summaryrefslogtreecommitdiff
path: root/drivers/iio/afe/iio-rescale.c
blob: 6949d2151025e88ba4d74e58117ba5865c1dc4d4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
// SPDX-License-Identifier: GPL-2.0
/*
 * IIO rescale driver
 *
 * Copyright (C) 2018 Axentia Technologies AB
 * Copyright (C) 2022 Liam Beguin <liambeguin@gmail.com>
 *
 * Author: Peter Rosin <peda@axentia.se>
 */

#include <linux/err.h>
#include <linux/gcd.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>

#include <linux/iio/afe/rescale.h>
#include <linux/iio/consumer.h>
#include <linux/iio/iio.h>

int rescale_process_scale(struct rescale *rescale, int scale_type,
			  int *val, int *val2)
{
	s64 tmp;
	int _val, _val2;
	s32 rem, rem2;
	u32 mult;
	u32 neg;

	switch (scale_type) {
	case IIO_VAL_INT:
		*val *= rescale->numerator;
		if (rescale->denominator == 1)
			return scale_type;
		*val2 = rescale->denominator;
		return IIO_VAL_FRACTIONAL;
	case IIO_VAL_FRACTIONAL:
		/*
		 * When the product of both scales doesn't overflow, avoid
		 * potential accuracy loss (for in kernel consumers) by
		 * keeping a fractional representation.
		 */
		if (!check_mul_overflow(*val, rescale->numerator, &_val) &&
		    !check_mul_overflow(*val2, rescale->denominator, &_val2)) {
			*val = _val;
			*val2 = _val2;
			return IIO_VAL_FRACTIONAL;
		}
		fallthrough;
	case IIO_VAL_FRACTIONAL_LOG2:
		tmp = (s64)*val * 1000000000LL;
		tmp = div_s64(tmp, rescale->denominator);
		tmp *= rescale->numerator;

		tmp = div_s64_rem(tmp, 1000000000LL, &rem);
		*val = tmp;

		if (!rem)
			return scale_type;

		if (scale_type == IIO_VAL_FRACTIONAL)
			tmp = *val2;
		else
			tmp = ULL(1) << *val2;

		rem2 = *val % (int)tmp;
		*val = *val / (int)tmp;

		*val2 = rem / (int)tmp;
		if (rem2)
			*val2 += div_s64((s64)rem2 * 1000000000LL, tmp);

		return IIO_VAL_INT_PLUS_NANO;
	case IIO_VAL_INT_PLUS_NANO:
	case IIO_VAL_INT_PLUS_MICRO:
		mult = scale_type == IIO_VAL_INT_PLUS_NANO ? 1000000000L : 1000000L;

		/*
		 * For IIO_VAL_INT_PLUS_{MICRO,NANO} scale types if either *val
		 * OR *val2 is negative the schan scale is negative, i.e.
		 * *val = 1 and *val2 = -0.5 yields -1.5 not -0.5.
		 */
		neg = *val < 0 || *val2 < 0;

		tmp = (s64)abs(*val) * abs(rescale->numerator);
		*val = div_s64_rem(tmp, abs(rescale->denominator), &rem);

		tmp = (s64)rem * mult + (s64)abs(*val2) * abs(rescale->numerator);
		tmp = div_s64(tmp, abs(rescale->denominator));

		*val += div_s64_rem(tmp, mult, val2);

		/*
		 * If only one of the rescaler elements or the schan scale is
		 * negative, the combined scale is negative.
		 */
		if (neg ^ ((rescale->numerator < 0) ^ (rescale->denominator < 0))) {
			if (*val)
				*val = -*val;
			else
				*val2 = -*val2;
		}

		return scale_type;
	default:
		return -EOPNOTSUPP;
	}
}

int rescale_process_offset(struct rescale *rescale, int scale_type,
			   int scale, int scale2, int schan_off,
			   int *val, int *val2)
{
	s64 tmp, tmp2;

	switch (scale_type) {
	case IIO_VAL_FRACTIONAL:
		tmp = (s64)rescale->offset * scale2;
		*val = div_s64(tmp, scale) + schan_off;
		return IIO_VAL_INT;
	case IIO_VAL_INT:
		*val = div_s64(rescale->offset, scale) + schan_off;
		return IIO_VAL_INT;
	case IIO_VAL_FRACTIONAL_LOG2:
		tmp = (s64)rescale->offset * (1 << scale2);
		*val = div_s64(tmp, scale) + schan_off;
		return IIO_VAL_INT;
	case IIO_VAL_INT_PLUS_NANO:
		tmp = (s64)rescale->offset * 1000000000LL;
		tmp2 = ((s64)scale * 1000000000LL) + scale2;
		*val = div64_s64(tmp, tmp2) + schan_off;
		return IIO_VAL_INT;
	case IIO_VAL_INT_PLUS_MICRO:
		tmp = (s64)rescale->offset * 1000000LL;
		tmp2 = ((s64)scale * 1000000LL) + scale2;
		*val = div64_s64(tmp, tmp2) + schan_off;
		return IIO_VAL_INT;
	default:
		return -EOPNOTSUPP;
	}
}

