summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/intel.c
blob: a19a680542ce736ce0f89c3621d0695a9481c6f8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>

#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/thread_info.h>
#include <linux/init.h>
#include <linux/uaccess.h>

#include <asm/cpufeature.h>
#include <asm/pgtable.h>
#include <asm/msr.h>
#include <asm/bugs.h>
#include <asm/cpu.h>
#include <asm/intel-family.h>
#include <asm/microcode_intel.h>
#include <asm/hwcap2.h>
#include <asm/elf.h>
#include <asm/cpu_device_id.h>
#include <asm/cmdline.h>
#include <asm/traps.h>

#ifdef CONFIG_X86_64
#include <linux/topology.h>
#endif

#include "cpu.h"

#ifdef CONFIG_X86_LOCAL_APIC
#include <asm/mpspec.h>
#include <asm/apic.h>
#endif

enum split_lock_detect_state {
	sld_off = 0,
	sld_warn,
	sld_fatal,
};

/*
 * Default to sld_off because most systems do not support split lock detection
 * split_lock_setup() will switch this to sld_warn on systems that support
 * split lock detect, unless there is a command line override.
 */
static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
static u64 msr_test_ctrl_cache __ro_after_init;

/*
 * Processors which have self-snooping capability can handle conflicting
 * memory type across CPUs by snooping its own cache. However, there exists
 * CPU models in which having conflicting memory types still leads to
 * unpredictable behavior, machine check errors, or hangs. Clear this
 * feature to prevent its use on machines with known erratas.
 */
static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
{
	switch (c->x86_model) {
	case INTEL_FAM6_CORE_YONAH:
	case INTEL_FAM6_CORE2_MEROM:
	case INTEL_FAM6_CORE2_MEROM_L:
	case INTEL_FAM6_CORE2_PENRYN:
	case INTEL_FAM6_CORE2_DUNNINGTON:
	case INTEL_FAM6_NEHALEM:
	case INTEL_FAM6_NEHALEM_G:
	case INTEL_FAM6_NEHALEM_EP:
	case INTEL_FAM6_NEHALEM_EX:
	case INTEL_FAM6_WESTMERE:
	case INTEL_FAM6_WESTMERE_EP:
	case INTEL_FAM6_SANDYBRIDGE:
		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
	}
}

static bool ring3mwait_disabled __read_mostly;

static int __init ring3mwait_disable(char *__unused)
{
	ring3mwait_disabled = true;
	return 0;
}
__setup("ring3mwait=disable", ring3mwait_disable);

static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
{
	/*
	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
	 * cpu model and family comparison.
	 */
	if (c->x86 != 6)
		return;
	switch (c->x86_model) {
	case INTEL_FAM6_XEON_PHI_KNL:
	case INTEL_FAM6_XEON_PHI_KNM:
		break;
	default:
		return;
	}

	if (ring3mwait_disabled)
		return;

	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
	this_cpu_or(msr_misc_features_shadow,
		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);

	if (c == &boot_cpu_data)
		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
}

/*
 * Early microcode releases for the Spectre v2 mitigation were broken.
 * Information taken from;
 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
 * - https://kb.vmware.com/s/article/52345
 * - Microcode revisions observed in the wild
 * - Release note from 20180108 microcode release
 */
struct sku_microcode {
	u8 model;
	u8 stepping;
	u32 microcode;
};
static const struct sku_microcode spectre_bad_microcodes[] = {
	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
	/* Observed in the wild */
	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
};

static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
{
	int i;

	/*
	 * We know that the hypervisor lie to us on the microcode version so
	 * we may as well hope that it is running the correct version.
	 */
	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
		return false;

	if (c->x86 != 6)
		return false;

	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
		if (c->x86_model == spectre_bad_microcodes[i].model &&
		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
			return (c->microcode <= spectre_bad_microcodes[i].microcode);
	}
	return false;
}

static void early_init_intel(struct cpuinfo_x86 *c)
{
	u64 misc_enable;

	/* Unmask CPUID levels if masked: */
	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
			c->cpuid_level = cpuid_eax(0);
			get_cpu_cap(c);
		}
	}

	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
		(c->x86 == 0x6 && c->x86_model >= 0x0e))
		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);

	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
		c->microcode = intel_get_microcode_revision();

	/* Now if any of them are set, check the blacklist and clear the lot */
	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
		setup_clear_cpu_cap(X86_FEATURE_IBRS);
		setup_clear_cpu_cap(X86_FEATURE_IBPB);
		setup_clear_cpu_cap(X86_FEATURE_STIBP);
		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
		setup_clear_cpu_cap(X86_FEATURE_SSBD);
		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
	}

