summaryrefslogtreecommitdiff
path: root/drivers/hwmon/adm1031.c
blob: b42797bcb5b479ed22fa9089299f4fb7e36ba240 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
 *	       monitoring
 * Based on lm75.c and lm85.c
 * Supports adm1030 / adm1031
 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
 * Reworked by Jean Delvare <jdelvare@suse.de>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>

/* Following macros takes channel parameter starting from 0 to 2 */
#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
#define ADM1031_REG_PWM			(0x22)
#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
#define ADM1031_REG_FAN_FILTER		(0x23)

#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))

#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))

#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))

#define ADM1031_REG_CONF1		0x00
#define ADM1031_REG_CONF2		0x01
#define ADM1031_REG_EXT_TEMP		0x06

#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */

#define ADM1031_CONF2_PWM1_ENABLE	0x01
#define ADM1031_CONF2_PWM2_ENABLE	0x02
#define ADM1031_CONF2_TACH1_ENABLE	0x04
#define ADM1031_CONF2_TACH2_ENABLE	0x08
#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))

#define ADM1031_UPDATE_RATE_MASK	0x1c
#define ADM1031_UPDATE_RATE_SHIFT	2

/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };

enum chips { adm1030, adm1031 };

typedef u8 auto_chan_table_t[8][2];

/* Each client has this additional data */
struct adm1031_data {
	struct i2c_client *client;
	const struct attribute_group *groups[3];
	struct mutex update_lock;
	int chip_type;
	bool valid;		/* true if following fields are valid */
	unsigned long last_updated;	/* In jiffies */
	unsigned int update_interval;	/* In milliseconds */
	/*
	 * The chan_select_table contains the possible configurations for
	 * auto fan control.
	 */
	const auto_chan_table_t *chan_select_table;
	u16 alarm;
	u8 conf1;
	u8 conf2;
	u8 fan[2];
	u8 fan_div[2];
	u8 fan_min[2];
	u8 pwm[2];
	u8 old_pwm[2];
	s8 temp[3];
	u8 ext_temp[3];
	u8 auto_temp[3];
	u8 auto_temp_min[3];
	u8 auto_temp_off[3];
	u8 auto_temp_max[3];
	s8 temp_offset[3];
	s8 temp_min[3];
	s8 temp_max[3];
	s8 temp_crit[3];
};

static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
{
	return i2c_smbus_read_byte_data(client, reg);
}

static inline int
adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
{
	return i2c_smbus_write_byte_data(client, reg, value);
}

static struct adm1031_data *adm1031_update_device(struct device *dev)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long next_update;
	int chan;

	mutex_lock(&data->update_lock);

	next_update = data->last_updated
	  + msecs_to_jiffies(data->update_interval);
	if (time_after(jiffies, next_update) || !data->valid) {

		dev_dbg(&client->dev, "Starting adm1031 update\n");
		for (chan = 0;
		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
			u8 oldh, newh;

			oldh =
			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
			data->ext_temp[chan] =
			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
			newh =
			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
			if (newh != oldh) {
				data->ext_temp[chan] =
				    adm1031_read_value(client,
						       ADM1031_REG_EXT_TEMP);
#ifdef DEBUG
				oldh =
				    adm1031_read_value(client,
						       ADM1031_REG_TEMP(chan));

				/* oldh is actually newer */
				if (newh != oldh)
					dev_warn(&client->dev,
					  "Remote temperature may be wrong.\n");
#endif
			}
			data->temp[chan] = newh;

			data->temp_offset[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_TEMP_OFFSET(chan));
			data->temp_min[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_TEMP_MIN(chan));
			data->temp_max[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_TEMP_MAX(chan));
			data->temp_crit[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_TEMP_CRIT(chan));
			data->auto_temp[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_AUTO_TEMP(chan));

		}

		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);

		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
		if (data->chip_type == adm1030)
			data->alarm &= 0xc0ff;

