summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/tsc.c
blob: a1c2cd7685383826ba12d484c055322bd6ad8678 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/acpi_pmtmr.h>
#include <linux/cpufreq.h>
#include <linux/dmi.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
#include <linux/timex.h>

#include <asm/hpet.h>
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
#include <asm/hypervisor.h>
#include <asm/nmi.h>
#include <asm/x86_init.h>

unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);

unsigned int __read_mostly tsc_khz;
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
static int __read_mostly tsc_unstable;

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
static int __read_mostly tsc_disabled = -1;

static int tsc_clocksource_reliable;
/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
	u64 this_offset;

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
	 *   can achieve it. )
	 */
	if (unlikely(tsc_disabled)) {
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
	rdtscll(this_offset);

	/* return the value in ns */
	return __cycles_2_ns(this_offset);
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
			"cannot disable TSC completely.\n");
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);

static int no_sched_irq_time;

static int __init tsc_setup(char *str)
{
	if (!strcmp(str, "reliable"))
		tsc_clocksource_reliable = 1;
	if (!strncmp(str, "noirqtime", 9))
		no_sched_irq_time = 1;
	return 1;
}

__setup("tsc=", tsc_setup);

#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
static u64 tsc_read_refs(u64 *p, int hpet)
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
		else
			*p = acpi_pm_read_early();
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

/*
 * Calculate the TSC frequency from HPET reference
 */
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
{
	u64 tmp;

	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;

	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

#define CAL_MS		10
#define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
#define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
#define CAL2_PIT_LOOPS	5000


/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
	 * If we were not able to read the PIT more than loopmin
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
	do_div(delta, ms);
	return delta;
}

/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
static inline int pit_verify_msb(unsigned char val)
{
	/* Ignore LSB */
	inb(0x42);
	return inb(0x42) == val;
}

static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
{
	int count;
	u64 tsc = 0;

	for (count = 0; count < 50000; count++) {
		if (!pit_verify_msb(val))
			break;
		tsc = get_cycles();
	}
	*deltap = get_cycles() - tsc;
	*tscp = tsc;

	/*
	 * We require _some_ success, but the quality control
	 * will be based on the error terms on the TSC values.
	 */
	return count > 5;
}

/*
 * How many MSB values do we want to see? We aim for
 * a maximum error rate of 500ppm (in practice the
 * real error is much smaller), but refuse to spend
 * more than 25ms on it.
 */
#define MAX_QUICK_PIT_MS 25
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)

static unsigned long quick_pit_calibrate(void)
{
	int i;
	u64 tsc, delta;
	unsigned long d1, d2;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
	outb(0xb0, 0x43);

	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

	/*
	 * The PIT starts counting at the next edge, so we
	 * need to delay for a microsecond. The easiest way
	 * to do that is to just read back the 16-bit counter
	 * once from the PIT.
	 */
	pit_verify_msb(0);

	if (pit_expect_msb(0xff, &tsc, &d1)) {
		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
			if (!pit_expect_msb(0xff-i, &delta, &d2))
				break;

			/*
			 * Iterate until the error is less than 500 ppm
			 */
			delta -= tsc;
			if (d1+d2 >= delta >> 11)
				continue;

			/*
			 * Check the PIT one more time to verify that
			 * all TSC reads were stable wrt the PIT.
			 *
			 * This also guarantees serialization of the
			 * last cycle read ('d2') in pit_expect_msb.
			 */
			if (!pit_verify_msb(0xfe - i))
				break;
			goto success;
		}
	}
	printk("Fast TSC calibration failed\n");
	return 0;

success:
	/*
	 * Ok, if we get here, then we've seen the
	 * MSB of the PIT decrement 'i' times, and the
	 * error has shrunk to less than 500 ppm.
	 *
	 * As a result, we can depend on there not being
	 * any odd delays anywhere, and the TSC reads are
	 * reliable (within the error). We also adjust the
	 * delta to the middle of the error bars, just
	 * because it looks nicer.
	 *
	 * kHz = ticks / time-in-seconds / 1000;
	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
	 */
	delta += (long)(d2 - d1)/2;
	delta *= PIT_TICK_RATE;
	do_div(delta, i*256*1000);
	printk("Fast TSC calibration using PIT\n");
	return delta;
}

