1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
/*
* Copyright IBM Corp. 2012
*
* Author(s):
* Jan Glauber <jang@linux.vnet.ibm.com>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/iommu-helper.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <asm/pci_dma.h>
static struct kmem_cache *dma_region_table_cache;
static struct kmem_cache *dma_page_table_cache;
static unsigned long *dma_alloc_cpu_table(void)
{
unsigned long *table, *entry;
table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
if (!table)
return NULL;
for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
*entry = ZPCI_TABLE_INVALID | ZPCI_TABLE_PROTECTED;
return table;
}
static void dma_free_cpu_table(void *table)
{
kmem_cache_free(dma_region_table_cache, table);
}
static unsigned long *dma_alloc_page_table(void)
{
unsigned long *table, *entry;
table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
if (!table)
return NULL;
for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
*entry = ZPCI_PTE_INVALID | ZPCI_TABLE_PROTECTED;
return table;
}
static void dma_free_page_table(void *table)
{
kmem_cache_free(dma_page_table_cache, table);
}
static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
{
unsigned long *sto;
if (reg_entry_isvalid(*entry))
sto = get_rt_sto(*entry);
else {
sto = dma_alloc_cpu_table();
if (!sto)
return NULL;
set_rt_sto(entry, sto);
validate_rt_entry(entry);
entry_clr_protected(entry);
}
return sto;
}
static unsigned long *dma_get_page_table_origin(unsigned long *entry)
{
unsigned long *pto;
if (reg_entry_isvalid(*entry))
pto = get_st_pto(*entry);
else {
pto = dma_alloc_page_table();
if (!pto)
return NULL;
set_st_pto(entry, pto);
validate_st_entry(entry);
entry_clr_protected(entry);
}
return pto;
}
static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
{
unsigned long *sto, *pto;
unsigned int rtx, sx, px;
rtx = calc_rtx(dma_addr);
sto = dma_get_seg_table_origin(&rto[rtx]);
if (!sto)
return NULL;
sx = calc_sx(dma_addr);
pto = dma_get_page_table_origin(&sto[sx]);
if (!pto)
return NULL;
px = calc_px(dma_addr);
return &pto[px];
}
static void dma_update_cpu_trans(struct zpci_dev *zdev, void *page_addr,
dma_addr_t dma_addr, int flags)
{
unsigned long *entry;
entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
if (!entry) {
WARN_ON_ONCE(1);
return;
}
if (flags & ZPCI_PTE_INVALID) {
invalidate_pt_entry(entry);
return;
} else {
set_pt_pfaa(entry, page_addr);
validate_pt_entry(entry);
}
if (flags & ZPCI_TABLE_PROTECTED)
entry_set_protected(entry);
else
entry_clr_protected(entry);
}
static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
dma_addr_t dma_addr, size_t size, int flags)
{
unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
u8 *page_addr = (u8 *) (pa & PAGE_MASK);
dma_addr_t start_dma_addr = dma_addr;
unsigned long irq_flags;
int i, rc = 0;
if (!nr_pages)
return -EINVAL;
spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
if (!zdev->dma_table) {
dev_err(&zdev->pdev->dev, "Missing DMA table\n");
goto no_refresh;
}
for (i = 0; i < nr_pages; i++) {
dma_update_cpu_trans(zdev, page_addr, dma_addr, flags);
page_addr += PAGE_SIZE;
dma_addr += PAGE_SIZE;
}
/*
* rpcit is not required to establish new translations when previously
* invalid translation-table entries are validated, however it is
* required when altering previously valid entries.
*/
if (!zdev->tlb_refresh &&
((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
/*
* TODO: also need to check that the old entry is indeed INVALID
* and not only for one page but for the whole range...
* -> now we WARN_ON in that case but with lazy unmap that
* needs to be redone!