		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
		     chan++) {
			data->fan_div[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_FAN_DIV(chan));
			data->fan_min[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_FAN_MIN(chan));
			data->fan[chan] =
			    adm1031_read_value(client,
					       ADM1031_REG_FAN_SPEED(chan));
			data->pwm[chan] =
			  (adm1031_read_value(client,
					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
		}
		data->last_updated = jiffies;
		data->valid = true;
	}

	mutex_unlock(&data->update_lock);

	return data;
}

#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
					((val + 500) / 1000)))

#define TEMP_FROM_REG(val)		((val) * 1000)

#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)

#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
						      (val) | 0x70 : (val))

#define FAN_FROM_REG(reg, div)		((reg) ? \
					 (11250 * 60) / ((reg) * (div)) : 0)

static int FAN_TO_REG(int reg, int div)
{
	int tmp;
	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
	return tmp > 255 ? 255 : tmp;
}

#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))

#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
#define PWM_FROM_REG(val)		((val) << 4)

#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
#define FAN_CHAN_TO_REG(val, reg)	\
	(((reg) & 0x1F) | (((val) << 5) & 0xe0))

#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
	((((val) / 500) & 0xf8) | ((reg) & 0x7))
#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))

#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)

#define AUTO_TEMP_OFF_FROM_REG(reg)		\
	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)

#define AUTO_TEMP_MAX_FROM_REG(reg)		\
	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
	AUTO_TEMP_MIN_FROM_REG(reg))

static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
{
	int ret;
	int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);

	ret = ((reg & 0xf8) |
	       (range < 10000 ? 0 :
		range < 20000 ? 1 :
		range < 40000 ? 2 : range < 80000 ? 3 : 4));
	return ret;
}

/* FAN auto control */
#define GET_FAN_AUTO_BITFIELD(data, idx)	\
	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]

/*
 * The tables below contains the possible values for the auto fan
 * control bitfields. the index in the table is the register value.
 * MSb is the auto fan control enable bit, so the four first entries
 * in the table disables auto fan control when both bitfields are zero.
 */
static const auto_chan_table_t auto_channel_select_table_adm1031 = {
	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
};

static const auto_chan_table_t auto_channel_select_table_adm1030 = {
	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
	{ 2 /* 0b10 */		, 0 },
	{ 0xff /* invalid */	, 0 },
	{ 0xff /* invalid */	, 0 },
	{ 3 /* 0b11 */		, 0 },
};

/*
 * That function checks if a bitfield is valid and returns the other bitfield
 * nearest match if no exact match where found.
 */
static int
get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
{
	int i;
	int first_match = -1, exact_match = -1;
	u8 other_reg_val =
	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];

	if (val == 0)
		return 0;

	for (i = 0; i < 8; i++) {
		if ((val == (*data->chan_select_table)[i][chan]) &&
		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
		     other_reg_val)) {
			/* We found an exact match */
			exact_match = i;
			break;
		} else if (val == (*data->chan_select_table)[i][chan] &&
			   first_match == -1) {
			/*
			 * Save the first match in case of an exact match has
			 * not been found
			 */
			first_match = i;
		}
	}

	if (exact_match >= 0)
		return exact_match;
	else if (first_match >= 0)
		return first_match;

	return -EINVAL;
}

static ssize_t fan_auto_channel_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
}

static ssize_t
fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
		       const char *buf, size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	u8 reg;
	int ret;
	u8 old_fan_mode;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	old_fan_mode = data->conf1;

	mutex_lock(&data->update_lock);

