1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
* cpuid support routines
*
* derived from arch/x86/kvm/x86.c
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
* Copyright IBM Corporation, 2008
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kvm_host.h>
#include "linux/lockdep.h"
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
#include <linux/sched/stat.h>
#include <asm/processor.h>
#include <asm/user.h>
#include <asm/fpu/xstate.h>
#include <asm/sgx.h>
#include <asm/cpuid.h>
#include "cpuid.h"
#include "lapic.h"
#include "mmu.h"
#include "trace.h"
#include "pmu.h"
#include "xen.h"
/*
* Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
* aligned to sizeof(unsigned long) because it's not accessed via bitops.
*/
u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
EXPORT_SYMBOL_GPL(kvm_cpu_caps);
struct cpuid_xstate_sizes {
u32 eax;
u32 ebx;
u32 ecx;
};
static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
void __init kvm_init_xstate_sizes(void)
{
u32 ign;
int i;
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
}
}
u32 xstate_required_size(u64 xstate_bv, bool compacted)
{
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
int i;
xstate_bv &= XFEATURE_MASK_EXTEND;
for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) {
struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
u32 offset;
if (!(xstate_bv & BIT_ULL(i)))
continue;
/* ECX[1]: 64B alignment in compacted form */
if (compacted)
offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
else
offset = xs->ebx;
ret = max(ret, offset + xs->eax);
xstate_bv &= ~BIT_ULL(i);
}
return ret;
}
/*
* Magic value used by KVM when querying userspace-provided CPUID entries and
* doesn't care about the CPIUD index because the index of the function in
* question is not significant. Note, this magic value must have at least one
* bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
* to avoid false positives when processing guest CPUID input.
*/
#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
static struct kvm_cpuid_entry2 *cpuid_entry2_find(struct kvm_vcpu *vcpu,
u32 function, u64 index)
{
struct kvm_cpuid_entry2 *e;
int i;
/*
* KVM has a semi-arbitrary rule that querying the guest's CPUID model
* with IRQs disabled is disallowed. The CPUID model can legitimately
* have over one hundred entries, i.e. the lookup is slow, and IRQs are
* typically disabled in KVM only when KVM is in a performance critical
* path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
* if this rule is violated, this assertion is purely to flag potential
* performance issues. If this fires, consider moving the lookup out
* of the hotpath, e.g. by caching information during CPUID updates.
*/
lockdep_assert_irqs_enabled();
for (i = 0; i < vcpu->arch.cpuid_nent; i++) {
e = &vcpu->arch.cpuid_entries[i];
if (e->function != function)
continue;
/*
* If the index isn't significant, use the first entry with a
* matching function. It's userspace's responsibility to not
* provide "duplicate" entries in all cases.
*/
if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
return e;
/*
* Similarly, use the first matching entry if KVM is doing a
* lookup (as opposed to emulating CPUID) for a function that's
* architecturally defined as not having a significant index.
*/
if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
/*
* Direct lookups from KVM should not diverge from what
* KVM defines internally (the architectural behavior).
*/
WARN_ON_ONCE(cpuid_function_is_indexed(function));
return e;
}
}
return NULL;
}
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
u32 function, u32 index)
{
return cpuid_entry2_find(vcpu, function, index);
}
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
u32 function)
{
return cpuid_entry2_find(vcpu, function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
}
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
/*
* cpuid_entry2_find() and KVM_CPUID_INDEX_NOT_SIGNIFICANT should never be used
* directly outside of kvm_find_cpuid_entry() and kvm_find_cpuid_entry_index().
*/
#undef KVM_CPUID_INDEX_NOT_SIGNIFICANT
static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
u64 xfeatures;
/*
* The existing code assumes virtual address is 48-bit or 57-bit in the
* canonical address checks; exit if it is ever changed.
*/
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
if (best) {
int vaddr_bits = (best->eax & 0xff00) >> 8;
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
return -EINVAL;
}
/*
* Exposing dynamic xfeatures to the guest requires additional
* enabling in the FPU, e.g. to expand the guest XSAVE state size.
*/
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
if (!best)
return 0;
xfeatures = best->eax | ((u64)best->edx << 32);
xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
if (!xfeatures)
return 0;
return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
}
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu);
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
int nent)
{
struct kvm_cpuid_entry2 *orig;
int i;
/*
* Apply runtime CPUID updates to the incoming CPUID entries to avoid
* false positives due mismatches on KVM-owned feature flags.
*
* Note! @e2 and @nent track the _old_ CPUID entries!
*/
kvm_update_cpuid_runtime(vcpu);
kvm_apply_cpuid_pv_features_quirk(vcpu);
if (nent != vcpu->arch.cpuid_nent)
return -EINVAL;
for (i = 0; i < nent; i++) {
orig = &vcpu->arch.cpuid_entries[i];
if (e2[i].function != orig->function ||
e2[i].index != orig->index ||
e2[i].flags != orig->flags ||
e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
return -EINVAL;
}
return 0;
}
static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
const char *sig)
{
struct kvm_hypervisor_cpuid cpuid = {};
struct kvm_cpuid_entry2 *entry;
u32 base;
for_each_possible_hypervisor_cpuid_base(base) {
entry = kvm_find_cpuid_entry(vcpu, base);
if (entry) {
u32 signature[3];
signature[0] = entry->ebx;
signature[1] = entry->ecx;
signature[2] = entry->edx;
if (!memcmp(signature, sig, sizeof(signature))) {
cpuid.base = base;
cpuid.limit = entry->eax;
break;
}
}
}
return cpuid;
}
static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu)
{
struct kvm_hypervisor_cpuid kvm_cpuid;
struct kvm_cpuid_entry2 *best;
kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
if (!kvm_cpuid.base)
return 0;
best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES);
if (!best)
return 0;
if (kvm_hlt_in_guest(vcpu->kvm))
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
return best->eax;
}
/*
* Calculate guest's supported XCR0 taking into account guest CPUID data and
* KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
*/
static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
if (!best)
return 0;
return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
}
static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu,
struct kvm_cpuid_entry2 *entry,
unsigned int x86_feature,
bool has_feature)
{
cpuid_entry_change(entry, x86_feature, has_feature);
guest_cpu_cap_change(vcpu, x86_feature, has_feature);
}
static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
vcpu->arch.cpuid_dynamic_bits_dirty = false;
best = kvm_find_cpuid_entry(vcpu, 1);
if (best) {
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE,
kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC,
vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT,
vcpu->arch.ia32_misc_enable_msr &
MSR_IA32_MISC_ENABLE_MWAIT);
}
best = kvm_find_cpuid_entry_index(vcpu, 7, 0);
if (best)
kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE,
kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0);
if (best)
best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1);
if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
}
static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_KVM_HYPERV
struct kvm_cpuid_entry2 *entry;
entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE);
return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
#else
return false;
#endif
}
static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *entry;
entry = kvm_find_cpuid_entry(vcpu, 0);
if (!entry)
return false;
return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
}
/*
* This isn't truly "unsafe", but except for the cpu_caps initialization code,
* all register lookups should use __cpuid_entry_get_reg(), which provides
* compile-time validation of the input.
