1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* ADXL345 3-Axis Digital Accelerometer IIO core driver
*
* Copyright (c) 2017 Eva Rachel Retuya <eraretuya@gmail.com>
*
* Datasheet: http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
*/
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include "adxl345.h"
#define ADXL345_REG_DEVID 0x00
#define ADXL345_REG_OFSX 0x1e
#define ADXL345_REG_OFSY 0x1f
#define ADXL345_REG_OFSZ 0x20
#define ADXL345_REG_OFS_AXIS(index) (ADXL345_REG_OFSX + (index))
#define ADXL345_REG_BW_RATE 0x2C
#define ADXL345_REG_POWER_CTL 0x2D
#define ADXL345_REG_DATA_FORMAT 0x31
#define ADXL345_REG_DATAX0 0x32
#define ADXL345_REG_DATAY0 0x34
#define ADXL345_REG_DATAZ0 0x36
#define ADXL345_REG_DATA_AXIS(index) \
(ADXL345_REG_DATAX0 + (index) * sizeof(__le16))
#define ADXL345_BW_RATE GENMASK(3, 0)
#define ADXL345_BASE_RATE_NANO_HZ 97656250LL
#define NHZ_PER_HZ 1000000000LL
#define ADXL345_POWER_CTL_MEASURE BIT(3)
#define ADXL345_POWER_CTL_STANDBY 0x00
#define ADXL345_DATA_FORMAT_FULL_RES BIT(3) /* Up to 13-bits resolution */
#define ADXL345_DATA_FORMAT_2G 0
#define ADXL345_DATA_FORMAT_4G 1
#define ADXL345_DATA_FORMAT_8G 2
#define ADXL345_DATA_FORMAT_16G 3
#define ADXL345_DEVID 0xE5
/*
* In full-resolution mode, scale factor is maintained at ~4 mg/LSB
* in all g ranges.
*
* At +/- 16g with 13-bit resolution, scale is computed as:
* (16 + 16) * 9.81 / (2^13 - 1) = 0.0383
*/
static const int adxl345_uscale = 38300;
/*
* The Datasheet lists a resolution of Resolution is ~49 mg per LSB. That's
* ~480mm/s**2 per LSB.
*/
static const int adxl375_uscale = 480000;
struct adxl345_data {
struct regmap *regmap;
u8 data_range;
enum adxl345_device_type type;
};
#define ADXL345_CHANNEL(index, axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.address = index, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
}
static const struct iio_chan_spec adxl345_channels[] = {
ADXL345_CHANNEL(0, X),
ADXL345_CHANNEL(1, Y),
ADXL345_CHANNEL(2, Z),
};
static int adxl345_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct adxl345_data *data = iio_priv(indio_dev);
__le16 accel;
long long samp_freq_nhz;
unsigned int regval;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
/*
* Data is stored in adjacent registers:
* ADXL345_REG_DATA(X0/Y0/Z0) contain the least significant byte
* and ADXL345_REG_DATA(X0/Y0/Z0) + 1 the most significant byte
*/
ret = regmap_bulk_read(data->regmap,
ADXL345_REG_DATA_AXIS(chan->address),
&accel, sizeof(accel));
if (ret < 0)
return ret;
*val = sign_extend32(le16_to_cpu(accel), 12);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
switch (data->type) {
case ADXL345:
*val2 = adxl345_uscale;
break;
case ADXL375:
*val2 = adxl375_uscale;
break;
}
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_CALIBBIAS:
ret = regmap_read(data->regmap,
ADXL345_REG_OFS_AXIS(chan->address), ®val);
if (ret < 0)
return ret;
/*
* 8-bit resolution at +/- 2g, that is 4x accel data scale
* factor
*/
*val = sign_extend32(regval, 7) * 4;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = regmap_read(data->regmap, ADXL345_REG_BW_RATE, ®val);
if (ret < 0)
return ret;
samp_freq_nhz = ADXL345_BASE_RATE_NANO_HZ <<
(regval & ADXL345_BW_RATE);
*val = div_s64_rem(samp_freq_nhz, NHZ_PER_HZ, val2);
return IIO_VAL_INT_PLUS_NANO;
}
return -EINVAL;
}
static int adxl345_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct adxl345_data *data = iio_priv(indio_dev);
s64 n;
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
/*
* 8-bit resolution at +/- 2g, that is 4x accel data scale
* factor
*/
return regmap_write(data->regmap,
ADXL345_REG_OFS_AXIS(chan->address),
val / 4);
case IIO_CHAN_INFO_SAMP_FREQ:
n = div_s64(val * NHZ_PER_HZ + val2, ADXL345_BASE_RATE_NANO_HZ);
return regmap_update_bits(data->regmap, ADXL345_REG_BW_RATE,
ADXL345_BW_RATE,
clamp_val(ilog2(n), 0,
ADXL345_BW_RATE));
}
return -EINVAL;
}
static int adxl345_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
}
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"0.09765625 0.1953125 0.390625 0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600 3200"
);
static struct attribute *adxl345_attrs[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group adxl345_attrs_group = {
.attrs = adxl345_attrs,
};
static const struct iio_info adxl345_info = {
.attrs = &adxl345_attrs_group,
.read_raw = adxl345_read_raw,
.write_raw = adxl345_write_raw,
.write_raw_get_fmt = adxl345_write_raw_get_fmt,
};
int adxl345_core_probe(struct device *dev, struct regmap *regmap,
enum adxl345_device_type type, const char *name)
{
struct adxl345_data *data;
struct iio_dev *indio_dev;
u32 regval;
int ret;
ret = regmap_read(regmap, ADXL345_REG_DEVID, ®val);
if (ret < 0) {
dev_err(dev, "Error reading device ID: %d\n", ret);
return ret;
}
if (regval != ADXL345_DEVID) {
dev_err(dev, "Invalid device ID: %x, expected %x\n",
regval, ADXL345_DEVID);
return -ENODEV;
}
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
data->type = type;
/* Enable full-resolution mode */
data->data_range = ADXL345_DATA_FORMAT_FULL_RES;
ret = regmap_write(data->regmap, ADXL345_REG_DATA_FORMAT,
data->data_range);
if (ret < 0) {
dev_err(dev, "Failed to set data range: %d\n", ret);
return ret;
}
indio_dev->name = name;
indio_dev->info = &adxl345_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adxl345_channels;
indio_dev->num_channels = ARRAY_SIZE(adxl345_channels);
/* Enable measurement mode */
ret = regmap_write(data->regmap, ADXL345_REG_POWER_CTL,
ADXL345_POWER_CTL_MEASURE);
if (ret < 0) {
dev_err(dev, "Failed to enable measurement mode: %d\n", ret);
return ret;
}
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(dev, "iio_device_register failed: %d\n", ret);
regmap_write(data->regmap, ADXL345_REG_POWER_CTL,
ADXL345_POWER_CTL_STANDBY);
}
return ret;
}
EXPORT_SYMBOL_GPL(adxl345_core_probe);
int adxl345_core_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct adxl345_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
return regmap_write(data->regmap, ADXL345_REG_POWER_CTL,
ADXL345_POWER_CTL_STANDBY);
}
EXPORT_SYMBOL_GPL(adxl345_core_remove);
MODULE_AUTHOR("Eva Rachel Retuya <eraretuya@gmail.com>");
MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer core driver");
MODULE_LICENSE("GPL v2");
|