	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
	if (ret < 0) {
		mutex_unlock(&data->update_lock);
		return ret;
	}
	reg = ret;
	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
			/*
			 * Switch to Auto Fan Mode
			 * Save PWM registers
			 * Set PWM registers to 33% Both
			 */
			data->old_pwm[0] = data->pwm[0];
			data->old_pwm[1] = data->pwm[1];
			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
		} else {
			/* Switch to Manual Mode */
			data->pwm[0] = data->old_pwm[0];
			data->pwm[1] = data->old_pwm[1];
			/* Restore PWM registers */
			adm1031_write_value(client, ADM1031_REG_PWM,
					    data->pwm[0] | (data->pwm[1] << 4));
		}
	}
	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
	mutex_unlock(&data->update_lock);
	return count;
}

static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);

/* Auto Temps */
static ssize_t auto_temp_off_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n",
		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
}
static ssize_t auto_temp_min_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n",
		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
auto_temp_min_store(struct device *dev, struct device_attribute *attr,
		    const char *buf, size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	val = clamp_val(val, 0, 127000);
	mutex_lock(&data->update_lock);
	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
			    data->auto_temp[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}
static ssize_t auto_temp_max_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n",
		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
auto_temp_max_store(struct device *dev, struct device_attribute *attr,
		    const char *buf, size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	val = clamp_val(val, 0, 127000);
	mutex_lock(&data->update_lock);
	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
						  data->pwm[nr]);
	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
			    data->temp_max[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}

static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);

/* pwm */
static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret, reg;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	mutex_lock(&data->update_lock);
	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
	    (((val>>4) & 0xf) != 5)) {
		/* In automatic mode, the only PWM accepted is 33% */
		mutex_unlock(&data->update_lock);
		return -EINVAL;
	}
	data->pwm[nr] = PWM_TO_REG(val);
	reg = adm1031_read_value(client, ADM1031_REG_PWM);
	adm1031_write_value(client, ADM1031_REG_PWM,
			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
	mutex_unlock(&data->update_lock);
	return count;
}

static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);

/* Fans */

/*
 * That function checks the cases where the fan reading is not
 * relevant.  It is used to provide 0 as fan reading when the fan is
 * not supposed to run
 */
static int trust_fan_readings(struct adm1031_data *data, int chan)
{
	int res = 0;

	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
		switch (data->conf1 & 0x60) {
		case 0x00:
			/*
			 * remote temp1 controls fan1,
			 * remote temp2 controls fan2
			 */
			res = data->temp[chan+1] >=
			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
			break;
		case 0x20:	/* remote temp1 controls both fans */
			res =
			    data->temp[1] >=
			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
			break;
		case 0x40:	/* remote temp2 controls both fans */
			res =
			    data->temp[2] >=
			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
			break;
		case 0x60:	/* max controls both fans */
			res =
			    data->temp[0] >=
			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
			    || data->temp[1] >=
			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
			    || (data->chip_type == adm1031
				&& data->temp[2] >=
				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
			break;
		}
	} else {
		res = data->pwm[chan] > 0;
	}
	return res;
}

static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	int value;

	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
	return sprintf(buf, "%d\n", value);
}

static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n",
		       FAN_FROM_REG(data->fan_min[nr],
				    FAN_DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t fan_min_store(struct device *dev,
			     struct device_attribute *attr, const char *buf,
			     size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	mutex_lock(&data->update_lock);
	if (val) {
		data->fan_min[nr] =
			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
	} else {
		data->fan_min[nr] = 0xff;
	}
	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}
static ssize_t fan_div_store(struct device *dev,
			     struct device_attribute *attr, const char *buf,
			     size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	u8 tmp;
	int old_div;
	int new_min;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	tmp = val == 8 ? 0xc0 :
	      val == 4 ? 0x80 :
	      val == 2 ? 0x40 :
	      val == 1 ? 0x00 :
	      0xff;
	if (tmp == 0xff)
		return -EINVAL;

	mutex_lock(&data->update_lock);
	/* Get fresh readings */
	data->fan_div[nr] = adm1031_read_value(client,
					       ADM1031_REG_FAN_DIV(nr));
	data->fan_min[nr] = adm1031_read_value(client,
					       ADM1031_REG_FAN_MIN(nr));

