1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
|
/*
* mmc_spi.c - Access SD/MMC cards through SPI master controllers
*
* (C) Copyright 2005, Intec Automation,
* Mike Lavender (mike@steroidmicros)
* (C) Copyright 2006-2007, David Brownell
* (C) Copyright 2007, Axis Communications,
* Hans-Peter Nilsson (hp@axis.com)
* (C) Copyright 2007, ATRON electronic GmbH,
* Jan Nikitenko <jan.nikitenko@gmail.com>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/dma-mapping.h>
#include <linux/crc7.h>
#include <linux/crc-itu-t.h>
#include <linux/scatterlist.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
#include <linux/mmc/slot-gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/mmc_spi.h>
#include <asm/unaligned.h>
/* NOTES:
*
* - For now, we won't try to interoperate with a real mmc/sd/sdio
* controller, although some of them do have hardware support for
* SPI protocol. The main reason for such configs would be mmc-ish
* cards like DataFlash, which don't support that "native" protocol.
*
* We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
* switch between driver stacks, and in any case if "native" mode
* is available, it will be faster and hence preferable.
*
* - MMC depends on a different chipselect management policy than the
* SPI interface currently supports for shared bus segments: it needs
* to issue multiple spi_message requests with the chipselect active,
* using the results of one message to decide the next one to issue.
*
* Pending updates to the programming interface, this driver expects
* that it not share the bus with other drivers (precluding conflicts).
*
* - We tell the controller to keep the chipselect active from the
* beginning of an mmc_host_ops.request until the end. So beware
* of SPI controller drivers that mis-handle the cs_change flag!
*
* However, many cards seem OK with chipselect flapping up/down
* during that time ... at least on unshared bus segments.
*/
/*
* Local protocol constants, internal to data block protocols.
*/
/* Response tokens used to ack each block written: */
#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
/* Read and write blocks start with these tokens and end with crc;
* on error, read tokens act like a subset of R2_SPI_* values.
*/
#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
#define MMC_SPI_BLOCKSIZE 512
/* These fixed timeouts come from the latest SD specs, which say to ignore
* the CSD values. The R1B value is for card erase (e.g. the "I forgot the
* card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
* reads which takes nowhere near that long. Older cards may be able to use
* shorter timeouts ... but why bother?
*/
#define r1b_timeout (HZ * 3)
/* One of the critical speed parameters is the amount of data which may
* be transferred in one command. If this value is too low, the SD card
* controller has to do multiple partial block writes (argggh!). With
* today (2008) SD cards there is little speed gain if we transfer more
* than 64 KBytes at a time. So use this value until there is any indication
* that we should do more here.
*/
#define MMC_SPI_BLOCKSATONCE 128
/****************************************************************************/
/*
* Local Data Structures
*/
/* "scratch" is per-{command,block} data exchanged with the card */
struct scratch {
u8 status[29];
u8 data_token;
__be16 crc_val;
};
struct mmc_spi_host {
struct mmc_host *mmc;
struct spi_device *spi;
unsigned char power_mode;
u16 powerup_msecs;
struct mmc_spi_platform_data *pdata;
/* for bulk data transfers */
struct spi_transfer token, t, crc, early_status;
struct spi_message m;
/* for status readback */
struct spi_transfer status;
struct spi_message readback;
/* underlying DMA-aware controller, or null */
struct device *dma_dev;
/* buffer used for commands and for message "overhead" */
struct scratch *data;
dma_addr_t data_dma;
/* Specs say to write ones most of the time, even when the card
* has no need to read its input data; and many cards won't care.
* This is our source of those ones.
*/
void *ones;
dma_addr_t ones_dma;
};
/****************************************************************************/
/*
* MMC-over-SPI protocol glue, used by the MMC stack interface
*/
static inline int mmc_cs_off(struct mmc_spi_host *host)
{
/* chipselect will always be inactive after setup() */
return spi_setup(host->spi);
}
static int
mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
{
int status;
if (len > sizeof(*host->data)) {
WARN_ON(1);
return -EIO;
}
host->status.len = len;
if (host->dma_dev)
dma_sync_single_for_device(host->dma_dev,
host->data_dma, sizeof(*host->data),
DMA_FROM_DEVICE);
status = spi_sync_locked(host->spi, &host->readback);
if (host->dma_dev)
dma_sync_single_for_cpu(host->dma_dev,
host->data_dma, sizeof(*host->data),
DMA_FROM_DEVICE);
return status;
}
static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
unsigned n, u8 byte)
{
u8 *cp = host->data->status;
unsigned long start = jiffies;
while (1) {
int status;
unsigned i;
status = mmc_spi_readbytes(host, n);
if (status < 0)
return status;
for (i = 0; i < n; i++) {
if (cp[i] != byte)
return cp[i];
}
if (time_is_before_jiffies(start + timeout))
break;
/* If we need long timeouts, we may release the CPU.
* We use jiffies here because we want to have a relation
* between elapsed time and the blocking of the scheduler.
*/
if (time_is_before_jiffies(start+1))
schedule();
}
return -ETIMEDOUT;
}
static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
{
return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
}
static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
{
return mmc_spi_skip(host, timeout, 1, 0xff);
}
/*
* Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
* hosts return! The low byte holds R1_SPI bits. The next byte may hold
* R2_SPI bits ... for SEND_STATUS, or after data read errors.