/**
 * native_calibrate_tsc - calibrate the tsc on boot
 */
unsigned long native_calibrate_tsc(void)
{
	u64 tsc1, tsc2, delta, ref1, ref2;
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
	unsigned long flags, latch, ms, fast_calibrate;
	int hpet = is_hpet_enabled(), i, loopmin;

	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
	local_irq_restore(flags);
	if (fast_calibrate)
		return fast_calibrate;

	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
	 * SMI/SMM disturbance happend between the two reads. If the
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
		unsigned long tsc_pit_khz;

		/*
		 * Read the start value and the reference count of
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
		 */
		local_irq_save(flags);
		tsc1 = tsc_read_refs(&ref1, hpet);
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
		tsc2 = tsc_read_refs(&ref2, hpet);
		local_irq_restore(flags);

		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);

		/* hpet or pmtimer available ? */
		if (!hpet && !ref1 && !ref2)
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
		if (hpet)
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
		else
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
			printk(KERN_INFO
			       "TSC: PIT calibration matches %s. %d loops\n",
			       hpet ? "HPET" : "PMTIMER", i + 1);
			return tsc_ref_min;
		}

		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
	}

	/*
	 * Now check the results.
	 */
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");

		/* We don't have an alternative source, disable TSC */
		if (!hpet && !ref1 && !ref2) {
			printk("TSC: No reference (HPET/PMTIMER) available\n");
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
			       "failed.\n");
			return 0;
		}

		/* Use the alternative source */
		printk(KERN_INFO "TSC: using %s reference calibration\n",
		       hpet ? "HPET" : "PMTIMER");

		return tsc_ref_min;
	}

	/* We don't have an alternative source, use the PIT calibration value */
	if (!hpet && !ref1 && !ref2) {
		printk(KERN_INFO "TSC: Using PIT calibration value\n");
		return tsc_pit_min;
	}

	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
		       "Using PIT calibration\n");
		return tsc_pit_min;
	}

	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
	 * running at double speed. At least we let the user know:
	 */
	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
	printk(KERN_INFO "TSC: Using PIT calibration value\n");
	return tsc_pit_min;
}

int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
		tsc_khz = x86_platform.calibrate_tsc();
		cpu_khz = tsc_khz;
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);


/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

DEFINE_PER_CPU(unsigned long, cyc2ns);
DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);

static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
{
	unsigned long long tsc_now, ns_now, *offset;
	unsigned long flags, *scale;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	scale = &per_cpu(cyc2ns, cpu);
	offset = &per_cpu(cyc2ns_offset, cpu);

	rdtscll(tsc_now);
	ns_now = __cycles_2_ns(tsc_now);

	if (cpu_khz) {
		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
		*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
	}

	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}

static unsigned long long cyc2ns_suspend;

void save_sched_clock_state(void)
{
	if (!sched_clock_stable)
		return;

	cyc2ns_suspend = sched_clock();
}

/*
 * Even on processors with invariant TSC, TSC gets reset in some the
 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 * that sched_clock() continues from the point where it was left off during
 * suspend.
 */
void restore_sched_clock_state(void)
{
	unsigned long long offset;
	unsigned long flags;
	int cpu;

	if (!sched_clock_stable)
		return;

	local_irq_save(flags);

	__get_cpu_var(cyc2ns_offset) = 0;
	offset = cyc2ns_suspend - sched_clock();

	for_each_possible_cpu(cpu)
		per_cpu(cyc2ns_offset, cpu) = offset;

	local_irq_restore(flags);
}

#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
	unsigned long *lpj;

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

	lpj = &boot_cpu_data.loops_per_jiffy;
#ifdef CONFIG_SMP
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
			(val == CPUFREQ_RESUMECHANGE)) {
		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");
	}

	set_cyc2ns_scale(tsc_khz, freq->cpu);

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
	if (!cpu_has_tsc)
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */

/* clocksource code */

static struct clocksource clocksource_tsc;

/*
 * We compare the TSC to the cycle_last value in the clocksource
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
 */
static cycle_t read_tsc(struct clocksource *cs)
{
	cycle_t ret = (cycle_t)get_cycles();

	return ret >= clocksource_tsc.cycle_last ?
		ret : clocksource_tsc.cycle_last;
}

#ifdef CONFIG_X86_64
static cycle_t __vsyscall_fn vread_tsc(void)
{
	cycle_t ret;

	/*
	 * Surround the RDTSC by barriers, to make sure it's not
	 * speculated to outside the seqlock critical section and
	 * does not cause time warps:
	 */
	rdtsc_barrier();
	ret = (cycle_t)vget_cycles();
	rdtsc_barrier();