	/*
	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
	 *
	 * A race condition between speculative fetches and invalidating
	 * a large page.  This is worked around in microcode, but we
	 * need the microcode to have already been loaded... so if it is
	 * not, recommend a BIOS update and disable large pages.
	 */
	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
	    c->microcode < 0x20e) {
		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
		clear_cpu_cap(c, X86_FEATURE_PSE);
	}

#ifdef CONFIG_X86_64
	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
#else
	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
	if (c->x86 == 15 && c->x86_cache_alignment == 64)
		c->x86_cache_alignment = 128;
#endif

	/* CPUID workaround for 0F33/0F34 CPU */
	if (c->x86 == 0xF && c->x86_model == 0x3
	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
		c->x86_phys_bits = 36;

	/*
	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
	 * with P/T states and does not stop in deep C-states.
	 *
	 * It is also reliable across cores and sockets. (but not across
	 * cabinets - we turn it off in that case explicitly.)
	 */
	if (c->x86_power & (1 << 8)) {
		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
	}

	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
	if (c->x86 == 6) {
		switch (c->x86_model) {
		case INTEL_FAM6_ATOM_SALTWELL_MID:
		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
		case INTEL_FAM6_ATOM_SILVERMONT_MID:
		case INTEL_FAM6_ATOM_AIRMONT_NP:
			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
			break;
		default:
			break;
		}
	}

	/*
	 * There is a known erratum on Pentium III and Core Solo
	 * and Core Duo CPUs.
	 * " Page with PAT set to WC while associated MTRR is UC
	 *   may consolidate to UC "
	 * Because of this erratum, it is better to stick with
	 * setting WC in MTRR rather than using PAT on these CPUs.
	 *
	 * Enable PAT WC only on P4, Core 2 or later CPUs.
	 */
	if (c->x86 == 6 && c->x86_model < 15)
		clear_cpu_cap(c, X86_FEATURE_PAT);

	/*
	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
	 * clear the fast string and enhanced fast string CPU capabilities.
	 */
	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
			pr_info("Disabled fast string operations\n");
			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
			setup_clear_cpu_cap(X86_FEATURE_ERMS);
		}
	}

	/*
	 * Intel Quark Core DevMan_001.pdf section 6.4.11
	 * "The operating system also is required to invalidate (i.e., flush)
	 *  the TLB when any changes are made to any of the page table entries.
	 *  The operating system must reload CR3 to cause the TLB to be flushed"
	 *
	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
	 * to be modified.
	 */
	if (c->x86 == 5 && c->x86_model == 9) {
		pr_info("Disabling PGE capability bit\n");
		setup_clear_cpu_cap(X86_FEATURE_PGE);
	}

	if (c->cpuid_level >= 0x00000001) {
		u32 eax, ebx, ecx, edx;

		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
		/*
		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
		 * apicids which are reserved per package. Store the resulting
		 * shift value for the package management code.
		 */
		if (edx & (1U << 28))
			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
	}

	check_memory_type_self_snoop_errata(c);

	/*
	 * Get the number of SMT siblings early from the extended topology
	 * leaf, if available. Otherwise try the legacy SMT detection.
	 */
	if (detect_extended_topology_early(c) < 0)
		detect_ht_early(c);
}

#ifdef CONFIG_X86_32
/*
 *	Early probe support logic for ppro memory erratum #50
 *
 *	This is called before we do cpu ident work
 */

int ppro_with_ram_bug(void)
{
	/* Uses data from early_cpu_detect now */
	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
	    boot_cpu_data.x86 == 6 &&
	    boot_cpu_data.x86_model == 1 &&
	    boot_cpu_data.x86_stepping < 8) {
		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
		return 1;
	}
	return 0;
}

static void intel_smp_check(struct cpuinfo_x86 *c)
{
	/* calling is from identify_secondary_cpu() ? */
	if (!c->cpu_index)
		return;