*
* cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
* newer cards R7 (IF_COND).
*/
static char *maptype(struct mmc_command *cmd)
{
switch (mmc_spi_resp_type(cmd)) {
case MMC_RSP_SPI_R1: return "R1";
case MMC_RSP_SPI_R1B: return "R1B";
case MMC_RSP_SPI_R2: return "R2/R5";
case MMC_RSP_SPI_R3: return "R3/R4/R7";
default: return "?";
}
}
/* return zero, else negative errno after setting cmd->error */
static int mmc_spi_response_get(struct mmc_spi_host *host,
struct mmc_command *cmd, int cs_on)
{
u8 *cp = host->data->status;
u8 *end = cp + host->t.len;
int value = 0;
int bitshift;
u8 leftover = 0;
unsigned short rotator;
int i;
char tag[32];
snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
cmd->opcode, maptype(cmd));
/* Except for data block reads, the whole response will already
* be stored in the scratch buffer. It's somewhere after the
* command and the first byte we read after it. We ignore that
* first byte. After STOP_TRANSMISSION command it may include
* two data bits, but otherwise it's all ones.
*/
cp += 8;
while (cp < end && *cp == 0xff)
cp++;
/* Data block reads (R1 response types) may need more data... */
if (cp == end) {
cp = host->data->status;
end = cp+1;
/* Card sends N(CR) (== 1..8) bytes of all-ones then one
* status byte ... and we already scanned 2 bytes.
*
* REVISIT block read paths use nasty byte-at-a-time I/O
* so it can always DMA directly into the target buffer.
* It'd probably be better to memcpy() the first chunk and
* avoid extra i/o calls...
*
* Note we check for more than 8 bytes, because in practice,
* some SD cards are slow...
*/
for (i = 2; i < 16; i++) {
value = mmc_spi_readbytes(host, 1);
if (value < 0)
goto done;
if (*cp != 0xff)
goto checkstatus;
}
value = -ETIMEDOUT;
goto done;
}
checkstatus:
bitshift = 0;
if (*cp & 0x80) {
/* Houston, we have an ugly card with a bit-shifted response */
rotator = *cp++ << 8;
/* read the next byte */
if (cp == end) {
value = mmc_spi_readbytes(host, 1);
if (value < 0)
goto done;
cp = host->data->status;
end = cp+1;
}
rotator |= *cp++;
while (rotator & 0x8000) {
bitshift++;
rotator <<= 1;
}
cmd->resp[0] = rotator >> 8;
leftover = rotator;
} else {
cmd->resp[0] = *cp++;
}
cmd->error = 0;
/* Status byte: the entire seven-bit R1 response. */
if (cmd->resp[0] != 0) {
if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
& cmd->resp[0])
value = -EFAULT; /* Bad address */
else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
value = -ENOSYS; /* Function not implemented */
else if (R1_SPI_COM_CRC & cmd->resp[0])
value = -EILSEQ; /* Illegal byte sequence */
else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
& cmd->resp[0])
value = -EIO; /* I/O error */
/* else R1_SPI_IDLE, "it's resetting" */
}
switch (mmc_spi_resp_type(cmd)) {
/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
* and less-common stuff like various erase operations.
*/
case MMC_RSP_SPI_R1B:
/* maybe we read all the busy tokens already */
while (cp < end && *cp == 0)
cp++;
if (cp == end)
mmc_spi_wait_unbusy(host, r1b_timeout);
break;
/* SPI R2 == R1 + second status byte; SEND_STATUS
* SPI R5 == R1 + data byte; IO_RW_DIRECT
*/
case MMC_RSP_SPI_R2:
/* read the next byte */
if (cp == end) {
value = mmc_spi_readbytes(host, 1);
if (value < 0)
goto done;
cp = host->data->status;
end = cp+1;
}
if (bitshift) {
rotator = leftover << 8;
rotator |= *cp << bitshift;
cmd->resp[0] |= (rotator & 0xFF00);
} else {
cmd->resp[0] |= *cp << 8;
}
break;
/* SPI R3, R4, or R7 == R1 + 4 bytes */
case MMC_RSP_SPI_R3:
rotator = leftover << 8;
cmd->resp[1] = 0;
for (i = 0; i < 4; i++) {
cmd->resp[1] <<= 8;
/* read the next byte */
if (cp == end) {
value = mmc_spi_readbytes(host, 1);
if (value < 0)
goto done;
cp = host->data->status;
end = cp+1;
}
if (bitshift) {
rotator |= *cp++ << bitshift;
cmd->resp[1] |= (rotator >> 8);
rotator <<= 8;
} else {
cmd->resp[1] |= *cp++;
}
}
break;
/* SPI R1 == just one status byte */
case MMC_RSP_SPI_R1:
break;
default:
dev_dbg(&host->spi->dev, "bad response type %04x\n",
mmc_spi_resp_type(cmd));
if (value >= 0)
value = -EINVAL;
goto done;
}
if (value < 0)
dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
tag, cmd->resp[0], cmd->resp[1]);
/* disable chipselect on errors and some success cases */
if (value >= 0 && cs_on)
return value;
done:
if (value < 0)
cmd->error = value;
mmc_cs_off(host);
return value;
}
/* Issue command and read its response.
