1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Hibernation support for RISCV
*
* Copyright (C) 2023 StarFive Technology Co., Ltd.
*
* Author: Jee Heng Sia <jeeheng.sia@starfivetech.com>
*/
#include <asm/barrier.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/set_memory.h>
#include <asm/smp.h>
#include <asm/suspend.h>
#include <linux/cpu.h>
#include <linux/memblock.h>
#include <linux/pm.h>
#include <linux/sched.h>
#include <linux/suspend.h>
#include <linux/utsname.h>
/* The logical cpu number we should resume on, initialised to a non-cpu number. */
static int sleep_cpu = -EINVAL;
/* Pointer to the temporary resume page table. */
static pgd_t *resume_pg_dir;
/* CPU context to be saved. */
struct suspend_context *hibernate_cpu_context;
EXPORT_SYMBOL_GPL(hibernate_cpu_context);
unsigned long relocated_restore_code;
EXPORT_SYMBOL_GPL(relocated_restore_code);
/**
* struct arch_hibernate_hdr_invariants - container to store kernel build version.
* @uts_version: to save the build number and date so that we do not resume with
* a different kernel.
*/
struct arch_hibernate_hdr_invariants {
char uts_version[__NEW_UTS_LEN + 1];
};
/**
* struct arch_hibernate_hdr - helper parameters that help us to restore the image.
* @invariants: container to store kernel build version.
* @hartid: to make sure same boot_cpu executes the hibernate/restore code.
* @saved_satp: original page table used by the hibernated image.
* @restore_cpu_addr: the kernel's image address to restore the CPU context.
*/
static struct arch_hibernate_hdr {
struct arch_hibernate_hdr_invariants invariants;
unsigned long hartid;
unsigned long saved_satp;
unsigned long restore_cpu_addr;
} resume_hdr;
static void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
{
memset(i, 0, sizeof(*i));
memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
}
/*
* Check if the given pfn is in the 'nosave' section.
*/
int pfn_is_nosave(unsigned long pfn)
{
unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn));
}
void notrace save_processor_state(void)
{
WARN_ON(num_online_cpus() != 1);
}
void notrace restore_processor_state(void)
{
}
/*
* Helper parameters need to be saved to the hibernation image header.
*/
int arch_hibernation_header_save(void *addr, unsigned int max_size)
{
struct arch_hibernate_hdr *hdr = addr;
if (max_size < sizeof(*hdr))
return -EOVERFLOW;
arch_hdr_invariants(&hdr->invariants);
hdr->hartid = cpuid_to_hartid_map(sleep_cpu);
hdr->saved_satp = csr_read(CSR_SATP);
hdr->restore_cpu_addr = (unsigned long)__hibernate_cpu_resume;
return 0;
}
EXPORT_SYMBOL_GPL(arch_hibernation_header_save);
/*
* Retrieve the helper parameters from the hibernation image header.
*/
int arch_hibernation_header_restore(void *addr)
{
struct arch_hibernate_hdr_invariants invariants;
struct arch_hibernate_hdr *hdr = addr;
int ret = 0;
arch_hdr_invariants(&invariants);
if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
pr_crit("Hibernate image not generated by this kernel!\n");
return -EINVAL;
}
sleep_cpu = riscv_hartid_to_cpuid(hdr->hartid);
if (sleep_cpu < 0) {
pr_crit("Hibernated on a CPU not known to this kernel!\n");
sleep_cpu = -EINVAL;
return -EINVAL;
}
#ifdef CONFIG_SMP
ret = bringup_hibernate_cpu(sleep_cpu);
if (ret) {
sleep_cpu = -EINVAL;
return ret;
}
#endif
resume_hdr = *hdr;
return ret;
}
EXPORT_SYMBOL_GPL(arch_hibernation_header_restore);
int swsusp_arch_suspend(void)
{
int ret = 0;
if (__cpu_suspend_enter(hibernate_cpu_context)) {
sleep_cpu = smp_processor_id();
suspend_save_csrs(hibernate_cpu_context);
ret = swsusp_save();
} else {
suspend_restore_csrs(hibernate_cpu_context);
flush_tlb_all();
flush_icache_all();
/*
* Tell the hibernation core that we've just restored the memory.