*/
goto no_refresh;
rc = zpci_refresh_trans((u64) zdev->fh << 32, start_dma_addr,
nr_pages * PAGE_SIZE);
no_refresh:
spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
return rc;
}
static void dma_free_seg_table(unsigned long entry)
{
unsigned long *sto = get_rt_sto(entry);
int sx;
for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
if (reg_entry_isvalid(sto[sx]))
dma_free_page_table(get_st_pto(sto[sx]));
dma_free_cpu_table(sto);
}
static void dma_cleanup_tables(struct zpci_dev *zdev)
{
unsigned long *table;
int rtx;
if (!zdev || !zdev->dma_table)
return;
table = zdev->dma_table;
for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
if (reg_entry_isvalid(table[rtx]))
dma_free_seg_table(table[rtx]);
dma_free_cpu_table(table);
zdev->dma_table = NULL;
}
static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev, unsigned long start,
int size)
{
unsigned long boundary_size = 0x1000000;
return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
start, size, 0, boundary_size, 0);
}
static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size)
{
unsigned long offset, flags;
spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
offset = __dma_alloc_iommu(zdev, zdev->next_bit, size);
if (offset == -1)
offset = __dma_alloc_iommu(zdev, 0, size);
if (offset != -1) {
zdev->next_bit = offset + size;
if (zdev->next_bit >= zdev->iommu_pages)
zdev->next_bit = 0;
}
spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
return offset;
}
static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size)
{
unsigned long flags;
spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
if (!zdev->iommu_bitmap)
goto out;
bitmap_clear(zdev->iommu_bitmap, offset, size);
if (offset >= zdev->next_bit)
zdev->next_bit = offset + size;
out:
spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
}
int dma_set_mask(struct device *dev, u64 mask)
{
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
*dev->dma_mask = mask;
return 0;
}
EXPORT_SYMBOL_GPL(dma_set_mask);
static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct zpci_dev *zdev = get_zdev(to_pci_dev(dev));
unsigned long nr_pages, iommu_page_index;
unsigned long pa = page_to_phys(page) + offset;
int flags = ZPCI_PTE_VALID;
dma_addr_t dma_addr;
/* This rounds up number of pages based on size and offset */
nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
iommu_page_index = dma_alloc_iommu(zdev, nr_pages);
if (iommu_page_index == -1)
goto out_err;
/* Use rounded up size */
size = nr_pages * PAGE_SIZE;
dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE;
if (dma_addr + size > zdev->end_dma) {
dev_err(dev, "(dma_addr: 0x%16.16LX + size: 0x%16.16lx) > end_dma: 0x%16.16Lx\n",
dma_addr, size, zdev->end_dma);
goto out_free;
}
if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
flags |= ZPCI_TABLE_PROTECTED;
if (!dma_update_trans(zdev, pa, dma_addr, size, flags)) {
atomic64_add(nr_pages, (atomic64_t *) &zdev->fmb->mapped_pages);
return dma_addr + (offset & ~PAGE_MASK);
}
out_free:
dma_free_iommu(zdev, iommu_page_index, nr_pages);
out_err:
dev_err(dev, "Failed to map addr: %lx\n", pa);
return DMA_ERROR_CODE;
}
static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct zpci_dev *zdev = get_zdev(to_pci_dev(dev));
unsigned long iommu_page_index;
int npages;
npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
dma_addr = dma_addr & PAGE_MASK;
if (dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
ZPCI_TABLE_PROTECTED | ZPCI_PTE_INVALID))
dev_err(dev, "Failed to unmap addr: %Lx\n", dma_addr);
atomic64_add(npages, (atomic64_t *) &zdev->fmb->unmapped_pages);
iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
dma_free_iommu(zdev, iommu_page_index, npages);
}
static void *s390_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag,
struct dma_attrs *attrs)
{
struct zpci_dev *zdev = get_zdev(to_pci_dev(dev));
struct page *page;
unsigned long pa;
dma_addr_t map;