* Returns zero on success, negative for error.
*
* On error, caller must cope with mmc core retry mechanism. That
* means immediate low-level resubmit, which affects the bus lock...
*/
static int
mmc_spi_command_send(struct mmc_spi_host *host,
struct mmc_request *mrq,
struct mmc_command *cmd, int cs_on)
{
struct scratch *data = host->data;
u8 *cp = data->status;
int status;
struct spi_transfer *t;
/* We can handle most commands (except block reads) in one full
* duplex I/O operation before either starting the next transfer
* (data block or command) or else deselecting the card.
*
* First, write 7 bytes:
* - an all-ones byte to ensure the card is ready
* - opcode byte (plus start and transmission bits)
* - four bytes of big-endian argument
* - crc7 (plus end bit) ... always computed, it's cheap
*
* We init the whole buffer to all-ones, which is what we need
* to write while we're reading (later) response data.
*/
memset(cp, 0xff, sizeof(data->status));
cp[1] = 0x40 | cmd->opcode;
put_unaligned_be32(cmd->arg, cp+2);
cp[6] = crc7_be(0, cp+1, 5) | 0x01;
cp += 7;
/* Then, read up to 13 bytes (while writing all-ones):
* - N(CR) (== 1..8) bytes of all-ones
* - status byte (for all response types)
* - the rest of the response, either:
* + nothing, for R1 or R1B responses
* + second status byte, for R2 responses
* + four data bytes, for R3 and R7 responses
*
* Finally, read some more bytes ... in the nice cases we know in
* advance how many, and reading 1 more is always OK:
* - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
* - N(RC) (== 1..N) bytes of all-ones, before next command
* - N(WR) (== 1..N) bytes of all-ones, before data write
*
* So in those cases one full duplex I/O of at most 21 bytes will
* handle the whole command, leaving the card ready to receive a
* data block or new command. We do that whenever we can, shaving
* CPU and IRQ costs (especially when using DMA or FIFOs).
*
* There are two other cases, where it's not generally practical
* to rely on a single I/O:
*
* - R1B responses need at least N(EC) bytes of all-zeroes.
*
* In this case we can *try* to fit it into one I/O, then
* maybe read more data later.
*
* - Data block reads are more troublesome, since a variable
* number of padding bytes precede the token and data.
* + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
* + N(AC) (== 1..many) bytes of all-ones
*
* In this case we currently only have minimal speedups here:
* when N(CR) == 1 we can avoid I/O in response_get().
*/
if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
cp += 2; /* min(N(CR)) + status */
/* R1 */
} else {
cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
cp++;
else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
cp += 4;
else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
cp = data->status + sizeof(data->status);
/* else: R1 (most commands) */
}
dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
cmd->opcode, maptype(cmd));
/* send command, leaving chipselect active */
spi_message_init(&host->m);
t = &host->t;
memset(t, 0, sizeof(*t));
t->tx_buf = t->rx_buf = data->status;
t->tx_dma = t->rx_dma = host->data_dma;
t->len = cp - data->status;
t->cs_change = 1;
spi_message_add_tail(t, &host->m);
if (host->dma_dev) {
host->m.is_dma_mapped = 1;
dma_sync_single_for_device(host->dma_dev,
host->data_dma, sizeof(*host->data),
DMA_BIDIRECTIONAL);
}
status = spi_sync_locked(host->spi, &host->m);
if (host->dma_dev)
dma_sync_single_for_cpu(host->dma_dev,
host->data_dma, sizeof(*host->data),
DMA_BIDIRECTIONAL);
if (status < 0) {
dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
cmd->error = status;
return status;
}
/* after no-data commands and STOP_TRANSMISSION, chipselect off */
return mmc_spi_response_get(host, cmd, cs_on);
}
/* Build data message with up to four separate transfers. For TX, we
* start by writing the data token. And in most cases, we finish with
* a status transfer.
*
* We always provide TX data for data and CRC. The MMC/SD protocol
* requires us to write ones; but Linux defaults to writing zeroes;
* so we explicitly initialize it to all ones on RX paths.
*
* We also handle DMA mapping, so the underlying SPI controller does
* not need to (re)do it for each message.
*/
static void
mmc_spi_setup_data_message(
struct mmc_spi_host *host,
int multiple,
enum dma_data_direction direction)
{
struct spi_transfer *t;
struct scratch *scratch = host->data;
dma_addr_t dma = host->data_dma;
spi_message_init(&host->m);
if (dma)
host->m.is_dma_mapped = 1;
/* for reads, readblock() skips 0xff bytes before finding
* the token; for writes, this transfer issues that token.
*/
if (direction == DMA_TO_DEVICE) {
t = &host->token;
memset(t, 0, sizeof(*t));
t->len = 1;
if (multiple)
scratch->data_token = SPI_TOKEN_MULTI_WRITE;
else
scratch->data_token = SPI_TOKEN_SINGLE;
t->tx_buf = &scratch->data_token;
if (dma)
t->tx_dma = dma + offsetof(struct scratch, data_token);
spi_message_add_tail(t, &host->m);
}
/* Body of transfer is buffer, then CRC ...
* either TX-only, or RX with TX-ones.