	/*
	 * Mask B, Pentium, but not Pentium MMX
	 */
	if (c->x86 == 5 &&
	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
	    c->x86_model <= 3) {
		/*
		 * Remember we have B step Pentia with bugs
		 */
		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
				    "with B stepping processors.\n");
	}
}

static int forcepae;
static int __init forcepae_setup(char *__unused)
{
	forcepae = 1;
	return 1;
}
__setup("forcepae", forcepae_setup);

static void intel_workarounds(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_F00F_BUG
	/*
	 * All models of Pentium and Pentium with MMX technology CPUs
	 * have the F0 0F bug, which lets nonprivileged users lock up the
	 * system. Announce that the fault handler will be checking for it.
	 * The Quark is also family 5, but does not have the same bug.
	 */
	clear_cpu_bug(c, X86_BUG_F00F);
	if (c->x86 == 5 && c->x86_model < 9) {
		static int f00f_workaround_enabled;

		set_cpu_bug(c, X86_BUG_F00F);
		if (!f00f_workaround_enabled) {
			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
			f00f_workaround_enabled = 1;
		}
	}
#endif

	/*
	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
	 * model 3 mask 3
	 */
	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
		clear_cpu_cap(c, X86_FEATURE_SEP);

	/*
	 * PAE CPUID issue: many Pentium M report no PAE but may have a
	 * functionally usable PAE implementation.
	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
	 */
	if (forcepae) {
		pr_warn("PAE forced!\n");
		set_cpu_cap(c, X86_FEATURE_PAE);
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
	}

	/*
	 * P4 Xeon erratum 037 workaround.
	 * Hardware prefetcher may cause stale data to be loaded into the cache.
	 */
	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
		}
	}

	/*
	 * See if we have a good local APIC by checking for buggy Pentia,
	 * i.e. all B steppings and the C2 stepping of P54C when using their
	 * integrated APIC (see 11AP erratum in "Pentium Processor
	 * Specification Update").
	 */
	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
		set_cpu_bug(c, X86_BUG_11AP);


#ifdef CONFIG_X86_INTEL_USERCOPY
	/*
	 * Set up the preferred alignment for movsl bulk memory moves
	 */
	switch (c->x86) {
	case 4:		/* 486: untested */
		break;
	case 5:		/* Old Pentia: untested */
		break;
	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
		movsl_mask.mask = 7;
		break;
	case 15:	/* P4 is OK down to 8-byte alignment */
		movsl_mask.mask = 7;
		break;
	}
#endif

	intel_smp_check(c);
}
#else
static void intel_workarounds(struct cpuinfo_x86 *c)
{
}
#endif

static void srat_detect_node(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_NUMA
	unsigned node;
	int cpu = smp_processor_id();

	/* Don't do the funky fallback heuristics the AMD version employs
	   for now. */
	node = numa_cpu_node(cpu);
	if (node == NUMA_NO_NODE || !node_online(node)) {
		/* reuse the value from init_cpu_to_node() */
		node = cpu_to_node(cpu);
	}
	numa_set_node(cpu, node);
#endif
}

#define MSR_IA32_TME_ACTIVATE		0x982

/* Helpers to access TME_ACTIVATE MSR */
#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)

#define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
#define TME_ACTIVATE_POLICY_AES_XTS_128	0

#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */

#define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
#define TME_ACTIVATE_CRYPTO_AES_XTS_128	1

/* Values for mktme_status (SW only construct) */
#define MKTME_ENABLED			0
#define MKTME_DISABLED			1
#define MKTME_UNINITIALIZED		2
static int mktme_status = MKTME_UNINITIALIZED;

static void detect_tme(struct cpuinfo_x86 *c)
{
	u64 tme_activate, tme_policy, tme_crypto_algs;
	int keyid_bits = 0, nr_keyids = 0;
	static u64 tme_activate_cpu0 = 0;

	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);

	if (mktme_status != MKTME_UNINITIALIZED) {
		if (tme_activate != tme_activate_cpu0) {
			/* Broken BIOS? */
			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
			pr_err_once("x86/tme: MKTME is not usable\n");
			mktme_status = MKTME_DISABLED;

			/* Proceed. We may need to exclude bits from x86_phys_bits. */
		}
	} else {
		tme_activate_cpu0 = tme_activate;
	}

	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
		pr_info_once("x86/tme: not enabled by BIOS\n");
		mktme_status = MKTME_DISABLED;
		return;
	}

	if (mktme_status != MKTME_UNINITIALIZED)
		goto detect_keyid_bits;

	pr_info("x86/tme: enabled by BIOS\n");

	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);

	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
				tme_crypto_algs);
		mktme_status = MKTME_DISABLED;
	}
detect_keyid_bits:
	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
	nr_keyids = (1UL << keyid_bits) - 1;
	if (nr_keyids) {
		pr_info_once("x86/mktme: enabled by BIOS\n");
		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
	} else {
		pr_info_once("x86/mktme: disabled by BIOS\n");
	}

	if (mktme_status == MKTME_UNINITIALIZED) {
		/* MKTME is usable */
		mktme_status = MKTME_ENABLED;
	}