static int rescale_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int *val, int *val2, long mask)
{
	struct rescale *rescale = iio_priv(indio_dev);
	int scale, scale2;
	int schan_off = 0;
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		if (rescale->chan_processed)
			/*
			 * When only processed channels are supported, we
			 * read the processed data and scale it by 1/1
			 * augmented with whatever the rescaler has calculated.
			 */
			return iio_read_channel_processed(rescale->source, val);
		else
			return iio_read_channel_raw(rescale->source, val);

	case IIO_CHAN_INFO_SCALE:
		if (rescale->chan_processed) {
			/*
			 * Processed channels are scaled 1-to-1
			 */
			*val = 1;
			*val2 = 1;
			ret = IIO_VAL_FRACTIONAL;
		} else {
			ret = iio_read_channel_scale(rescale->source, val, val2);
		}
		return rescale_process_scale(rescale, ret, val, val2);
	case IIO_CHAN_INFO_OFFSET:
		/*
		 * Processed channels are scaled 1-to-1 and source offset is
		 * already taken into account.
		 *
		 * In other cases, real world measurement are expressed as:
		 *
		 *	schan_scale * (raw + schan_offset)
		 *
		 * Given that the rescaler parameters are applied recursively:
		 *
		 *	rescaler_scale * (schan_scale * (raw + schan_offset) +
		 *		rescaler_offset)
		 *
		 * Or,
		 *
		 *	(rescaler_scale * schan_scale) * (raw +
		 *		(schan_offset +	rescaler_offset / schan_scale)
		 *
		 * Thus, reusing the original expression the parameters exposed
		 * to userspace are:
		 *
		 *	scale = schan_scale * rescaler_scale
		 *	offset = schan_offset + rescaler_offset / schan_scale
		 */
		if (rescale->chan_processed) {
			*val = rescale->offset;
			return IIO_VAL_INT;
		}

		if (iio_channel_has_info(rescale->source->channel,
					 IIO_CHAN_INFO_OFFSET)) {
			ret = iio_read_channel_offset(rescale->source,
						      &schan_off, NULL);
			if (ret != IIO_VAL_INT)
				return ret < 0 ? ret : -EOPNOTSUPP;
		}

		ret = iio_read_channel_scale(rescale->source, &scale, &scale2);
		return rescale_process_offset(rescale, ret, scale, scale2,
					      schan_off, val, val2);
	default:
		return -EINVAL;
	}
}

static int rescale_read_avail(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      const int **vals, int *type, int *length,
			      long mask)
{
	struct rescale *rescale = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		*type = IIO_VAL_INT;
		return iio_read_avail_channel_raw(rescale->source,
						  vals, length);
	default:
		return -EINVAL;
	}
}

static const struct iio_info rescale_info = {
	.read_raw = rescale_read_raw,
	.read_avail = rescale_read_avail,
};

static ssize_t rescale_read_ext_info(struct iio_dev *indio_dev,
				     uintptr_t private,
				     struct iio_chan_spec const *chan,
				     char *buf)
{
	struct rescale *rescale = iio_priv(indio_dev);

	return iio_read_channel_ext_info(rescale->source,
					 rescale->ext_info[private].name,
					 buf);
}

static ssize_t rescale_write_ext_info(struct iio_dev *indio_dev,
				      uintptr_t private,
				      struct iio_chan_spec const *chan,
				      const char *buf, size_t len)
{
	struct rescale *rescale = iio_priv(indio_dev);

	return iio_write_channel_ext_info(rescale->source,
					  rescale->ext_info[private].name,
					  buf, len);
}

static int rescale_configure_channel(struct device *dev,
				     struct rescale *rescale)
{
	struct iio_chan_spec *chan = &rescale->chan;
	struct iio_chan_spec const *schan = rescale->source->channel;

	chan->indexed = 1;
	chan->output = schan->output;
	chan->ext_info = rescale->ext_info;
	chan->type = rescale->cfg->type;

	if (iio_channel_has_info(schan, IIO_CHAN_INFO_RAW) &&
	    iio_channel_has_info(schan, IIO_CHAN_INFO_SCALE)) {
		dev_info(dev, "using raw+scale source channel\n");
	} else if (iio_channel_has_info(schan, IIO_CHAN_INFO_PROCESSED)) {
		dev_info(dev, "using processed channel\n");
		rescale->chan_processed = true;
	} else {
		dev_err(dev, "source channel is not supported\n");
		return -EINVAL;
	}