*/
t = &host->t;
memset(t, 0, sizeof(*t));
t->tx_buf = host->ones;
t->tx_dma = host->ones_dma;
/* length and actual buffer info are written later */
spi_message_add_tail(t, &host->m);
t = &host->crc;
memset(t, 0, sizeof(*t));
t->len = 2;
if (direction == DMA_TO_DEVICE) {
/* the actual CRC may get written later */
t->tx_buf = &scratch->crc_val;
if (dma)
t->tx_dma = dma + offsetof(struct scratch, crc_val);
} else {
t->tx_buf = host->ones;
t->tx_dma = host->ones_dma;
t->rx_buf = &scratch->crc_val;
if (dma)
t->rx_dma = dma + offsetof(struct scratch, crc_val);
}
spi_message_add_tail(t, &host->m);
/*
* A single block read is followed by N(EC) [0+] all-ones bytes
* before deselect ... don't bother.
*
* Multiblock reads are followed by N(AC) [1+] all-ones bytes before
* the next block is read, or a STOP_TRANSMISSION is issued. We'll
* collect that single byte, so readblock() doesn't need to.
*
* For a write, the one-byte data response follows immediately, then
* come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
* Then single block reads may deselect, and multiblock ones issue
* the next token (next data block, or STOP_TRAN). We can try to
* minimize I/O ops by using a single read to collect end-of-busy.
*/
if (multiple || direction == DMA_TO_DEVICE) {
t = &host->early_status;
memset(t, 0, sizeof(*t));
t->len = (direction == DMA_TO_DEVICE)
? sizeof(scratch->status)
: 1;
t->tx_buf = host->ones;
t->tx_dma = host->ones_dma;
t->rx_buf = scratch->status;
if (dma)
t->rx_dma = dma + offsetof(struct scratch, status);
t->cs_change = 1;
spi_message_add_tail(t, &host->m);
}
}
/*
* Write one block:
* - caller handled preceding N(WR) [1+] all-ones bytes
* - data block
* + token
* + data bytes
* + crc16
* - an all-ones byte ... card writes a data-response byte
* - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
*
* Return negative errno, else success.
*/
static int
mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
unsigned long timeout)
{
struct spi_device *spi = host->spi;
int status, i;
struct scratch *scratch = host->data;
u32 pattern;
if (host->mmc->use_spi_crc)
scratch->crc_val = cpu_to_be16(
crc_itu_t(0, t->tx_buf, t->len));
if (host->dma_dev)
dma_sync_single_for_device(host->dma_dev,
host->data_dma, sizeof(*scratch),
DMA_BIDIRECTIONAL);
status = spi_sync_locked(spi, &host->m);
if (status != 0) {
dev_dbg(&spi->dev, "write error (%d)\n", status);
return status;
}
if (host->dma_dev)
dma_sync_single_for_cpu(host->dma_dev,
host->data_dma, sizeof(*scratch),
DMA_BIDIRECTIONAL);
/*
* Get the transmission data-response reply. It must follow
* immediately after the data block we transferred. This reply
* doesn't necessarily tell whether the write operation succeeded;
* it just says if the transmission was ok and whether *earlier*
* writes succeeded; see the standard.
*
* In practice, there are (even modern SDHC-)cards which are late
* in sending the response, and miss the time frame by a few bits,
* so we have to cope with this situation and check the response
* bit-by-bit. Arggh!!!
*/
pattern = get_unaligned_be32(scratch->status);
/* First 3 bit of pattern are undefined */
pattern |= 0xE0000000;
/* left-adjust to leading 0 bit */
while (pattern & 0x80000000)
pattern <<= 1;
/* right-adjust for pattern matching. Code is in bit 4..0 now. */
pattern >>= 27;
switch (pattern) {
case SPI_RESPONSE_ACCEPTED:
status = 0;
break;
case SPI_RESPONSE_CRC_ERR:
/* host shall then issue MMC_STOP_TRANSMISSION */
status = -EILSEQ;
break;
case SPI_RESPONSE_WRITE_ERR:
/* host shall then issue MMC_STOP_TRANSMISSION,
* and should MMC_SEND_STATUS to sort it out
*/
status = -EIO;
break;
default:
status = -EPROTO;
break;
}
if (status != 0) {
dev_dbg(&spi->dev, "write error %02x (%d)\n",
scratch->status[0], status);
return status;
}
t->tx_buf += t->len;
if (host->dma_dev)
t->tx_dma += t->len;
/* Return when not busy. If we didn't collect that status yet,
* we'll need some more I/O.
*/
for (i = 4; i < sizeof(scratch->status); i++) {
/* card is non-busy if the most recent bit is 1 */
if (scratch->status[i] & 0x01)
return 0;
}
return mmc_spi_wait_unbusy(host, timeout);
}
/*
* Read one block:
* - skip leading all-ones bytes ... either
* + N(AC) [1..f(clock,CSD)] usually, else
* + N(CX) [0..8] when reading CSD or CID
* - data block
* + token ... if error token, no data or crc
* + data bytes
* + crc16
*
* After single block reads, we're done; N(EC) [0+] all-ones bytes follow
* before dropping chipselect.
*
* For multiblock reads, caller either reads the next block or issues a
* STOP_TRANSMISSION command.