*/
static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg)
{
switch (reg) {
case CPUID_EAX:
return entry->eax;
case CPUID_EBX:
return entry->ebx;
case CPUID_ECX:
return entry->ecx;
case CPUID_EDX:
return entry->edx;
default:
WARN_ON_ONCE(1);
return 0;
}
}
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
bool include_partially_emulated);
void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
struct kvm_cpuid_entry2 *best;
struct kvm_cpuid_entry2 *entry;
bool allow_gbpages;
int i;
memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps));
BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS);
/*
* Reset guest capabilities to userspace's guest CPUID definition, i.e.
* honor userspace's definition for features that don't require KVM or
* hardware management/support (or that KVM simply doesn't care about).
*/
for (i = 0; i < NR_KVM_CPU_CAPS; i++) {
const struct cpuid_reg cpuid = reverse_cpuid[i];
struct kvm_cpuid_entry2 emulated;
if (!cpuid.function)
continue;
entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
if (!entry)
continue;
cpuid_func_emulated(&emulated, cpuid.function, true);
/*
* A vCPU has a feature if it's supported by KVM and is enabled
* in guest CPUID. Note, this includes features that are
* supported by KVM but aren't advertised to userspace!
*/
vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] |
cpuid_get_reg_unsafe(&emulated, cpuid.reg);
vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg);
}
kvm_update_cpuid_runtime(vcpu);
/*
* If TDP is enabled, let the guest use GBPAGES if they're supported in
* hardware. The hardware page walker doesn't let KVM disable GBPAGES,
* i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
* walk for performance and complexity reasons. Not to mention KVM
* _can't_ solve the problem because GVA->GPA walks aren't visible to
* KVM once a TDP translation is installed. Mimic hardware behavior so
* that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
* If TDP is disabled, honor *only* guest CPUID as KVM has full control
* and can install smaller shadow pages if the host lacks 1GiB support.
*/
allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES);
guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages);
best = kvm_find_cpuid_entry(vcpu, 1);
if (best && apic) {
if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
apic->lapic_timer.timer_mode_mask = 3 << 17;
else
apic->lapic_timer.timer_mode_mask = 1 << 17;
kvm_apic_set_version(vcpu);
}
vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu);
vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu);
vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
kvm_pmu_refresh(vcpu);
#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) |
__cr4_reserved_bits(guest_cpu_cap_has, vcpu);
#undef __kvm_cpu_cap_has
kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu));
/* Invoke the vendor callback only after the above state is updated. */
kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
/*
* Except for the MMU, which needs to do its thing any vendor specific
* adjustments to the reserved GPA bits.
*/
kvm_mmu_after_set_cpuid(vcpu);
}
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x80000000);
if (!best || best->eax < 0x80000008)
goto not_found;
best = kvm_find_cpuid_entry(vcpu, 0x80000008);
if (best)
return best->eax & 0xff;
not_found:
return 36;
}
/*
* This "raw" version returns the reserved GPA bits without any adjustments for
* encryption technologies that usurp bits. The raw mask should be used if and
* only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
*/
u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
{
return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
}
static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
int nent)
{
u32 vcpu_caps[NR_KVM_CPU_CAPS];
int r;
/*
* Swap the existing (old) entries with the incoming (new) entries in
* order to massage the new entries, e.g. to account for dynamic bits
* that KVM controls, without clobbering the current guest CPUID, which
* KVM needs to preserve in order to unwind on failure.
*
* Similarly, save the vCPU's current cpu_caps so that the capabilities
* can be updated alongside the CPUID entries when performing runtime
* updates. Full initialization is done if and only if the vCPU hasn't
* run, i.e. only if userspace is potentially changing CPUID features.
*/
swap(vcpu->arch.cpuid_entries, e2);
swap(vcpu->arch.cpuid_nent, nent);
memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps));
BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps));
/*
* KVM does not correctly handle changing guest CPUID after KVM_RUN, as
* MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
* tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
* faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
* the core vCPU model on the fly. It would've been better to forbid any
* KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
* some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
* KVM_SET_CPUID{,2} again. To support this legacy behavior, check
* whether the supplied CPUID data is equal to what's already set.
*/
if (kvm_vcpu_has_run(vcpu)) {
r = kvm_cpuid_check_equal(vcpu, e2, nent);
if (r)
goto err;
goto success;
}
#ifdef CONFIG_KVM_HYPERV
if (kvm_cpuid_has_hyperv(vcpu)) {
r = kvm_hv_vcpu_init(vcpu);
if (r)
goto err;
}
#endif
r = kvm_check_cpuid(vcpu);
if (r)
goto err;
#ifdef CONFIG_KVM_XEN
vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
#endif
kvm_vcpu_after_set_cpuid(vcpu);
success:
kvfree(e2);
return 0;
err:
memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps));
swap(vcpu->arch.cpuid_entries, e2);
swap(vcpu->arch.cpuid_nent, nent);
return r;
}
/* when an old userspace process fills a new kernel module */
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries)
{
int r, i;
struct kvm_cpuid_entry *e = NULL;
struct kvm_cpuid_entry2 *e2 = NULL;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
return -E2BIG;
if (cpuid->nent) {
e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
if (IS_ERR(e))
return PTR_ERR(e);
e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
if (!e2) {
r = -ENOMEM;
goto out_free_cpuid;
}
}
for (i = 0; i < cpuid->nent; i++) {
e2[i].function = e[i].function;
e2[i].eax = e[i].eax;
e2[i].ebx = e[i].ebx;
e2[i].ecx = e[i].ecx;
e2[i].edx = e[i].edx;
e2[i].index = 0;
e2[i].flags = 0;
e2[i].padding[0] = 0;
e2[i].padding[1] = 0;
e2[i].padding[2] = 0;
}
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
if (r)
kvfree(e2);
out_free_cpuid:
kvfree(e);
return r;
}
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
struct kvm_cpuid_entry2 *e2 = NULL;
int r;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
return -E2BIG;
if (cpuid->nent) {
e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
if (IS_ERR(e2))
return PTR_ERR(e2);
}
r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
if (r)
kvfree(e2);
return r;
}
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
if (cpuid->nent < vcpu->arch.cpuid_nent)
return -E2BIG;
if (vcpu->arch.cpuid_dynamic_bits_dirty)
kvm_update_cpuid_runtime(vcpu);
if (copy_to_user(entries, vcpu->arch.cpuid_entries,
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
return -EFAULT;
cpuid->nent = vcpu->arch.cpuid_nent;
return 0;
}
static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid)
{
struct kvm_cpuid_entry2 entry;
u32 base;
/*
* KVM only supports features defined by Intel (0x0), AMD (0x80000000),
* and Centaur (0xc0000000). WARN if a feature for new vendor base is
* defined, as this and other code would need to be updated.