	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
		BIT(IIO_CHAN_INFO_SCALE);

	if (rescale->offset)
		chan->info_mask_separate |= BIT(IIO_CHAN_INFO_OFFSET);

	/*
	 * Using .read_avail() is fringe to begin with and makes no sense
	 * whatsoever for processed channels, so we make sure that this cannot
	 * be called on a processed channel.
	 */
	if (iio_channel_has_available(schan, IIO_CHAN_INFO_RAW) &&
	    !rescale->chan_processed)
		chan->info_mask_separate_available |= BIT(IIO_CHAN_INFO_RAW);

	return 0;
}

static int rescale_current_sense_amplifier_props(struct device *dev,
						 struct rescale *rescale)
{
	u32 sense;
	u32 gain_mult = 1;
	u32 gain_div = 1;
	u32 factor;
	int ret;

	ret = device_property_read_u32(dev, "sense-resistor-micro-ohms",
				       &sense);
	if (ret) {
		dev_err(dev, "failed to read the sense resistance: %d\n", ret);
		return ret;
	}

	device_property_read_u32(dev, "sense-gain-mult", &gain_mult);
	device_property_read_u32(dev, "sense-gain-div", &gain_div);

	/*
	 * Calculate the scaling factor, 1 / (gain * sense), or
	 * gain_div / (gain_mult * sense), while trying to keep the
	 * numerator/denominator from overflowing.
	 */
	factor = gcd(sense, 1000000);
	rescale->numerator = 1000000 / factor;
	rescale->denominator = sense / factor;

	factor = gcd(rescale->numerator, gain_mult);
	rescale->numerator /= factor;
	rescale->denominator *= gain_mult / factor;

	factor = gcd(rescale->denominator, gain_div);
	rescale->numerator *= gain_div / factor;
	rescale->denominator /= factor;

	return 0;
}

static int rescale_current_sense_shunt_props(struct device *dev,
					     struct rescale *rescale)
{
	u32 shunt;
	u32 factor;
	int ret;

	ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms",
				       &shunt);
	if (ret) {
		dev_err(dev, "failed to read the shunt resistance: %d\n", ret);
		return ret;
	}

	factor = gcd(shunt, 1000000);
	rescale->numerator = 1000000 / factor;
	rescale->denominator = shunt / factor;

	return 0;
}

static int rescale_voltage_divider_props(struct device *dev,
					 struct rescale *rescale)
{
	int ret;
	u32 factor;

	ret = device_property_read_u32(dev, "output-ohms",
				       &rescale->denominator);
	if (ret) {
		dev_err(dev, "failed to read output-ohms: %d\n", ret);
		return ret;
	}

	ret = device_property_read_u32(dev, "full-ohms",
				       &rescale->numerator);
	if (ret) {
		dev_err(dev, "failed to read full-ohms: %d\n", ret);
		return ret;
	}

	factor = gcd(rescale->numerator, rescale->denominator);
	rescale->numerator /= factor;
	rescale->denominator /= factor;

	return 0;
}

static int rescale_temp_sense_rtd_props(struct device *dev,
					struct rescale *rescale)
{
	u32 factor;
	u32 alpha;
	u32 iexc;
	u32 tmp;
	int ret;
	u32 r0;

	ret = device_property_read_u32(dev, "excitation-current-microamp",
				       &iexc);
	if (ret) {
		dev_err(dev, "failed to read excitation-current-microamp: %d\n",
			ret);
		return ret;
	}

	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
	if (ret) {
		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n",
			ret);
		return ret;
	}

	ret = device_property_read_u32(dev, "r-naught-ohms", &r0);
	if (ret) {
		dev_err(dev, "failed to read r-naught-ohms: %d\n", ret);
		return ret;
	}

	tmp = r0 * iexc * alpha / 1000000;
	factor = gcd(tmp, 1000000);
	rescale->numerator = 1000000 / factor;
	rescale->denominator = tmp / factor;

	rescale->offset = -1 * ((r0 * iexc) / 1000);

	return 0;
}

static int rescale_temp_transducer_props(struct device *dev,
					 struct rescale *rescale)
{
	s32 offset = 0;
	s32 sense = 1;
	s32 alpha;
	int ret;

	device_property_read_u32(dev, "sense-offset-millicelsius", &offset);
	device_property_read_u32(dev, "sense-resistor-ohms", &sense);
	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
	if (ret) {
		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n", ret);
		return ret;
	}