*/
static int
mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
unsigned long timeout)
{
struct spi_device *spi = host->spi;
int status;
struct scratch *scratch = host->data;
unsigned int bitshift;
u8 leftover;
/* At least one SD card sends an all-zeroes byte when N(CX)
* applies, before the all-ones bytes ... just cope with that.
*/
status = mmc_spi_readbytes(host, 1);
if (status < 0)
return status;
status = scratch->status[0];
if (status == 0xff || status == 0)
status = mmc_spi_readtoken(host, timeout);
if (status < 0) {
dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
return status;
}
/* The token may be bit-shifted...
* the first 0-bit precedes the data stream.
*/
bitshift = 7;
while (status & 0x80) {
status <<= 1;
bitshift--;
}
leftover = status << 1;
if (host->dma_dev) {
dma_sync_single_for_device(host->dma_dev,
host->data_dma, sizeof(*scratch),
DMA_BIDIRECTIONAL);
dma_sync_single_for_device(host->dma_dev,
t->rx_dma, t->len,
DMA_FROM_DEVICE);
}
status = spi_sync_locked(spi, &host->m);
if (status < 0) {
dev_dbg(&spi->dev, "read error %d\n", status);
return status;
}
if (host->dma_dev) {
dma_sync_single_for_cpu(host->dma_dev,
host->data_dma, sizeof(*scratch),
DMA_BIDIRECTIONAL);
dma_sync_single_for_cpu(host->dma_dev,
t->rx_dma, t->len,
DMA_FROM_DEVICE);
}
if (bitshift) {
/* Walk through the data and the crc and do
* all the magic to get byte-aligned data.
*/
u8 *cp = t->rx_buf;
unsigned int len;
unsigned int bitright = 8 - bitshift;
u8 temp;
for (len = t->len; len; len--) {
temp = *cp;
*cp++ = leftover | (temp >> bitshift);
leftover = temp << bitright;
}
cp = (u8 *) &scratch->crc_val;
temp = *cp;
*cp++ = leftover | (temp >> bitshift);
leftover = temp << bitright;
temp = *cp;
*cp = leftover | (temp >> bitshift);
}
if (host->mmc->use_spi_crc) {
u16 crc = crc_itu_t(0, t->rx_buf, t->len);
be16_to_cpus(&scratch->crc_val);
if (scratch->crc_val != crc) {
dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
"computed=0x%04x len=%d\n",
scratch->crc_val, crc, t->len);
return -EILSEQ;
}
}
t->rx_buf += t->len;
if (host->dma_dev)
t->rx_dma += t->len;
return 0;
}
/*
* An MMC/SD data stage includes one or more blocks, optional CRCs,
* and inline handshaking. That handhaking makes it unlike most
* other SPI protocol stacks.
*/
static void
mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
struct mmc_data *data, u32 blk_size)
{
struct spi_device *spi = host->spi;
struct device *dma_dev = host->dma_dev;
struct spi_transfer *t;
enum dma_data_direction direction;
struct scatterlist *sg;
unsigned n_sg;
int multiple = (data->blocks > 1);
u32 clock_rate;
unsigned long timeout;
direction = mmc_get_dma_dir(data);
mmc_spi_setup_data_message(host, multiple, direction);
t = &host->t;
if (t->speed_hz)
clock_rate = t->speed_hz;
else
clock_rate = spi->max_speed_hz;
timeout = data->timeout_ns +
data->timeout_clks * 1000000 / clock_rate;
timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
/* Handle scatterlist segments one at a time, with synch for
* each 512-byte block
*/
for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
int status = 0;
dma_addr_t dma_addr = 0;
void *kmap_addr;
unsigned length = sg->length;
enum dma_data_direction dir = direction;
/* set up dma mapping for controller drivers that might
* use DMA ... though they may fall back to PIO
*/
if (dma_dev) {
/* never invalidate whole *shared* pages ... */
if ((sg->offset != 0 || length != PAGE_SIZE)
&& dir == DMA_FROM_DEVICE)
dir = DMA_BIDIRECTIONAL;
dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
PAGE_SIZE, dir);
if (dma_mapping_error(dma_dev, dma_addr)) {
data->error = -EFAULT;
break;
}
if (direction == DMA_TO_DEVICE)
t->tx_dma = dma_addr + sg->offset;
else
t->rx_dma = dma_addr + sg->offset;
}
/* allow pio too; we don't allow highmem */
kmap_addr = kmap(sg_page(sg));
if (direction == DMA_TO_DEVICE)
t->tx_buf = kmap_addr + sg->offset;
else
t->rx_buf = kmap_addr + sg->offset;
/* transfer each block, and update request status */
while (length) {
t->len = min(length, blk_size);
dev_dbg(&host->spi->dev,
" mmc_spi: %s block, %d bytes\n",
(direction == DMA_TO_DEVICE)
? "write"
: "read",
t->len);
if (direction == DMA_TO_DEVICE)
status = mmc_spi_writeblock(host, t, timeout);
else
status = mmc_spi_readblock(host, t, timeout);
if (status < 0)
break;
data->bytes_xfered += t->len;
length -= t->len;
if (!multiple)
break;
}
/* discard mappings */
if (direction == DMA_FROM_DEVICE)
flush_kernel_dcache_page(sg_page(sg));
kunmap(sg_page(sg));
if (dma_dev)
dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
if (status < 0) {
data->error = status;
dev_dbg(&spi->dev, "%s status %d\n",
(direction == DMA_TO_DEVICE)
? "write" : "read",
status);
break;
}
}
/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
* can be issued before multiblock writes. Unlike its more widely
* documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
* that can affect the STOP_TRAN logic. Complete (and current)
* MMC specs should sort that out before Linux starts using CMD23.