*/
base = cpuid.function & 0xffff0000;
if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000))
return 0;
if (cpuid_eax(base) < cpuid.function)
return 0;
cpuid_count(cpuid.function, cpuid.index,
&entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
return *__cpuid_entry_get_reg(&entry, cpuid.reg);
}
/*
* For kernel-defined leafs, mask KVM's supported feature set with the kernel's
* capabilities as well as raw CPUID. For KVM-defined leafs, consult only raw
* CPUID, as KVM is the one and only authority (in the kernel).
*/
#define kvm_cpu_cap_init(leaf, feature_initializers...) \
do { \
const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); \
const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf; \
const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability; \
u32 kvm_cpu_cap_passthrough = 0; \
u32 kvm_cpu_cap_synthesized = 0; \
u32 kvm_cpu_cap_emulated = 0; \
u32 kvm_cpu_cap_features = 0; \
\
feature_initializers \
\
kvm_cpu_caps[leaf] = kvm_cpu_cap_features; \
\
if (leaf < NCAPINTS) \
kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf]; \
\
kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough; \
kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) | \
kvm_cpu_cap_synthesized); \
kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated; \
} while (0)
/*
* Assert that the feature bit being declared, e.g. via F(), is in the CPUID
* word that's being initialized. Exempt 0x8000_0001.EDX usage of 0x1.EDX
* features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX.
*/
#define KVM_VALIDATE_CPU_CAP_USAGE(name) \
do { \
u32 __leaf = __feature_leaf(X86_FEATURE_##name); \
\
BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress); \
} while (0)
#define F(name) \
({ \
KVM_VALIDATE_CPU_CAP_USAGE(name); \
kvm_cpu_cap_features |= feature_bit(name); \
})
/* Scattered Flag - For features that are scattered by cpufeatures.h. */
#define SCATTERED_F(name) \
({ \
BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
KVM_VALIDATE_CPU_CAP_USAGE(name); \
if (boot_cpu_has(X86_FEATURE_##name)) \
F(name); \
})
/* Features that KVM supports only on 64-bit kernels. */
#define X86_64_F(name) \
({ \
KVM_VALIDATE_CPU_CAP_USAGE(name); \
if (IS_ENABLED(CONFIG_X86_64)) \
F(name); \
})
/*
* Emulated Feature - For features that KVM emulates in software irrespective
* of host CPU/kernel support.
*/
#define EMULATED_F(name) \
({ \
kvm_cpu_cap_emulated |= feature_bit(name); \
F(name); \
})
/*
* Synthesized Feature - For features that are synthesized into boot_cpu_data,
* i.e. may not be present in the raw CPUID, but can still be advertised to
* userspace. Primarily used for mitigation related feature flags.
*/
#define SYNTHESIZED_F(name) \
({ \
kvm_cpu_cap_synthesized |= feature_bit(name); \
F(name); \
})
/*
* Passthrough Feature - For features that KVM supports based purely on raw
* hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't
* use the feature. Simply force set the feature in KVM's capabilities, raw
* CPUID support will be factored in by kvm_cpu_cap_mask().
*/
#define PASSTHROUGH_F(name) \
({ \
kvm_cpu_cap_passthrough |= feature_bit(name); \
F(name); \
})
/*
* Aliased Features - For features in 0x8000_0001.EDX that are duplicates of
* identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001.
*/
#define ALIASED_1_EDX_F(name) \
({ \
BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX); \
BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX); \
kvm_cpu_cap_features |= feature_bit(name); \
})
/*
* Vendor Features - For features that KVM supports, but are added in later
* because they require additional vendor enabling.
*/
#define VENDOR_F(name) \
({ \
KVM_VALIDATE_CPU_CAP_USAGE(name); \
})
/*
* Runtime Features - For features that KVM dynamically sets/clears at runtime,
* e.g. when CR4 changes, but which are never advertised to userspace.
*/
#define RUNTIME_F(name) \
({ \
KVM_VALIDATE_CPU_CAP_USAGE(name); \
})
/*
* Undefine the MSR bit macro to avoid token concatenation issues when
* processing X86_FEATURE_SPEC_CTRL_SSBD.
*/
#undef SPEC_CTRL_SSBD
/* DS is defined by ptrace-abi.h on 32-bit builds. */
#undef DS
void kvm_set_cpu_caps(void)
{
memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
sizeof(boot_cpu_data.x86_capability));
kvm_cpu_cap_init(CPUID_1_ECX,
F(XMM3),
F(PCLMULQDQ),
VENDOR_F(DTES64),
/*
* NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
* advertised to guests via CPUID! MWAIT is also technically a
* runtime flag thanks to IA32_MISC_ENABLES; mark it as such so
* that KVM is aware that it's a known, unadvertised flag.