	/* Write the new clock divider and fan min */
	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
	new_min = data->fan_min[nr] * old_div / val;
	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;

	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
			    data->fan_div[nr]);
	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
			    data->fan_min[nr]);

	/* Invalidate the cache: fan speed is no longer valid */
	data->valid = false;
	mutex_unlock(&data->update_lock);
	return count;
}

static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);

/* Temps */
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	int ext;
	ext = nr == 0 ?
	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
}
static ssize_t temp_offset_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n",
		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
}
static ssize_t temp_min_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t temp_max_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t temp_crit_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t temp_offset_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	val = clamp_val(val, -15000, 15000);
	mutex_lock(&data->update_lock);
	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
			    data->temp_offset[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}
static ssize_t temp_min_store(struct device *dev,
			      struct device_attribute *attr, const char *buf,
			      size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	val = clamp_val(val, -55000, 127000);
	mutex_lock(&data->update_lock);
	data->temp_min[nr] = TEMP_TO_REG(val);
	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
			    data->temp_min[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}
static ssize_t temp_max_store(struct device *dev,
			      struct device_attribute *attr, const char *buf,
			      size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	val = clamp_val(val, -55000, 127000);
	mutex_lock(&data->update_lock);
	data->temp_max[nr] = TEMP_TO_REG(val);
	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
			    data->temp_max[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}
static ssize_t temp_crit_store(struct device *dev,
			       struct device_attribute *attr, const char *buf,
			       size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = to_sensor_dev_attr(attr)->index;
	long val;
	int ret;

	ret = kstrtol(buf, 10, &val);
	if (ret)
		return ret;

	val = clamp_val(val, -55000, 127000);
	mutex_lock(&data->update_lock);
	data->temp_crit[nr] = TEMP_TO_REG(val);
	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
			    data->temp_crit[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}

static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);

/* Alarms */
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
			   char *buf)
{
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", data->alarm);
}

static DEVICE_ATTR_RO(alarms);

static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	int bitnr = to_sensor_dev_attr(attr)->index;
	struct adm1031_data *data = adm1031_update_device(dev);
	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
}

static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);

/* Update Interval */
static const unsigned int update_intervals[] = {
	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
};

static ssize_t update_interval_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct adm1031_data *data = dev_get_drvdata(dev);

	return sprintf(buf, "%u\n", data->update_interval);
}

static ssize_t update_interval_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct adm1031_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long val;
	int i, err;
	u8 reg;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	/*
	 * Find the nearest update interval from the table.
	 * Use it to determine the matching update rate.
	 */
	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
		if (val >= update_intervals[i])
			break;
	}
	/* if not found, we point to the last entry (lowest update interval) */

	/* set the new update rate while preserving other settings */
	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
	reg &= ~ADM1031_UPDATE_RATE_MASK;
	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);

	mutex_lock(&data->update_lock);
	data->update_interval = update_intervals[i];
	mutex_unlock(&data->update_lock);

	return count;
}

static DEVICE_ATTR_RW(update_interval);

static struct attribute *adm1031_attributes[] = {
	&sensor_dev_attr_fan1_input.dev_attr.attr,
	&sensor_dev_attr_fan1_div.dev_attr.attr,
	&sensor_dev_attr_fan1_min.dev_attr.attr,
	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
	&sensor_dev_attr_fan1_fault.dev_attr.attr,
	&sensor_dev_attr_pwm1.dev_attr.attr,
	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_offset.dev_attr.attr,
	&sensor_dev_attr_temp1_min.dev_attr.attr,
	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_crit.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_input.dev_attr.attr,
	&sensor_dev_attr_temp2_offset.dev_attr.attr,
	&sensor_dev_attr_temp2_min.dev_attr.attr,
	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_max.dev_attr.attr,
	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_crit.dev_attr.attr,
	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_fault.dev_attr.attr,