*/
if (direction == DMA_TO_DEVICE && multiple) {
struct scratch *scratch = host->data;
int tmp;
const unsigned statlen = sizeof(scratch->status);
dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
/* Tweak the per-block message we set up earlier by morphing
* it to hold single buffer with the token followed by some
* all-ones bytes ... skip N(BR) (0..1), scan the rest for
* "not busy any longer" status, and leave chip selected.
*/
INIT_LIST_HEAD(&host->m.transfers);
list_add(&host->early_status.transfer_list,
&host->m.transfers);
memset(scratch->status, 0xff, statlen);
scratch->status[0] = SPI_TOKEN_STOP_TRAN;
host->early_status.tx_buf = host->early_status.rx_buf;
host->early_status.tx_dma = host->early_status.rx_dma;
host->early_status.len = statlen;
if (host->dma_dev)
dma_sync_single_for_device(host->dma_dev,
host->data_dma, sizeof(*scratch),
DMA_BIDIRECTIONAL);
tmp = spi_sync_locked(spi, &host->m);
if (host->dma_dev)
dma_sync_single_for_cpu(host->dma_dev,
host->data_dma, sizeof(*scratch),
DMA_BIDIRECTIONAL);
if (tmp < 0) {
if (!data->error)
data->error = tmp;
return;
}
/* Ideally we collected "not busy" status with one I/O,
* avoiding wasteful byte-at-a-time scanning... but more
* I/O is often needed.
*/
for (tmp = 2; tmp < statlen; tmp++) {
if (scratch->status[tmp] != 0)
return;
}
tmp = mmc_spi_wait_unbusy(host, timeout);
if (tmp < 0 && !data->error)
data->error = tmp;
}
}
/****************************************************************************/
/*
* MMC driver implementation -- the interface to the MMC stack
*/
static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmc_spi_host *host = mmc_priv(mmc);
int status = -EINVAL;
int crc_retry = 5;
struct mmc_command stop;
#ifdef DEBUG
/* MMC core and layered drivers *MUST* issue SPI-aware commands */
{
struct mmc_command *cmd;
int invalid = 0;
cmd = mrq->cmd;
if (!mmc_spi_resp_type(cmd)) {
dev_dbg(&host->spi->dev, "bogus command\n");
cmd->error = -EINVAL;
invalid = 1;
}
cmd = mrq->stop;
if (cmd && !mmc_spi_resp_type(cmd)) {
dev_dbg(&host->spi->dev, "bogus STOP command\n");
cmd->error = -EINVAL;
invalid = 1;
}
if (invalid) {
dump_stack();
mmc_request_done(host->mmc, mrq);
return;
}
}
#endif
/* request exclusive bus access */
spi_bus_lock(host->spi->master);
crc_recover:
/* issue command; then optionally data and stop */
status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
if (status == 0 && mrq->data) {
mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
/*
* The SPI bus is not always reliable for large data transfers.
* If an occasional crc error is reported by the SD device with
* data read/write over SPI, it may be recovered by repeating
* the last SD command again. The retry count is set to 5 to
* ensure the driver passes stress tests.
*/
if (mrq->data->error == -EILSEQ && crc_retry) {
stop.opcode = MMC_STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
status = mmc_spi_command_send(host, mrq, &stop, 0);
crc_retry--;
mrq->data->error = 0;
goto crc_recover;
}
if (mrq->stop)
status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
else
mmc_cs_off(host);
}
/* release the bus */
spi_bus_unlock(host->spi->master);
mmc_request_done(host->mmc, mrq);
}
/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
*
* NOTE that here we can't know that the card has just been powered up;
* not all MMC/SD sockets support power switching.
*
* FIXME when the card is still in SPI mode, e.g. from a previous kernel,
* this doesn't seem to do the right thing at all...
*/
static void mmc_spi_initsequence(struct mmc_spi_host *host)
{
/* Try to be very sure any previous command has completed;
* wait till not-busy, skip debris from any old commands.
*/
mmc_spi_wait_unbusy(host, r1b_timeout);
mmc_spi_readbytes(host, 10);
/*
* Do a burst with chipselect active-high. We need to do this to
* meet the requirement of 74 clock cycles with both chipselect
* and CMD (MOSI) high before CMD0 ... after the card has been
* powered up to Vdd(min), and so is ready to take commands.
*
* Some cards are particularly needy of this (e.g. Viking "SD256")
* while most others don't seem to care.
*
* Note that this is one of the places MMC/SD plays games with the
* SPI protocol. Another is that when chipselect is released while
* the card returns BUSY status, the clock must issue several cycles
* with chipselect high before the card will stop driving its output.