	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
		ret : __vsyscall_gtod_data.clock.cycle_last;
}
#endif

static void resume_tsc(struct clocksource *cs)
{
	clocksource_tsc.cycle_last = 0;
}

static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.resume			= resume_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
#ifdef CONFIG_X86_64
	.vread                  = vread_tsc,
#endif
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
		sched_clock_stable = 0;
		disable_sched_clock_irqtime();
		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
			clocksource_mark_unstable(&clocksource_tsc);
		else {
			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
			clocksource_tsc.rating = 0;
		}
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
{
	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
			d->ident);
	tsc_unstable = 1;
	return 0;
}

/* List of systems that have known TSC problems */
static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
	{
		.callback = dmi_mark_tsc_unstable,
		.ident = "IBM Thinkpad 380XD",
		.matches = {
			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
		},
	},
	{}
};

static void __init check_system_tsc_reliable(void)
{
#ifdef CONFIG_MGEODE_LX
	/* RTSC counts during suspend */
#define RTSC_SUSP 0x100
	unsigned long res_low, res_high;

	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
	/* Geode_LX - the OLPC CPU has a very reliable TSC */
	if (res_low & RTSC_SUSP)
		tsc_clocksource_reliable = 1;
#endif
	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
		tsc_clocksource_reliable = 1;
}

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
__cpuinit int unsynchronized_tsc(void)
{
	if (!cpu_has_tsc || tsc_unstable)
		return 1;

#ifdef CONFIG_SMP
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
			tsc_unstable = 1;
	}

	return tsc_unstable;
}

static void __init init_tsc_clocksource(void)
{
	if (tsc_clocksource_reliable)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
	clocksource_register_khz(&clocksource_tsc, tsc_khz);
}

#ifdef CONFIG_X86_64
/*
 * calibrate_cpu is used on systems with fixed rate TSCs to determine
 * processor frequency
 */
#define TICK_COUNT 100000000
static unsigned long __init calibrate_cpu(void)
{
	int tsc_start, tsc_now;
	int i, no_ctr_free;
	unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
	unsigned long flags;

	for (i = 0; i < 4; i++)
		if (avail_to_resrv_perfctr_nmi_bit(i))
			break;
	no_ctr_free = (i == 4);
	if (no_ctr_free) {
		WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... "
		     "cpu_khz value may be incorrect.\n");
		i = 3;
		rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
		wrmsrl(MSR_K7_EVNTSEL3, 0);
		rdmsrl(MSR_K7_PERFCTR3, pmc3);
	} else {
		reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
		reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
	}
	local_irq_save(flags);
	/* start measuring cycles, incrementing from 0 */
	wrmsrl(MSR_K7_PERFCTR0 + i, 0);
	wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
	rdtscl(tsc_start);
	do {
		rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
		tsc_now = get_cycles();
	} while ((tsc_now - tsc_start) < TICK_COUNT);

	local_irq_restore(flags);
	if (no_ctr_free) {
		wrmsrl(MSR_K7_EVNTSEL3, 0);
		wrmsrl(MSR_K7_PERFCTR3, pmc3);
		wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
	} else {
		release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
		release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
	}

	return pmc_now * tsc_khz / (tsc_now - tsc_start);
}
#else
static inline unsigned long calibrate_cpu(void) { return cpu_khz; }
#endif

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

	x86_init.timers.tsc_pre_init();

	if (!cpu_has_tsc)
		return;

	tsc_khz = x86_platform.calibrate_tsc();
	cpu_khz = tsc_khz;

	if (!tsc_khz) {
		mark_tsc_unstable("could not calculate TSC khz");
		return;
	}

	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
		cpu_khz = calibrate_cpu();

	printk("Detected %lu.%03lu MHz processor.\n",
			(unsigned long)cpu_khz / 1000,
			(unsigned long)cpu_khz % 1000);

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
	for_each_possible_cpu(cpu)
		set_cyc2ns_scale(cpu_khz, cpu);

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
	tsc_disabled = 0;

	if (!no_sched_irq_time)
		enable_sched_clock_irqtime();

	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

	use_tsc_delay();
	/* Check and install the TSC clocksource */
	dmi_check_system(bad_tsc_dmi_table);

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

	check_system_tsc_reliable();
	init_tsc_clocksource();
}