	/*
	 * KeyID bits effectively lower the number of physical address
	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
	 */
	c->x86_phys_bits -= keyid_bits;
}

static void init_cpuid_fault(struct cpuinfo_x86 *c)
{
	u64 msr;

	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
	}
}

static void init_intel_misc_features(struct cpuinfo_x86 *c)
{
	u64 msr;

	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
		return;

	/* Clear all MISC features */
	this_cpu_write(msr_misc_features_shadow, 0);

	/* Check features and update capabilities and shadow control bits */
	init_cpuid_fault(c);
	probe_xeon_phi_r3mwait(c);

	msr = this_cpu_read(msr_misc_features_shadow);
	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
}

static void split_lock_init(void);

static void init_intel(struct cpuinfo_x86 *c)
{
	early_init_intel(c);

	intel_workarounds(c);

	/*
	 * Detect the extended topology information if available. This
	 * will reinitialise the initial_apicid which will be used
	 * in init_intel_cacheinfo()
	 */
	detect_extended_topology(c);

	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
		/*
		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
		 * detection.
		 */
		detect_num_cpu_cores(c);
#ifdef CONFIG_X86_32
		detect_ht(c);
#endif
	}

	init_intel_cacheinfo(c);

	if (c->cpuid_level > 9) {
		unsigned eax = cpuid_eax(10);
		/* Check for version and the number of counters */
		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
	}

	if (cpu_has(c, X86_FEATURE_XMM2))
		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);

	if (boot_cpu_has(X86_FEATURE_DS)) {
		unsigned int l1, l2;

		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
		if (!(l1 & (1<<11)))
			set_cpu_cap(c, X86_FEATURE_BTS);
		if (!(l1 & (1<<12)))
			set_cpu_cap(c, X86_FEATURE_PEBS);
	}

	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);

	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
		set_cpu_bug(c, X86_BUG_MONITOR);

#ifdef CONFIG_X86_64
	if (c->x86 == 15)
		c->x86_cache_alignment = c->x86_clflush_size * 2;
	if (c->x86 == 6)
		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
#else
	/*
	 * Names for the Pentium II/Celeron processors
	 * detectable only by also checking the cache size.
	 * Dixon is NOT a Celeron.
	 */
	if (c->x86 == 6) {
		unsigned int l2 = c->x86_cache_size;
		char *p = NULL;

		switch (c->x86_model) {
		case 5:
			if (l2 == 0)
				p = "Celeron (Covington)";
			else if (l2 == 256)
				p = "Mobile Pentium II (Dixon)";
			break;

		case 6:
			if (l2 == 128)
				p = "Celeron (Mendocino)";
			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
				p = "Celeron-A";
			break;

		case 8:
			if (l2 == 128)
				p = "Celeron (Coppermine)";
			break;
		}

		if (p)
			strcpy(c->x86_model_id, p);
	}

	if (c->x86 == 15)
		set_cpu_cap(c, X86_FEATURE_P4);
	if (c->x86 == 6)
		set_cpu_cap(c, X86_FEATURE_P3);
#endif

	/* Work around errata */
	srat_detect_node(c);

	init_ia32_feat_ctl(c);

	if (cpu_has(c, X86_FEATURE_TME))
		detect_tme(c);

	init_intel_misc_features(c);

	if (tsx_ctrl_state == TSX_CTRL_ENABLE)
		tsx_enable();
	if (tsx_ctrl_state == TSX_CTRL_DISABLE)
		tsx_disable();

	split_lock_init();
}

#ifdef CONFIG_X86_32
static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
{
	/*
	 * Intel PIII Tualatin. This comes in two flavours.
	 * One has 256kb of cache, the other 512. We have no way
	 * to determine which, so we use a boottime override
	 * for the 512kb model, and assume 256 otherwise.
	 */
	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
		size = 256;

	/*
	 * Intel Quark SoC X1000 contains a 4-way set associative
	 * 16K cache with a 16 byte cache line and 256 lines per tag
	 */
	if ((c->x86 == 5) && (c->x86_model == 9))
		size = 16;
	return size;
}
#endif