*/
RUNTIME_F(MWAIT),
/* DS-CPL */
VENDOR_F(VMX),
/* SMX, EST */
/* TM2 */
F(SSSE3),
/* CNXT-ID */
/* Reserved */
F(FMA),
F(CX16),
/* xTPR Update */
F(PDCM),
F(PCID),
/* Reserved, DCA */
F(XMM4_1),
F(XMM4_2),
EMULATED_F(X2APIC),
F(MOVBE),
F(POPCNT),
EMULATED_F(TSC_DEADLINE_TIMER),
F(AES),
F(XSAVE),
RUNTIME_F(OSXSAVE),
F(AVX),
F(F16C),
F(RDRAND),
EMULATED_F(HYPERVISOR),
);
kvm_cpu_cap_init(CPUID_1_EDX,
F(FPU),
F(VME),
F(DE),
F(PSE),
F(TSC),
F(MSR),
F(PAE),
F(MCE),
F(CX8),
F(APIC),
/* Reserved */
F(SEP),
F(MTRR),
F(PGE),
F(MCA),
F(CMOV),
F(PAT),
F(PSE36),
/* PSN */
F(CLFLUSH),
/* Reserved */
VENDOR_F(DS),
/* ACPI */
F(MMX),
F(FXSR),
F(XMM),
F(XMM2),
F(SELFSNOOP),
/* HTT, TM, Reserved, PBE */
);
kvm_cpu_cap_init(CPUID_7_0_EBX,
F(FSGSBASE),
EMULATED_F(TSC_ADJUST),
F(SGX),
F(BMI1),
F(HLE),
F(AVX2),
F(FDP_EXCPTN_ONLY),
F(SMEP),
F(BMI2),
F(ERMS),
F(INVPCID),
F(RTM),
F(ZERO_FCS_FDS),
VENDOR_F(MPX),
F(AVX512F),
F(AVX512DQ),
F(RDSEED),
F(ADX),
F(SMAP),
F(AVX512IFMA),
F(CLFLUSHOPT),
F(CLWB),
VENDOR_F(INTEL_PT),
F(AVX512PF),
F(AVX512ER),
F(AVX512CD),
F(SHA_NI),
F(AVX512BW),
F(AVX512VL),
);
kvm_cpu_cap_init(CPUID_7_ECX,
F(AVX512VBMI),
PASSTHROUGH_F(LA57),
F(PKU),
RUNTIME_F(OSPKE),
F(RDPID),
F(AVX512_VPOPCNTDQ),
F(UMIP),
F(AVX512_VBMI2),
F(GFNI),
F(VAES),
F(VPCLMULQDQ),
F(AVX512_VNNI),
F(AVX512_BITALG),
F(CLDEMOTE),
F(MOVDIRI),
F(MOVDIR64B),
VENDOR_F(WAITPKG),
F(SGX_LC),
F(BUS_LOCK_DETECT),
);
/*
* PKU not yet implemented for shadow paging and requires OSPKE
* to be set on the host. Clear it if that is not the case
*/
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
kvm_cpu_cap_clear(X86_FEATURE_PKU);
kvm_cpu_cap_init(CPUID_7_EDX,
F(AVX512_4VNNIW),
F(AVX512_4FMAPS),
F(SPEC_CTRL),
F(SPEC_CTRL_SSBD),
EMULATED_F(ARCH_CAPABILITIES),
F(INTEL_STIBP),
F(MD_CLEAR),
F(AVX512_VP2INTERSECT),
F(FSRM),
F(SERIALIZE),
F(TSXLDTRK),
F(AVX512_FP16),
F(AMX_TILE),
F(AMX_INT8),
F(AMX_BF16),
F(FLUSH_L1D),
);
if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
boot_cpu_has(X86_FEATURE_AMD_IBRS))
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
if (boot_cpu_has(X86_FEATURE_STIBP))
kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
kvm_cpu_cap_init(CPUID_7_1_EAX,
F(SHA512),
F(SM3),
F(SM4),
F(AVX_VNNI),
F(AVX512_BF16),
F(CMPCCXADD),
F(FZRM),
F(FSRS),
F(FSRC),
F(AMX_FP16),
F(AVX_IFMA),
F(LAM),
);
kvm_cpu_cap_init(CPUID_7_1_EDX,
F(AVX_VNNI_INT8),
F(AVX_NE_CONVERT),
F(AMX_COMPLEX),
F(AVX_VNNI_INT16),
F(PREFETCHITI),
F(AVX10),
);
kvm_cpu_cap_init(CPUID_7_2_EDX,
F(INTEL_PSFD),
F(IPRED_CTRL),
F(RRSBA_CTRL),
F(DDPD_U),
F(BHI_CTRL),
F(MCDT_NO),
);
kvm_cpu_cap_init(CPUID_D_1_EAX,
F(XSAVEOPT),
F(XSAVEC),
F(XGETBV1),
F(XSAVES),
X86_64_F(XFD),
);
kvm_cpu_cap_init(CPUID_12_EAX,
SCATTERED_F(SGX1),
SCATTERED_F(SGX2),
SCATTERED_F(SGX_EDECCSSA),
);
kvm_cpu_cap_init(CPUID_24_0_EBX,
F(AVX10_128),
F(AVX10_256),
F(AVX10_512),
);
kvm_cpu_cap_init(CPUID_8000_0001_ECX,
F(LAHF_LM),
F(CMP_LEGACY),
VENDOR_F(SVM),
/* ExtApicSpace */
F(CR8_LEGACY),
F(ABM),
F(SSE4A),
F(MISALIGNSSE),
F(3DNOWPREFETCH),
F(OSVW),
/* IBS */
F(XOP),
/* SKINIT, WDT, LWP */
F(FMA4),
F(TBM),
F(TOPOEXT),
VENDOR_F(PERFCTR_CORE),
);
kvm_cpu_cap_init(CPUID_8000_0001_EDX,
ALIASED_1_EDX_F(FPU),
ALIASED_1_EDX_F(VME),
ALIASED_1_EDX_F(DE),
ALIASED_1_EDX_F(PSE),
ALIASED_1_EDX_F(TSC),
ALIASED_1_EDX_F(MSR),
ALIASED_1_EDX_F(PAE),
ALIASED_1_EDX_F(MCE),
ALIASED_1_EDX_F(CX8),
ALIASED_1_EDX_F(APIC),
/* Reserved */
F(SYSCALL),
ALIASED_1_EDX_F(MTRR),
ALIASED_1_EDX_F(PGE),
ALIASED_1_EDX_F(MCA),
ALIASED_1_EDX_F(CMOV),
ALIASED_1_EDX_F(PAT),
ALIASED_1_EDX_F(PSE36),
/* Reserved */
F(NX),
/* Reserved */
F(MMXEXT),
ALIASED_1_EDX_F(MMX),
ALIASED_1_EDX_F(FXSR),
F(FXSR_OPT),
X86_64_F(GBPAGES),
F(RDTSCP),
/* Reserved */
X86_64_F(LM),
F(3DNOWEXT),
F(3DNOW),
);
if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
kvm_cpu_cap_init(CPUID_8000_0007_EDX,
SCATTERED_F(CONSTANT_TSC),
);
kvm_cpu_cap_init(CPUID_8000_0008_EBX,
F(CLZERO),
F(XSAVEERPTR),
F(WBNOINVD),
F(AMD_IBPB),
F(AMD_IBRS),
F(AMD_SSBD),
F(VIRT_SSBD),
F(AMD_SSB_NO),
F(AMD_STIBP),
F(AMD_STIBP_ALWAYS_ON),
F(AMD_PSFD),
F(AMD_IBPB_RET),
);
/*
* AMD has separate bits for each SPEC_CTRL bit.
