sdmmc_dlyb_lng_tuning(host))
		return -EINVAL;

	return sdmmc_dlyb_phase_tuning(host, opcode);
}

static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
{
	/* clear the voltage switch completion flag */
	writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
	/* enable Voltage switch procedure */
	mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
}

static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
				      struct mmc_ios *ios)
{
	unsigned long flags;
	u32 status;
	int ret = 0;

	spin_lock_irqsave(&host->lock, flags);
	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
	    host->pwr_reg & MCI_STM32_VSWITCHEN) {
		mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
		spin_unlock_irqrestore(&host->lock, flags);

		/* wait voltage switch completion while 10ms */
		ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
						 status,
						 (status & MCI_STM32_VSWEND),
						 10, SDMMC_VSWEND_TIMEOUT_US);

		writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
			       host->base + MMCICLEAR);
		spin_lock_irqsave(&host->lock, flags);
		mmci_write_pwrreg(host, host->pwr_reg &
				  ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
	}
	spin_unlock_irqrestore(&host->lock, flags);

	return ret;
}

static struct mmci_host_ops sdmmc_variant_ops = {
	.validate_data = sdmmc_idma_validate_data,
	.prep_data = sdmmc_idma_prep_data,
	.unprep_data = sdmmc_idma_unprep_data,
	.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
	.dma_setup = sdmmc_idma_setup,
	.dma_start = sdmmc_idma_start,
	.dma_finalize = sdmmc_idma_finalize,
	.set_clkreg = mmci_sdmmc_set_clkreg,
	.set_pwrreg = mmci_sdmmc_set_pwrreg,
	.busy_complete = sdmmc_busy_complete,
	.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
	.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
};

void sdmmc_variant_init(struct mmci_host *host)
{
	struct device_node *np = host->mmc->parent->of_node;
	void __iomem *base_dlyb;
	struct sdmmc_dlyb *dlyb;

	host->ops = &sdmmc_variant_ops;
	host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);

	base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
	if (IS_ERR(base_dlyb))
		return;

	dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
	if (!dlyb)
		return;

	dlyb->base = base_dlyb;
	host->variant_priv = dlyb;
	host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
}