#define TLB_INST_4K	0x01
#define TLB_INST_4M	0x02
#define TLB_INST_2M_4M	0x03

#define TLB_INST_ALL	0x05
#define TLB_INST_1G	0x06

#define TLB_DATA_4K	0x11
#define TLB_DATA_4M	0x12
#define TLB_DATA_2M_4M	0x13
#define TLB_DATA_4K_4M	0x14

#define TLB_DATA_1G	0x16

#define TLB_DATA0_4K	0x21
#define TLB_DATA0_4M	0x22
#define TLB_DATA0_2M_4M	0x23

#define STLB_4K		0x41
#define STLB_4K_2M	0x42

static const struct _tlb_table intel_tlb_table[] = {
	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
	{ 0x00, 0, 0 }
};

static void intel_tlb_lookup(const unsigned char desc)
{
	unsigned char k;
	if (desc == 0)
		return;

	/* look up this descriptor in the table */
	for (k = 0; intel_tlb_table[k].descriptor != desc &&
	     intel_tlb_table[k].descriptor != 0; k++)
		;

	if (intel_tlb_table[k].tlb_type == 0)
		return;

	switch (intel_tlb_table[k].tlb_type) {
	case STLB_4K:
		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case STLB_4K_2M:
		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_INST_ALL:
		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_INST_4K:
		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_INST_4M:
		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_INST_2M_4M:
		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_DATA_4K:
	case TLB_DATA0_4K:
		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_DATA_4M:
	case TLB_DATA0_4M:
		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_DATA_2M_4M:
	case TLB_DATA0_2M_4M:
		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_DATA_4K_4M:
		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
		break;
	case TLB_DATA_1G:
		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
		break;
	}
}

static void intel_detect_tlb(struct cpuinfo_x86 *c)
{
	int i, j, n;
	unsigned int regs[4];
	unsigned char *desc = (unsigned char *)regs;

	if (c->cpuid_level < 2)
		return;

	/* Number of times to iterate */
	n = cpuid_eax(2) & 0xFF;

	for (i = 0 ; i < n ; i++) {
		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);

		/* If bit 31 is set, this is an unknown format */
		for (j = 0 ; j < 3 ; j++)
			if (regs[j] & (1 << 31))
				regs[j] = 0;

		/* Byte 0 is level count, not a descriptor */
		for (j = 1 ; j < 16 ; j++)
			intel_tlb_lookup(desc[j]);
	}
}

static const struct cpu_dev intel_cpu_dev = {
	.c_vendor	= "Intel",
	.c_ident	= { "GenuineIntel" },
#ifdef CONFIG_X86_32
	.legacy_models = {
		{ .family = 4, .model_names =
		  {
			  [0] = "486 DX-25/33",
			  [1] = "486 DX-50",
			  [2] = "486 SX",
			  [3] = "486 DX/2",
			  [4] = "486 SL",
			  [5] = "486 SX/2",
			  [7] = "486 DX/2-WB",
			  [8] = "486 DX/4",
			  [9] = "486 DX/4-WB"
		  }
		},
		{ .family = 5, .model_names =
		  {
			  [0] = "Pentium 60/66 A-step",
			  [1] = "Pentium 60/66",
			  [2] = "Pentium 75 - 200",
			  [3] = "OverDrive PODP5V83",
			  [4] = "Pentium MMX",
			  [7] = "Mobile Pentium 75 - 200",
			  [8] = "Mobile Pentium MMX",
			  [9] = "Quark SoC X1000",
		  }
		},
		{ .family = 6, .model_names =
		  {
			  [0] = "Pentium Pro A-step",
			  [1] = "Pentium Pro",
			  [3] = "Pentium II (Klamath)",
			  [4] = "Pentium II (Deschutes)",
			  [5] = "Pentium II (Deschutes)",
			  [6] = "Mobile Pentium II",
			  [7] = "Pentium III (Katmai)",
			  [8] = "Pentium III (Coppermine)",
			  [10] = "Pentium III (Cascades)",
			  [11] = "Pentium III (Tualatin)",
		  }
		},
		{ .family = 15, .model_names =
		  {
			  [0] = "Pentium 4 (Unknown)",
			  [1] = "Pentium 4 (Willamette)",
			  [2] = "Pentium 4 (Northwood)",
			  [4] = "Pentium 4 (Foster)",
			  [5] = "Pentium 4 (Foster)",
		  }
		},
	},
	.legacy_cache_size = intel_size_cache,
#endif
	.c_detect_tlb	= intel_detect_tlb,
	.c_early_init   = early_init_intel,
	.c_init		= init_intel,
	.c_x86_vendor	= X86_VENDOR_INTEL,
};

cpu_dev_register(intel_cpu_dev);