*/
host->spi->mode |= SPI_CS_HIGH;
if (spi_setup(host->spi) != 0) {
/* Just warn; most cards work without it. */
dev_warn(&host->spi->dev,
"can't change chip-select polarity\n");
host->spi->mode &= ~SPI_CS_HIGH;
} else {
mmc_spi_readbytes(host, 18);
host->spi->mode &= ~SPI_CS_HIGH;
if (spi_setup(host->spi) != 0) {
/* Wot, we can't get the same setup we had before? */
dev_err(&host->spi->dev,
"can't restore chip-select polarity\n");
}
}
}
static char *mmc_powerstring(u8 power_mode)
{
switch (power_mode) {
case MMC_POWER_OFF: return "off";
case MMC_POWER_UP: return "up";
case MMC_POWER_ON: return "on";
}
return "?";
}
static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_spi_host *host = mmc_priv(mmc);
if (host->power_mode != ios->power_mode) {
int canpower;
canpower = host->pdata && host->pdata->setpower;
dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
mmc_powerstring(ios->power_mode),
ios->vdd,
canpower ? ", can switch" : "");
/* switch power on/off if possible, accounting for
* max 250msec powerup time if needed.
*/
if (canpower) {
switch (ios->power_mode) {
case MMC_POWER_OFF:
case MMC_POWER_UP:
host->pdata->setpower(&host->spi->dev,
ios->vdd);
if (ios->power_mode == MMC_POWER_UP)
msleep(host->powerup_msecs);
}
}
/* See 6.4.1 in the simplified SD card physical spec 2.0 */
if (ios->power_mode == MMC_POWER_ON)
mmc_spi_initsequence(host);
/* If powering down, ground all card inputs to avoid power
* delivery from data lines! On a shared SPI bus, this
* will probably be temporary; 6.4.2 of the simplified SD
* spec says this must last at least 1msec.
*
* - Clock low means CPOL 0, e.g. mode 0
* - MOSI low comes from writing zero
* - Chipselect is usually active low...
*/
if (canpower && ios->power_mode == MMC_POWER_OFF) {
int mres;
u8 nullbyte = 0;
host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
mres = spi_setup(host->spi);
if (mres < 0)
dev_dbg(&host->spi->dev,
"switch to SPI mode 0 failed\n");
if (spi_write(host->spi, &nullbyte, 1) < 0)
dev_dbg(&host->spi->dev,
"put spi signals to low failed\n");
/*
* Now clock should be low due to spi mode 0;
* MOSI should be low because of written 0x00;
* chipselect should be low (it is active low)
* power supply is off, so now MMC is off too!
*
* FIXME no, chipselect can be high since the
* device is inactive and SPI_CS_HIGH is clear...
*/
msleep(10);
if (mres == 0) {
host->spi->mode |= (SPI_CPOL|SPI_CPHA);
mres = spi_setup(host->spi);
if (mres < 0)
dev_dbg(&host->spi->dev,
"switch back to SPI mode 3"
" failed\n");
}
}
host->power_mode = ios->power_mode;
}
if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
int status;
host->spi->max_speed_hz = ios->clock;
status = spi_setup(host->spi);
dev_dbg(&host->spi->dev,
"mmc_spi: clock to %d Hz, %d\n",
host->spi->max_speed_hz, status);
}
}
static const struct mmc_host_ops mmc_spi_ops = {
.request = mmc_spi_request,
.set_ios = mmc_spi_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
};
/****************************************************************************/
/*
* SPI driver implementation
*/
static irqreturn_t
mmc_spi_detect_irq(int irq, void *mmc)
{
struct mmc_spi_host *host = mmc_priv(mmc);
u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
return IRQ_HANDLED;
}
static int mmc_spi_probe(struct spi_device *spi)
{
void *ones;
struct mmc_host *mmc;
struct mmc_spi_host *host;
int status;
bool has_ro = false;
/* We rely on full duplex transfers, mostly to reduce
* per-transfer overheads (by making fewer transfers).
*/
if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
return -EINVAL;
/* MMC and SD specs only seem to care that sampling is on the
* rising edge ... meaning SPI modes 0 or 3. So either SPI mode
* should be legit. We'll use mode 0 since the steady state is 0,
* which is appropriate for hotplugging, unless the platform data
* specify mode 3 (if hardware is not compatible to mode 0).
*/
if (spi->mode != SPI_MODE_3)
spi->mode = SPI_MODE_0;
spi->bits_per_word = 8;
status = spi_setup(spi);
if (status < 0) {
dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
spi->mode, spi->max_speed_hz / 1000,
status);
return status;
}
/* We need a supply of ones to transmit. This is the only time
* the CPU touches these, so cache coherency isn't a concern.
*
* NOTE if many systems use more than one MMC-over-SPI connector
* it'd save some memory to share this. That's evidently rare.
*/
status = -ENOMEM;
ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
if (!ones)
goto nomem;
memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
if (!mmc)
goto nomem;
mmc->ops = &mmc_spi_ops;
mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
mmc->max_segs = MMC_SPI_BLOCKSATONCE;
mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
mmc->caps = MMC_CAP_SPI;
/* SPI doesn't need the lowspeed device identification thing for
* MMC or SD cards, since it never comes up in open drain mode.
* That's good; some SPI masters can't handle very low speeds!
*
* However, low speed SDIO cards need not handle over 400 KHz;
* that's the only reason not to use a few MHz for f_min (until
* the upper layer reads the target frequency from the CSD).