* arch/x86/kernel/cpu/bugs.c is kind enough to
* record that in cpufeatures so use them.
*/
if (boot_cpu_has(X86_FEATURE_IBPB)) {
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
!boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
}
if (boot_cpu_has(X86_FEATURE_IBRS))
kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
if (boot_cpu_has(X86_FEATURE_STIBP))
kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
/*
* The preference is to use SPEC CTRL MSR instead of the
* VIRT_SPEC MSR.
*/
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
/* All SVM features required additional vendor module enabling. */
kvm_cpu_cap_init(CPUID_8000_000A_EDX,
VENDOR_F(NPT),
VENDOR_F(VMCBCLEAN),
VENDOR_F(FLUSHBYASID),
VENDOR_F(NRIPS),
VENDOR_F(TSCRATEMSR),
VENDOR_F(V_VMSAVE_VMLOAD),
VENDOR_F(LBRV),
VENDOR_F(PAUSEFILTER),
VENDOR_F(PFTHRESHOLD),
VENDOR_F(VGIF),
VENDOR_F(VNMI),
VENDOR_F(SVME_ADDR_CHK),
);
kvm_cpu_cap_init(CPUID_8000_001F_EAX,
VENDOR_F(SME),
VENDOR_F(SEV),
/* VM_PAGE_FLUSH */
VENDOR_F(SEV_ES),
F(SME_COHERENT),
);
kvm_cpu_cap_init(CPUID_8000_0021_EAX,
F(NO_NESTED_DATA_BP),
/*
* Synthesize "LFENCE is serializing" into the AMD-defined entry
* in KVM's supported CPUID, i.e. if the feature is reported as
* supported by the kernel. LFENCE_RDTSC was a Linux-defined
* synthetic feature long before AMD joined the bandwagon, e.g.
* LFENCE is serializing on most CPUs that support SSE2. On
* CPUs that don't support AMD's leaf, ANDing with the raw host
* CPUID will drop the flags, and reporting support in AMD's
* leaf can make it easier for userspace to detect the feature.
*/
SYNTHESIZED_F(LFENCE_RDTSC),
/* SmmPgCfgLock */
F(NULL_SEL_CLR_BASE),
F(AUTOIBRS),
EMULATED_F(NO_SMM_CTL_MSR),
/* PrefetchCtlMsr */
F(WRMSR_XX_BASE_NS),
SYNTHESIZED_F(SBPB),
SYNTHESIZED_F(IBPB_BRTYPE),
SYNTHESIZED_F(SRSO_NO),
F(SRSO_USER_KERNEL_NO),
);
kvm_cpu_cap_init(CPUID_8000_0022_EAX,
F(PERFMON_V2),
);
if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
kvm_cpu_cap_init(CPUID_C000_0001_EDX,
F(XSTORE),
F(XSTORE_EN),
F(XCRYPT),
F(XCRYPT_EN),
F(ACE2),
F(ACE2_EN),
F(PHE),
F(PHE_EN),
F(PMM),
F(PMM_EN),
);
/*
* Hide RDTSCP and RDPID if either feature is reported as supported but
* probing MSR_TSC_AUX failed. This is purely a sanity check and
* should never happen, but the guest will likely crash if RDTSCP or
* RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
* the past. For example, the sanity check may fire if this instance of
* KVM is running as L1 on top of an older, broken KVM.
*/
if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
!kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
kvm_cpu_cap_clear(X86_FEATURE_RDPID);
}
}
EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
#undef F
#undef SCATTERED_F
#undef X86_64_F
#undef EMULATED_F
#undef SYNTHESIZED_F
#undef PASSTHROUGH_F
#undef ALIASED_1_EDX_F
#undef VENDOR_F
#undef RUNTIME_F
struct kvm_cpuid_array {
struct kvm_cpuid_entry2 *entries;
int maxnent;
int nent;
};
static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
{
if (array->nent >= array->maxnent)
return NULL;
return &array->entries[array->nent++];
}
static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
u32 function, u32 index)
{
struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
if (!entry)
return NULL;
memset(entry, 0, sizeof(*entry));
entry->function = function;
entry->index = index;
switch (function & 0xC0000000) {
case 0x40000000:
/* Hypervisor leaves are always synthesized by __do_cpuid_func. */
return entry;
case 0x80000000:
/*
* 0x80000021 is sometimes synthesized by __do_cpuid_func, which
* would result in out-of-bounds calls to do_host_cpuid.
*/
{
static int max_cpuid_80000000;
if (!READ_ONCE(max_cpuid_80000000))
WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
if (function > READ_ONCE(max_cpuid_80000000))
return entry;
}
break;
default:
break;
}
cpuid_count(entry->function, entry->index,
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
if (cpuid_function_is_indexed(function))
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
return entry;
}
static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
bool include_partially_emulated)
{
memset(entry, 0, sizeof(*entry));
entry->function = func;
entry->index = 0;
entry->flags = 0;
switch (func) {
case 0:
entry->eax = 7;
return 1;
case 1:
entry->ecx = feature_bit(MOVBE);
/*
* KVM allows userspace to enumerate MONITOR+MWAIT support to
* the guest, but the MWAIT feature flag is never advertised
* to userspace because MONITOR+MWAIT aren't virtualized by
* hardware, can't be faithfully emulated in software (KVM
* emulates them as NOPs), and allowing the guest to execute
* them natively requires enabling a per-VM capability.