*/
in_suspend = 0;
sleep_cpu = -EINVAL;
}
return ret;
}
static int temp_pgtable_map_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
unsigned long end, pgprot_t prot)
{
pte_t *src_ptep;
pte_t *dst_ptep;
if (pmd_none(READ_ONCE(*dst_pmdp))) {
dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
if (!dst_ptep)
return -ENOMEM;
pmd_populate_kernel(NULL, dst_pmdp, dst_ptep);
}
dst_ptep = pte_offset_kernel(dst_pmdp, start);
src_ptep = pte_offset_kernel(src_pmdp, start);
do {
pte_t pte = READ_ONCE(*src_ptep);
if (pte_present(pte))
set_pte(dst_ptep, __pte(pte_val(pte) | pgprot_val(prot)));
} while (dst_ptep++, src_ptep++, start += PAGE_SIZE, start < end);
return 0;
}
static int temp_pgtable_map_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
unsigned long end, pgprot_t prot)
{
unsigned long next;
unsigned long ret;
pmd_t *src_pmdp;
pmd_t *dst_pmdp;
if (pud_none(READ_ONCE(*dst_pudp))) {
dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
if (!dst_pmdp)
return -ENOMEM;
pud_populate(NULL, dst_pudp, dst_pmdp);
}
dst_pmdp = pmd_offset(dst_pudp, start);
src_pmdp = pmd_offset(src_pudp, start);
do {
pmd_t pmd = READ_ONCE(*src_pmdp);
next = pmd_addr_end(start, end);
if (pmd_none(pmd))
continue;
if (pmd_leaf(pmd)) {
set_pmd(dst_pmdp, __pmd(pmd_val(pmd) | pgprot_val(prot)));
} else {
ret = temp_pgtable_map_pte(dst_pmdp, src_pmdp, start, next, prot);
if (ret)
return -ENOMEM;
}
} while (dst_pmdp++, src_pmdp++, start = next, start != end);
return 0;
}
static int temp_pgtable_map_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
unsigned long end, pgprot_t prot)
{
unsigned long next;
unsigned long ret;
pud_t *dst_pudp;
pud_t *src_pudp;
if (p4d_none(READ_ONCE(*dst_p4dp))) {
dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
if (!dst_pudp)
return -ENOMEM;
p4d_populate(NULL, dst_p4dp, dst_pudp);
}
dst_pudp = pud_offset(dst_p4dp, start);
src_pudp = pud_offset(src_p4dp, start);
do {
pud_t pud = READ_ONCE(*src_pudp);
next = pud_addr_end(start, end);
if (pud_none(pud))
continue;
if (pud_leaf(pud)) {
set_pud(dst_pudp, __pud(pud_val(pud) | pgprot_val(prot)));
} else {
ret = temp_pgtable_map_pmd(dst_pudp, src_pudp, start, next, prot);
if (ret)
return -ENOMEM;
}
} while (dst_pudp++, src_pudp++, start = next, start != end);
return 0;
}
static int temp_pgtable_map_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
unsigned long end, pgprot_t prot)
{
unsigned long next;
unsigned long ret;
p4d_t *dst_p4dp;
p4d_t *src_p4dp;
if (pgd_none(READ_ONCE(*dst_pgdp))) {
dst_p4dp = (p4d_t *)get_safe_page(GFP_ATOMIC);
if (!dst_p4dp)
return -ENOMEM;
pgd_populate(NULL, dst_pgdp, dst_p4dp);
}
dst_p4dp = p4d_offset(dst_pgdp, start);
src_p4dp = p4d_offset(src_pgdp, start);
do {
p4d_t p4d = READ_ONCE(*src_p4dp);
next = p4d_addr_end(start, end);
if (p4d_none(p4d))
continue;
if (p4d_leaf(p4d)) {
set_p4d(dst_p4dp, __p4d(p4d_val(p4d) | pgprot_val(prot)));
} else {
ret = temp_pgtable_map_pud(dst_p4dp, src_p4dp, start, next, prot);
if (ret)
return -ENOMEM;
}
} while (dst_p4dp++, src_p4dp++, start = next, start != end);