	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,

	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,

	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,

	&dev_attr_update_interval.attr,
	&dev_attr_alarms.attr,

	NULL
};

static const struct attribute_group adm1031_group = {
	.attrs = adm1031_attributes,
};

static struct attribute *adm1031_attributes_opt[] = {
	&sensor_dev_attr_fan2_input.dev_attr.attr,
	&sensor_dev_attr_fan2_div.dev_attr.attr,
	&sensor_dev_attr_fan2_min.dev_attr.attr,
	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
	&sensor_dev_attr_fan2_fault.dev_attr.attr,
	&sensor_dev_attr_pwm2.dev_attr.attr,
	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
	&sensor_dev_attr_temp3_input.dev_attr.attr,
	&sensor_dev_attr_temp3_offset.dev_attr.attr,
	&sensor_dev_attr_temp3_min.dev_attr.attr,
	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_max.dev_attr.attr,
	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_crit.dev_attr.attr,
	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_fault.dev_attr.attr,
	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
	NULL
};

static const struct attribute_group adm1031_group_opt = {
	.attrs = adm1031_attributes_opt,
};

/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm1031_detect(struct i2c_client *client,
			  struct i2c_board_info *info)
{
	struct i2c_adapter *adapter = client->adapter;
	const char *name;
	int id, co;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -ENODEV;

	id = i2c_smbus_read_byte_data(client, 0x3d);
	co = i2c_smbus_read_byte_data(client, 0x3e);

	if (!((id == 0x31 || id == 0x30) && co == 0x41))
		return -ENODEV;
	name = (id == 0x30) ? "adm1030" : "adm1031";

	strscpy(info->type, name, I2C_NAME_SIZE);

	return 0;
}

static void adm1031_init_client(struct i2c_client *client)
{
	unsigned int read_val;
	unsigned int mask;
	int i;
	struct adm1031_data *data = i2c_get_clientdata(client);

	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
	if (data->chip_type == adm1031) {
		mask |= (ADM1031_CONF2_PWM2_ENABLE |
			ADM1031_CONF2_TACH2_ENABLE);
	}
	/* Initialize the ADM1031 chip (enables fan speed reading ) */
	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
	if ((read_val | mask) != read_val)
		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);

	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
		adm1031_write_value(client, ADM1031_REG_CONF1,
				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
	}

	/* Read the chip's update rate */
	mask = ADM1031_UPDATE_RATE_MASK;
	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
	/* Save it as update interval */
	data->update_interval = update_intervals[i];
}

static const struct i2c_device_id adm1031_id[];

static int adm1031_probe(struct i2c_client *client)
{
	struct device *dev = &client->dev;
	struct device *hwmon_dev;
	struct adm1031_data *data;

	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	i2c_set_clientdata(client, data);
	data->client = client;
	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
	mutex_init(&data->update_lock);

	if (data->chip_type == adm1030)
		data->chan_select_table = &auto_channel_select_table_adm1030;
	else
		data->chan_select_table = &auto_channel_select_table_adm1031;

	/* Initialize the ADM1031 chip */
	adm1031_init_client(client);

	/* sysfs hooks */
	data->groups[0] = &adm1031_group;
	if (data->chip_type == adm1031)
		data->groups[1] = &adm1031_group_opt;

	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
							   data, data->groups);
	return PTR_ERR_OR_ZERO(hwmon_dev);
}

static const struct i2c_device_id adm1031_id[] = {
	{ "adm1030", adm1030 },
	{ "adm1031", adm1031 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, adm1031_id);

static struct i2c_driver adm1031_driver = {
	.class		= I2C_CLASS_HWMON,
	.driver = {
		.name = "adm1031",
	},
	.probe_new	= adm1031_probe,
	.id_table	= adm1031_id,
	.detect		= adm1031_detect,
	.address_list	= normal_i2c,
};

module_i2c_driver(adm1031_driver);

MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
MODULE_LICENSE("GPL");