*/
if (include_partially_emulated)
entry->ecx |= feature_bit(MWAIT);
return 1;
case 7:
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
entry->eax = 0;
if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
entry->ecx = feature_bit(RDPID);
return 1;
default:
return 0;
}
}
static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
{
if (array->nent >= array->maxnent)
return -E2BIG;
array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false);
return 0;
}
static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
{
struct kvm_cpuid_entry2 *entry;
int r, i, max_idx;
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
r = -E2BIG;
entry = do_host_cpuid(array, function, 0);
if (!entry)
goto out;
switch (function) {
case 0:
/* Limited to the highest leaf implemented in KVM. */
entry->eax = min(entry->eax, 0x24U);
break;
case 1:
cpuid_entry_override(entry, CPUID_1_EDX);
cpuid_entry_override(entry, CPUID_1_ECX);
break;
case 2:
/*
* On ancient CPUs, function 2 entries are STATEFUL. That is,
* CPUID(function=2, index=0) may return different results each
* time, with the least-significant byte in EAX enumerating the
* number of times software should do CPUID(2, 0).
*
* Modern CPUs, i.e. every CPU KVM has *ever* run on are less
* idiotic. Intel's SDM states that EAX & 0xff "will always
* return 01H. Software should ignore this value and not
* interpret it as an informational descriptor", while AMD's
* APM states that CPUID(2) is reserved.
*
* WARN if a frankenstein CPU that supports virtualization and
* a stateful CPUID.0x2 is encountered.
*/
WARN_ON_ONCE((entry->eax & 0xff) > 1);
break;
/* functions 4 and 0x8000001d have additional index. */
case 4:
case 0x8000001d:
/*
* Read entries until the cache type in the previous entry is
* zero, i.e. indicates an invalid entry.
*/
for (i = 1; entry->eax & 0x1f; ++i) {
entry = do_host_cpuid(array, function, i);
if (!entry)
goto out;
}
break;
case 6: /* Thermal management */
entry->eax = 0x4; /* allow ARAT */
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
/* function 7 has additional index. */
case 7:
max_idx = entry->eax = min(entry->eax, 2u);
cpuid_entry_override(entry, CPUID_7_0_EBX);
cpuid_entry_override(entry, CPUID_7_ECX);
cpuid_entry_override(entry, CPUID_7_EDX);
/* KVM only supports up to 0x7.2, capped above via min(). */
if (max_idx >= 1) {
entry = do_host_cpuid(array, function, 1);
if (!entry)
goto out;
cpuid_entry_override(entry, CPUID_7_1_EAX);
cpuid_entry_override(entry, CPUID_7_1_EDX);
entry->ebx = 0;
entry->ecx = 0;
}
if (max_idx >= 2) {
entry = do_host_cpuid(array, function, 2);
if (!entry)
goto out;
cpuid_entry_override(entry, CPUID_7_2_EDX);
entry->ecx = 0;
entry->ebx = 0;
entry->eax = 0;
}
break;
case 0xa: { /* Architectural Performance Monitoring */
union cpuid10_eax eax;
union cpuid10_edx edx;
if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
eax.split.version_id = kvm_pmu_cap.version;
eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
eax.split.mask_length = kvm_pmu_cap.events_mask_len;
edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
if (kvm_pmu_cap.version)
edx.split.anythread_deprecated = 1;
edx.split.reserved1 = 0;
edx.split.reserved2 = 0;
entry->eax = eax.full;
entry->ebx = kvm_pmu_cap.events_mask;
entry->ecx = 0;
entry->edx = edx.full;
break;
}
case 0x1f:
case 0xb:
/*
* No topology; a valid topology is indicated by the presence
* of subleaf 1.
*/
entry->eax = entry->ebx = entry->ecx = 0;
break;
case 0xd: {
u64 permitted_xcr0 = kvm_get_filtered_xcr0();
u64 permitted_xss = kvm_caps.supported_xss;
entry->eax &= permitted_xcr0;
entry->ebx = xstate_required_size(permitted_xcr0, false);
entry->ecx = entry->ebx;
entry->edx &= permitted_xcr0 >> 32;
if (!permitted_xcr0)
break;
entry = do_host_cpuid(array, function, 1);
if (!entry)
goto out;
cpuid_entry_override(entry, CPUID_D_1_EAX);
if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC)))
entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
true);
else {
WARN_ON_ONCE(permitted_xss != 0);
entry->ebx = 0;
}
entry->ecx &= permitted_xss;
entry->edx &= permitted_xss >> 32;
for (i = 2; i < 64; ++i) {
bool s_state;
if (permitted_xcr0 & BIT_ULL(i))
s_state = false;
else if (permitted_xss & BIT_ULL(i))
s_state = true;
else
continue;
entry = do_host_cpuid(array, function, i);
if (!entry)
goto out;
/*
* The supported check above should have filtered out
* invalid sub-leafs. Only valid sub-leafs should
* reach this point, and they should have a non-zero
* save state size. Furthermore, check whether the
* processor agrees with permitted_xcr0/permitted_xss
* on whether this is an XCR0- or IA32_XSS-managed area.
*/
if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
--array->nent;
continue;
}
if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
entry->ecx &= ~BIT_ULL(2);
entry->edx = 0;
}
break;
}
case 0x12:
/* Intel SGX */
if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
/*
* Index 0: Sub-features, MISCSELECT (a.k.a extended features)
* and max enclave sizes. The SGX sub-features and MISCSELECT
* are restricted by kernel and KVM capabilities (like most
* feature flags), while enclave size is unrestricted.
*/
cpuid_entry_override(entry, CPUID_12_EAX);
entry->ebx &= SGX_MISC_EXINFO;
entry = do_host_cpuid(array, function, 1);
if (!entry)
goto out;
/*
* Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
* feature flags. Advertise all supported flags, including
* privileged attributes that require explicit opt-in from
* userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
* expected to derive it from supported XCR0.
*/
entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
entry->ebx &= 0;
break;
/* Intel PT */
case 0x14:
if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
if (!do_host_cpuid(array, function, i))
goto out;
}
break;
/* Intel AMX TILE */
case 0x1d:
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
if (!do_host_cpuid(array, function, i))
goto out;
}
break;
case 0x1e: /* TMUL information */
if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
break;
case 0x24: {
u8 avx10_version;
if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
/*
* The AVX10 version is encoded in EBX[7:0]. Note, the version
* is guaranteed to be >=1 if AVX10 is supported. Note #2, the
* version needs to be captured before overriding EBX features!