*/
mmc->f_min = 400000;
mmc->f_max = spi->max_speed_hz;
host = mmc_priv(mmc);
host->mmc = mmc;
host->spi = spi;
host->ones = ones;
/* Platform data is used to hook up things like card sensing
* and power switching gpios.
*/
host->pdata = mmc_spi_get_pdata(spi);
if (host->pdata)
mmc->ocr_avail = host->pdata->ocr_mask;
if (!mmc->ocr_avail) {
dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
}
if (host->pdata && host->pdata->setpower) {
host->powerup_msecs = host->pdata->powerup_msecs;
if (!host->powerup_msecs || host->powerup_msecs > 250)
host->powerup_msecs = 250;
}
dev_set_drvdata(&spi->dev, mmc);
/* preallocate dma buffers */
host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
if (!host->data)
goto fail_nobuf1;
if (spi->master->dev.parent->dma_mask) {
struct device *dev = spi->master->dev.parent;
host->dma_dev = dev;
host->ones_dma = dma_map_single(dev, ones,
MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dev, host->ones_dma))
goto fail_ones_dma;
host->data_dma = dma_map_single(dev, host->data,
sizeof(*host->data), DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, host->data_dma))
goto fail_data_dma;
dma_sync_single_for_cpu(host->dma_dev,
host->data_dma, sizeof(*host->data),
DMA_BIDIRECTIONAL);
}
/* setup message for status/busy readback */
spi_message_init(&host->readback);
host->readback.is_dma_mapped = (host->dma_dev != NULL);
spi_message_add_tail(&host->status, &host->readback);
host->status.tx_buf = host->ones;
host->status.tx_dma = host->ones_dma;
host->status.rx_buf = &host->data->status;
host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
host->status.cs_change = 1;
/* register card detect irq */
if (host->pdata && host->pdata->init) {
status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
if (status != 0)
goto fail_glue_init;
}
/* pass platform capabilities, if any */
if (host->pdata) {
mmc->caps |= host->pdata->caps;
mmc->caps2 |= host->pdata->caps2;
}
status = mmc_add_host(mmc);
if (status != 0)
goto fail_add_host;
/*
* Index 0 is card detect
* Old boardfiles were specifying 1 ms as debounce
*/
status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1, NULL);
if (status == -EPROBE_DEFER)
goto fail_add_host;
if (!status) {
/*
* The platform has a CD GPIO signal that may support
* interrupts, so let mmc_gpiod_request_cd_irq() decide
* if polling is needed or not.
*/
mmc->caps &= ~MMC_CAP_NEEDS_POLL;
mmc_gpiod_request_cd_irq(mmc);
}
mmc_detect_change(mmc, 0);
/* Index 1 is write protect/read only */
status = mmc_gpiod_request_ro(mmc, NULL, 1, 0, NULL);
if (status == -EPROBE_DEFER)
goto fail_add_host;
if (!status)
has_ro = true;
dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
dev_name(&mmc->class_dev),
host->dma_dev ? "" : ", no DMA",
has_ro ? "" : ", no WP",
(host->pdata && host->pdata->setpower)
? "" : ", no poweroff",
(mmc->caps & MMC_CAP_NEEDS_POLL)
? ", cd polling" : "");
return 0;
fail_add_host:
mmc_remove_host (mmc);
fail_glue_init:
if (host->dma_dev)
dma_unmap_single(host->dma_dev, host->data_dma,
sizeof(*host->data), DMA_BIDIRECTIONAL);
fail_data_dma:
if (host->dma_dev)
dma_unmap_single(host->dma_dev, host->ones_dma,
MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
fail_ones_dma:
kfree(host->data);
fail_nobuf1:
mmc_free_host(mmc);
mmc_spi_put_pdata(spi);
dev_set_drvdata(&spi->dev, NULL);
nomem:
kfree(ones);
return status;
}
static int mmc_spi_remove(struct spi_device *spi)
{
struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
struct mmc_spi_host *host;
if (mmc) {
host = mmc_priv(mmc);
/* prevent new mmc_detect_change() calls */
if (host->pdata && host->pdata->exit)
host->pdata->exit(&spi->dev, mmc);
mmc_remove_host(mmc);
if (host->dma_dev) {
dma_unmap_single(host->dma_dev, host->ones_dma,
MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
dma_unmap_single(host->dma_dev, host->data_dma,
sizeof(*host->data), DMA_BIDIRECTIONAL);
}
kfree(host->data);
kfree(host->ones);
spi->max_speed_hz = mmc->f_max;
mmc_free_host(mmc);
mmc_spi_put_pdata(spi);
dev_set_drvdata(&spi->dev, NULL);
}
return 0;
}
static const struct of_device_id mmc_spi_of_match_table[] = {
{ .compatible = "mmc-spi-slot", },
{},
};
MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
static struct spi_driver mmc_spi_driver = {
.driver = {
.name = "mmc_spi",
.of_match_table = mmc_spi_of_match_table,
},
.probe = mmc_spi_probe,
.remove = mmc_spi_remove,
};
module_spi_driver(mmc_spi_driver);
MODULE_AUTHOR("Mike Lavender, David Brownell, "
"Hans-Peter Nilsson, Jan Nikitenko");
MODULE_DESCRIPTION("SPI SD/MMC host driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:mmc_spi");
|