#undef pr_fmt
#define pr_fmt(fmt) "x86/split lock detection: " fmt

static const struct {
	const char			*option;
	enum split_lock_detect_state	state;
} sld_options[] __initconst = {
	{ "off",	sld_off   },
	{ "warn",	sld_warn  },
	{ "fatal",	sld_fatal },
};

static inline bool match_option(const char *arg, int arglen, const char *opt)
{
	int len = strlen(opt);

	return len == arglen && !strncmp(arg, opt, len);
}

static bool split_lock_verify_msr(bool on)
{
	u64 ctrl, tmp;

	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
		return false;
	if (on)
		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
	else
		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
		return false;
	rdmsrl(MSR_TEST_CTRL, tmp);
	return ctrl == tmp;
}

static void __init split_lock_setup(void)
{
	enum split_lock_detect_state state = sld_warn;
	char arg[20];
	int i, ret;

	if (!split_lock_verify_msr(false)) {
		pr_info("MSR access failed: Disabled\n");
		return;
	}

	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
				  arg, sizeof(arg));
	if (ret >= 0) {
		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
			if (match_option(arg, ret, sld_options[i].option)) {
				state = sld_options[i].state;
				break;
			}
		}
	}

	switch (state) {
	case sld_off:
		pr_info("disabled\n");
		return;
	case sld_warn:
		pr_info("warning about user-space split_locks\n");
		break;
	case sld_fatal:
		pr_info("sending SIGBUS on user-space split_locks\n");
		break;
	}

	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);

	if (!split_lock_verify_msr(true)) {
		pr_info("MSR access failed: Disabled\n");
		return;
	}

	sld_state = state;
	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
}

/*
 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
 * is not implemented as one thread could undo the setting of the other
 * thread immediately after dropping the lock anyway.
 */
static void sld_update_msr(bool on)
{
	u64 test_ctrl_val = msr_test_ctrl_cache;

	if (on)
		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;

	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
}

static void split_lock_init(void)
{
	split_lock_verify_msr(sld_state != sld_off);
}

static void split_lock_warn(unsigned long ip)
{
	pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
			    current->comm, current->pid, ip);

	/*
	 * Disable the split lock detection for this task so it can make
	 * progress and set TIF_SLD so the detection is re-enabled via
	 * switch_to_sld() when the task is scheduled out.
	 */
	sld_update_msr(false);
	set_tsk_thread_flag(current, TIF_SLD);
}

bool handle_guest_split_lock(unsigned long ip)
{
	if (sld_state == sld_warn) {
		split_lock_warn(ip);
		return true;
	}

	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
		     current->comm, current->pid,
		     sld_state == sld_fatal ? "fatal" : "bogus", ip);

	current->thread.error_code = 0;
	current->thread.trap_nr = X86_TRAP_AC;
	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
	return false;
}
EXPORT_SYMBOL_GPL(handle_guest_split_lock);

bool handle_user_split_lock(struct pt_regs *regs, long error_code)
{
	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
		return false;
	split_lock_warn(regs->ip);
	return true;
}

/*
 * This function is called only when switching between tasks with
 * different split-lock detection modes. It sets the MSR for the
 * mode of the new task. This is right most of the time, but since
 * the MSR is shared by hyperthreads on a physical core there can
 * be glitches when the two threads need different modes.
 */
void switch_to_sld(unsigned long tifn)
{
	sld_update_msr(!(tifn & _TIF_SLD));
}

/*
 * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
 * only be trusted if it is confirmed that a CPU model implements a
 * specific feature at a particular bit position.
 *
 * The possible driver data field values:
 *
 * - 0: CPU models that are known to have the per-core split-lock detection
 *	feature even though they do not enumerate IA32_CORE_CAPABILITIES.
 *
 * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
 *      bit 5 to enumerate the per-core split-lock detection feature.
 */
static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		0),
	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		0),
	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	1),
	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	1),
	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	1),
	{}
};

void __init cpu_set_core_cap_bits(struct cpuinfo_x86 *c)
{
	const struct x86_cpu_id *m;
	u64 ia32_core_caps;

	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
		return;

	m = x86_match_cpu(split_lock_cpu_ids);
	if (!m)
		return;

	switch (m->driver_data) {
	case 0:
		break;
	case 1:
		if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
			return;
		rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
		if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
			return;
		break;
	default:
		return;
	}

	split_lock_setup();
}