*/
avx10_version = min_t(u8, entry->ebx & 0xff, 1);
cpuid_entry_override(entry, CPUID_24_0_EBX);
entry->ebx |= avx10_version;
entry->eax = 0;
entry->ecx = 0;
entry->edx = 0;
break;
}
case KVM_CPUID_SIGNATURE: {
const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
entry->eax = KVM_CPUID_FEATURES;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
entry->edx = sigptr[2];
break;
}
case KVM_CPUID_FEATURES:
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
(1 << KVM_FEATURE_NOP_IO_DELAY) |
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_PV_EOI) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
(1 << KVM_FEATURE_PV_UNHALT) |
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
(1 << KVM_FEATURE_PV_SEND_IPI) |
(1 << KVM_FEATURE_POLL_CONTROL) |
(1 << KVM_FEATURE_PV_SCHED_YIELD) |
(1 << KVM_FEATURE_ASYNC_PF_INT);
if (sched_info_on())
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
case 0x80000000:
entry->eax = min(entry->eax, 0x80000022);
/*
* Serializing LFENCE is reported in a multitude of ways, and
* NullSegClearsBase is not reported in CPUID on Zen2; help
* userspace by providing the CPUID leaf ourselves.
*
* However, only do it if the host has CPUID leaf 0x8000001d.
* QEMU thinks that it can query the host blindly for that
* CPUID leaf if KVM reports that it supports 0x8000001d or
* above. The processor merrily returns values from the
* highest Intel leaf which QEMU tries to use as the guest's
* 0x8000001d. Even worse, this can result in an infinite
* loop if said highest leaf has no subleaves indexed by ECX.
*/
if (entry->eax >= 0x8000001d &&
(static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
|| !static_cpu_has_bug(X86_BUG_NULL_SEG)))
entry->eax = max(entry->eax, 0x80000021);
break;
case 0x80000001:
entry->ebx &= ~GENMASK(27, 16);
cpuid_entry_override(entry, CPUID_8000_0001_EDX);
cpuid_entry_override(entry, CPUID_8000_0001_ECX);
break;
case 0x80000005:
/* Pass host L1 cache and TLB info. */
break;
case 0x80000006:
/* Drop reserved bits, pass host L2 cache and TLB info. */
entry->edx &= ~GENMASK(17, 16);
break;
case 0x80000007: /* Advanced power management */
cpuid_entry_override(entry, CPUID_8000_0007_EDX);
/* mask against host */
entry->edx &= boot_cpu_data.x86_power;
entry->eax = entry->ebx = entry->ecx = 0;
break;
case 0x80000008: {
/*
* GuestPhysAddrSize (EAX[23:16]) is intended for software
* use.
*
* KVM's ABI is to report the effective MAXPHYADDR for the
* guest in PhysAddrSize (phys_as), and the maximum
* *addressable* GPA in GuestPhysAddrSize (g_phys_as).
*
* GuestPhysAddrSize is valid if and only if TDP is enabled,
* in which case the max GPA that can be addressed by KVM may
* be less than the max GPA that can be legally generated by
* the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
* support 5-level TDP.
*/
unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
unsigned int phys_as, g_phys_as;
/*
* If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
* the guest operates in the same PA space as the host, i.e.
* reductions in MAXPHYADDR for memory encryption affect shadow
* paging, too.
*
* If TDP is enabled, use the raw bare metal MAXPHYADDR as
* reductions to the HPAs do not affect GPAs. The max
* addressable GPA is the same as the max effective GPA, except
* that it's capped at 48 bits if 5-level TDP isn't supported
* (hardware processes bits 51:48 only when walking the fifth
* level page table).
*/
if (!tdp_enabled) {
phys_as = boot_cpu_data.x86_phys_bits;
g_phys_as = 0;
} else {
phys_as = entry->eax & 0xff;
g_phys_as = phys_as;
if (kvm_mmu_get_max_tdp_level() < 5)
g_phys_as = min(g_phys_as, 48U);
}
entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
entry->edx = 0;
cpuid_entry_override(entry, CPUID_8000_0008_EBX);
break;
}
case 0x8000000A:
if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
entry->eax = 1; /* SVM revision 1 */
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
ASID emulation to nested SVM */
entry->ecx = 0; /* Reserved */
cpuid_entry_override(entry, CPUID_8000_000A_EDX);
break;
case 0x80000019:
entry->ecx = entry->edx = 0;
break;
case 0x8000001a:
entry->eax &= GENMASK(2, 0);
entry->ebx = entry->ecx = entry->edx = 0;
break;
case 0x8000001e:
/* Do not return host topology information. */
entry->eax = entry->ebx = entry->ecx = 0;
entry->edx = 0; /* reserved */
break;
case 0x8000001F:
if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
} else {
cpuid_entry_override(entry, CPUID_8000_001F_EAX);
/* Clear NumVMPL since KVM does not support VMPL. */
entry->ebx &= ~GENMASK(31, 12);
/*
* Enumerate '0' for "PA bits reduction", the adjusted
* MAXPHYADDR is enumerated directly (see 0x80000008).
*/
entry->ebx &= ~GENMASK(11, 6);
}
break;
case 0x80000020:
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
case 0x80000021:
entry->ebx = entry->ecx = entry->edx = 0;
cpuid_entry_override(entry, CPUID_8000_0021_EAX);
break;
/* AMD Extended Performance Monitoring and Debug */
case 0x80000022: {
union cpuid_0x80000022_ebx ebx;
entry->ecx = entry->edx = 0;
if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
entry->eax = entry->ebx = 0;
break;
}
cpuid_entry_override(entry, CPUID_8000_0022_EAX);
ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
entry->ebx = ebx.full;
break;
}
/*Add support for Centaur's CPUID instruction*/
case 0xC0000000:
/*Just support up to 0xC0000004 now*/
entry->eax = min(entry->eax, 0xC0000004);
break;
case 0xC0000001:
cpuid_entry_override(entry, CPUID_C000_0001_EDX);
break;
case 3: /* Processor serial number */
case 5: /* MONITOR/MWAIT */
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
default:
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
r = 0;
out:
put_cpu();
return r;
}
static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
unsigned int type)
{
if (type == KVM_GET_EMULATED_CPUID)
return __do_cpuid_func_emulated(array, func);
return __do_cpuid_func(array, func);
}
#define CENTAUR_CPUID_SIGNATURE 0xC0000000
static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
unsigned int type)
{
u32 limit;
int r;
if (func == CENTAUR_CPUID_SIGNATURE &&
boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
return 0;
r = do_cpuid_func(array, func, type);
if (r)
return r;
limit = array->entries[array->nent - 1].eax;
for (func = func + 1; func <= limit; ++func) {
r = do_cpuid_func(array, func, type);
if (r)
break;
}
return r;
}
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
__u32 num_entries, unsigned int ioctl_type)
{
int i;
__u32 pad[3];
if (ioctl_type != KVM_GET_EMULATED_CPUID)
return false;
/*
* We want to make sure that ->padding is being passed clean from
* userspace in case we want to use it for something in the future.