return 0;
}
static int temp_pgtable_mapping(pgd_t *pgdp, unsigned long start, unsigned long end, pgprot_t prot)
{
pgd_t *dst_pgdp = pgd_offset_pgd(pgdp, start);
pgd_t *src_pgdp = pgd_offset_k(start);
unsigned long next;
unsigned long ret;
do {
pgd_t pgd = READ_ONCE(*src_pgdp);
next = pgd_addr_end(start, end);
if (pgd_none(pgd))
continue;
if (pgd_leaf(pgd)) {
set_pgd(dst_pgdp, __pgd(pgd_val(pgd) | pgprot_val(prot)));
} else {
ret = temp_pgtable_map_p4d(dst_pgdp, src_pgdp, start, next, prot);
if (ret)
return -ENOMEM;
}
} while (dst_pgdp++, src_pgdp++, start = next, start != end);
return 0;
}
static unsigned long relocate_restore_code(void)
{
void *page = (void *)get_safe_page(GFP_ATOMIC);
if (!page)
return -ENOMEM;
copy_page(page, hibernate_core_restore_code);
/* Make the page containing the relocated code executable. */
set_memory_x((unsigned long)page, 1);
return (unsigned long)page;
}
int swsusp_arch_resume(void)
{
unsigned long end = (unsigned long)pfn_to_virt(max_low_pfn);
unsigned long start = PAGE_OFFSET;
int ret;
/*
* Memory allocated by get_safe_page() will be dealt with by the hibernation core,
* we don't need to free it here.
*/
resume_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
if (!resume_pg_dir)
return -ENOMEM;
/*
* Create a temporary page table and map the whole linear region as executable and
* writable.
*/
ret = temp_pgtable_mapping(resume_pg_dir, start, end, __pgprot(_PAGE_WRITE | _PAGE_EXEC));
if (ret)
return ret;
/* Move the restore code to a new page so that it doesn't get overwritten by itself. */
relocated_restore_code = relocate_restore_code();
if (relocated_restore_code == -ENOMEM)
return -ENOMEM;
/*
* Map the __hibernate_cpu_resume() address to the temporary page table so that the
* restore code can jumps to it after finished restore the image. The next execution
* code doesn't find itself in a different address space after switching over to the
* original page table used by the hibernated image.
* The __hibernate_cpu_resume() mapping is unnecessary for RV32 since the kernel and
* linear addresses are identical, but different for RV64. To ensure consistency, we
* map it for both RV32 and RV64 kernels.
* Additionally, we should ensure that the page is writable before restoring the image.
*/
start = (unsigned long)resume_hdr.restore_cpu_addr;
end = start + PAGE_SIZE;
ret = temp_pgtable_mapping(resume_pg_dir, start, end, __pgprot(_PAGE_WRITE));
if (ret)
return ret;
hibernate_restore_image(resume_hdr.saved_satp, (PFN_DOWN(__pa(resume_pg_dir)) | satp_mode),
resume_hdr.restore_cpu_addr);
return 0;
}
#ifdef CONFIG_PM_SLEEP_SMP
int hibernate_resume_nonboot_cpu_disable(void)
{
if (sleep_cpu < 0) {
pr_err("Failing to resume from hibernate on an unknown CPU\n");
return -ENODEV;
}
return freeze_secondary_cpus(sleep_cpu);
}
#endif
static int __init riscv_hibernate_init(void)
{
hibernate_cpu_context = kzalloc(sizeof(*hibernate_cpu_context), GFP_KERNEL);
if (WARN_ON(!hibernate_cpu_context))
return -ENOMEM;
return 0;
}
early_initcall(riscv_hibernate_init);
|