	rescale->numerator = 1000000;
	rescale->denominator = alpha * sense;

	rescale->offset = div_s64((s64)offset * rescale->denominator,
				  rescale->numerator);

	return 0;
}

enum rescale_variant {
	CURRENT_SENSE_AMPLIFIER,
	CURRENT_SENSE_SHUNT,
	VOLTAGE_DIVIDER,
	TEMP_SENSE_RTD,
	TEMP_TRANSDUCER,
};

static const struct rescale_cfg rescale_cfg[] = {
	[CURRENT_SENSE_AMPLIFIER] = {
		.type = IIO_CURRENT,
		.props = rescale_current_sense_amplifier_props,
	},
	[CURRENT_SENSE_SHUNT] = {
		.type = IIO_CURRENT,
		.props = rescale_current_sense_shunt_props,
	},
	[VOLTAGE_DIVIDER] = {
		.type = IIO_VOLTAGE,
		.props = rescale_voltage_divider_props,
	},
	[TEMP_SENSE_RTD] = {
		.type = IIO_TEMP,
		.props = rescale_temp_sense_rtd_props,
	},
	[TEMP_TRANSDUCER] = {
		.type = IIO_TEMP,
		.props = rescale_temp_transducer_props,
	},
};

static const struct of_device_id rescale_match[] = {
	{ .compatible = "current-sense-amplifier",
	  .data = &rescale_cfg[CURRENT_SENSE_AMPLIFIER], },
	{ .compatible = "current-sense-shunt",
	  .data = &rescale_cfg[CURRENT_SENSE_SHUNT], },
	{ .compatible = "voltage-divider",
	  .data = &rescale_cfg[VOLTAGE_DIVIDER], },
	{ .compatible = "temperature-sense-rtd",
	  .data = &rescale_cfg[TEMP_SENSE_RTD], },
	{ .compatible = "temperature-transducer",
	  .data = &rescale_cfg[TEMP_TRANSDUCER], },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rescale_match);

static int rescale_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct iio_dev *indio_dev;
	struct iio_channel *source;
	struct rescale *rescale;
	int sizeof_ext_info;
	int sizeof_priv;
	int i;
	int ret;

	source = devm_iio_channel_get(dev, NULL);
	if (IS_ERR(source))
		return dev_err_probe(dev, PTR_ERR(source),
				     "failed to get source channel\n");

	sizeof_ext_info = iio_get_channel_ext_info_count(source);
	if (sizeof_ext_info) {
		sizeof_ext_info += 1; /* one extra entry for the sentinel */
		sizeof_ext_info *= sizeof(*rescale->ext_info);
	}

	sizeof_priv = sizeof(*rescale) + sizeof_ext_info;

	indio_dev = devm_iio_device_alloc(dev, sizeof_priv);
	if (!indio_dev)
		return -ENOMEM;

	rescale = iio_priv(indio_dev);

	rescale->cfg = device_get_match_data(dev);
	rescale->numerator = 1;
	rescale->denominator = 1;
	rescale->offset = 0;

	ret = rescale->cfg->props(dev, rescale);
	if (ret)
		return ret;

	if (!rescale->numerator || !rescale->denominator) {
		dev_err(dev, "invalid scaling factor.\n");
		return -EINVAL;
	}

	platform_set_drvdata(pdev, indio_dev);

	rescale->source = source;

	indio_dev->name = dev_name(dev);
	indio_dev->info = &rescale_info;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->channels = &rescale->chan;
	indio_dev->num_channels = 1;
	if (sizeof_ext_info) {
		rescale->ext_info = devm_kmemdup(dev,
						 source->channel->ext_info,
						 sizeof_ext_info, GFP_KERNEL);
		if (!rescale->ext_info)
			return -ENOMEM;

		for (i = 0; rescale->ext_info[i].name; ++i) {
			struct iio_chan_spec_ext_info *ext_info =
				&rescale->ext_info[i];

			if (source->channel->ext_info[i].read)
				ext_info->read = rescale_read_ext_info;
			if (source->channel->ext_info[i].write)
				ext_info->write = rescale_write_ext_info;
			ext_info->private = i;
		}
	}

	ret = rescale_configure_channel(dev, rescale);
	if (ret)
		return ret;

	return devm_iio_device_register(dev, indio_dev);
}

static struct platform_driver rescale_driver = {
	.probe = rescale_probe,
	.driver = {
		.name = "iio-rescale",
		.of_match_table = rescale_match,
	},
};
module_platform_driver(rescale_driver);

MODULE_DESCRIPTION("IIO rescale driver");
MODULE_AUTHOR("Peter Rosin <peda@axentia.se>");
MODULE_LICENSE("GPL v2");