size = PAGE_ALIGN(size);
page = alloc_pages(flag, get_order(size));
if (!page)
return NULL;
atomic64_add(size / PAGE_SIZE, (atomic64_t *) &zdev->fmb->allocated_pages);
pa = page_to_phys(page);
memset((void *) pa, 0, size);
map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE,
size, DMA_BIDIRECTIONAL, NULL);
if (dma_mapping_error(dev, map)) {
free_pages(pa, get_order(size));
return NULL;
}
if (dma_handle)
*dma_handle = map;
return (void *) pa;
}
static void s390_dma_free(struct device *dev, size_t size,
void *pa, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
s390_dma_unmap_pages(dev, dma_handle, PAGE_ALIGN(size),
DMA_BIDIRECTIONAL, NULL);
free_pages((unsigned long) pa, get_order(size));
}
static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
int nr_elements, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
int mapped_elements = 0;
struct scatterlist *s;
int i;
for_each_sg(sg, s, nr_elements, i) {
struct page *page = sg_page(s);
s->dma_address = s390_dma_map_pages(dev, page, s->offset,
s->length, dir, NULL);
if (!dma_mapping_error(dev, s->dma_address)) {
s->dma_length = s->length;
mapped_elements++;
} else
goto unmap;
}
out:
return mapped_elements;
unmap:
for_each_sg(sg, s, mapped_elements, i) {
if (s->dma_address)
s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
dir, NULL);
s->dma_address = 0;
s->dma_length = 0;
}
mapped_elements = 0;
goto out;
}
static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nr_elements, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nr_elements, i) {
s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL);
s->dma_address = 0;
s->dma_length = 0;
}
}
int zpci_dma_init_device(struct zpci_dev *zdev)
{
unsigned int bitmap_order;
int rc;
spin_lock_init(&zdev->iommu_bitmap_lock);
spin_lock_init(&zdev->dma_table_lock);
zdev->dma_table = dma_alloc_cpu_table();
if (!zdev->dma_table) {
rc = -ENOMEM;
goto out_clean;
}
zdev->iommu_size = (unsigned long) high_memory - PAGE_OFFSET;
zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
bitmap_order = get_order(zdev->iommu_pages / 8);
pr_info("iommu_size: 0x%lx iommu_pages: 0x%lx bitmap_order: %i\n",
zdev->iommu_size, zdev->iommu_pages, bitmap_order);
zdev->iommu_bitmap = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
bitmap_order);
if (!zdev->iommu_bitmap) {
rc = -ENOMEM;
goto out_reg;
}
rc = zpci_register_ioat(zdev,
0,
zdev->start_dma + PAGE_OFFSET,
zdev->start_dma + zdev->iommu_size - 1,
(u64) zdev->dma_table);
if (rc)
goto out_reg;
return 0;
out_reg:
dma_free_cpu_table(zdev->dma_table);
out_clean:
return rc;
}
void zpci_dma_exit_device(struct zpci_dev *zdev)
{
zpci_unregister_ioat(zdev, 0);
dma_cleanup_tables(zdev);
free_pages((unsigned long) zdev->iommu_bitmap,
get_order(zdev->iommu_pages / 8));
zdev->iommu_bitmap = NULL;
zdev->next_bit = 0;
}
static int __init dma_alloc_cpu_table_caches(void)
{
dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
0, NULL);
if (!dma_region_table_cache)
return -ENOMEM;
dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
0, NULL);
if (!dma_page_table_cache) {
kmem_cache_destroy(dma_region_table_cache);
return -ENOMEM;
}
return 0;
}
int __init zpci_dma_init(void)
{
return dma_alloc_cpu_table_caches();
}
void zpci_dma_exit(void)
{
kmem_cache_destroy(dma_page_table_cache);
kmem_cache_destroy(dma_region_table_cache);
}
#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
static int __init dma_debug_do_init(void)
{
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
return 0;
}
fs_initcall(dma_debug_do_init);
struct dma_map_ops s390_dma_ops = {
.alloc = s390_dma_alloc,
.free = s390_dma_free,
.map_sg = s390_dma_map_sg,
.unmap_sg = s390_dma_unmap_sg,
.map_page = s390_dma_map_pages,
.unmap_page = s390_dma_unmap_pages,
/* if we support direct DMA this must be conditional */
.is_phys = 0,
/* dma_supported is unconditionally true without a callback */
};
EXPORT_SYMBOL_GPL(s390_dma_ops);
|