*
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
* have to give ourselves satisfied only with the emulated side. /me
* sheds a tear.
*/
for (i = 0; i < num_entries; i++) {
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
return true;
if (pad[0] || pad[1] || pad[2])
return true;
}
return false;
}
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries,
unsigned int type)
{
static const u32 funcs[] = {
0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
};
struct kvm_cpuid_array array = {
.nent = 0,
};
int r, i;
if (cpuid->nent < 1)
return -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
if (sanity_check_entries(entries, cpuid->nent, type))
return -EINVAL;
array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
if (!array.entries)
return -ENOMEM;
array.maxnent = cpuid->nent;
for (i = 0; i < ARRAY_SIZE(funcs); i++) {
r = get_cpuid_func(&array, funcs[i], type);
if (r)
goto out_free;
}
cpuid->nent = array.nent;
if (copy_to_user(entries, array.entries,
array.nent * sizeof(struct kvm_cpuid_entry2)))
r = -EFAULT;
out_free:
kvfree(array.entries);
return r;
}
/*
* Intel CPUID semantics treats any query for an out-of-range leaf as if the
* highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
* returns all zeroes for any undefined leaf, whether or not the leaf is in
* range. Centaur/VIA follows Intel semantics.
*
* A leaf is considered out-of-range if its function is higher than the maximum
* supported leaf of its associated class or if its associated class does not
* exist.
*
* There are three primary classes to be considered, with their respective
* ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
* class exists if a guest CPUID entry for its <base> leaf exists. For a given
* class, CPUID.<base>.EAX contains the max supported leaf for the class.
*
* - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
* - Hypervisor: 0x40000000 - 0x4fffffff
* - Extended: 0x80000000 - 0xbfffffff
* - Centaur: 0xc0000000 - 0xcfffffff
*
* The Hypervisor class is further subdivided into sub-classes that each act as
* their own independent class associated with a 0x100 byte range. E.g. if Qemu
* is advertising support for both HyperV and KVM, the resulting Hypervisor
* CPUID sub-classes are:
*
* - HyperV: 0x40000000 - 0x400000ff
* - KVM: 0x40000100 - 0x400001ff
*/
static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
{
struct kvm_cpuid_entry2 *basic, *class;
u32 function = *fn_ptr;
basic = kvm_find_cpuid_entry(vcpu, 0);
if (!basic)
return NULL;
if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
return NULL;
if (function >= 0x40000000 && function <= 0x4fffffff)
class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
else if (function >= 0xc0000000)
class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
else
class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
if (class && function <= class->eax)
return NULL;
/*
* Leaf specific adjustments are also applied when redirecting to the
* max basic entry, e.g. if the max basic leaf is 0xb but there is no
* entry for CPUID.0xb.index (see below), then the output value for EDX
* needs to be pulled from CPUID.0xb.1.
*/
*fn_ptr = basic->eax;
/*
* The class does not exist or the requested function is out of range;
* the effective CPUID entry is the max basic leaf. Note, the index of
* the original requested leaf is observed!
*/
return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
}
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
u32 *ecx, u32 *edx, bool exact_only)
{
u32 orig_function = *eax, function = *eax, index = *ecx;
struct kvm_cpuid_entry2 *entry;
bool exact, used_max_basic = false;
if (vcpu->arch.cpuid_dynamic_bits_dirty)
kvm_update_cpuid_runtime(vcpu);
entry = kvm_find_cpuid_entry_index(vcpu, function, index);
exact = !!entry;
if (!entry && !exact_only) {
entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
used_max_basic = !!entry;
}
if (entry) {
*eax = entry->eax;
*ebx = entry->ebx;
*ecx = entry->ecx;
*edx = entry->edx;
if (function == 7 && index == 0) {
u64 data;
if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) &&
!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
(data & TSX_CTRL_CPUID_CLEAR))
*ebx &= ~(feature_bit(RTM) | feature_bit(HLE));
} else if (function == 0x80000007) {
if (kvm_hv_invtsc_suppressed(vcpu))
*edx &= ~feature_bit(CONSTANT_TSC);
} else if (IS_ENABLED(CONFIG_KVM_XEN) &&
kvm_xen_is_tsc_leaf(vcpu, function)) {
/*
* Update guest TSC frequency information if necessary.
* Ignore failures, there is no sane value that can be
* provided if KVM can't get the TSC frequency.
*/
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu))
kvm_guest_time_update(vcpu);
if (index == 1) {
*ecx = vcpu->arch.pvclock_tsc_mul;
*edx = vcpu->arch.pvclock_tsc_shift;
} else if (index == 2) {
*eax = vcpu->arch.hw_tsc_khz;
}
}
} else {
*eax = *ebx = *ecx = *edx = 0;
/*
* When leaf 0BH or 1FH is defined, CL is pass-through
* and EDX is always the x2APIC ID, even for undefined
* subleaves. Index 1 will exist iff the leaf is
* implemented, so we pass through CL iff leaf 1
* exists. EDX can be copied from any existing index.
*/
if (function == 0xb || function == 0x1f) {
entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
if (entry) {
*ecx = index & 0xff;
*edx = entry->edx;
}
}
}
trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
used_max_basic);
return exact;
}
EXPORT_SYMBOL_GPL(kvm_cpuid);
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
u32 eax, ebx, ecx, edx;
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
return 1;
eax = kvm_rax_read(vcpu);
ecx = kvm_rcx_read(vcpu);
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
kvm_rax_write(vcpu, eax);
kvm_rbx_write(vcpu, ebx);
kvm_rcx_write(vcpu, ecx);
kvm_rdx_write(vcpu, edx);
return kvm_skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|