summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/book3s64/hash_pgtable.c
blob: 51f48984abca9808315ee23ed6c545e0d13bd041 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright 2005, Paul Mackerras, IBM Corporation.
 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 */

#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/mm.h>
#include <linux/stop_machine.h>

#include <asm/sections.h>
#include <asm/mmu.h>
#include <asm/tlb.h>
#include <asm/firmware.h>

#include <mm/mmu_decl.h>

#include <trace/events/thp.h>

#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
#warning Limited user VSID range means pagetable space is wasted
#endif

#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
 * vmemmap is the starting address of the virtual address space where
 * struct pages are allocated for all possible PFNs present on the system
 * including holes and bad memory (hence sparse). These virtual struct
 * pages are stored in sequence in this virtual address space irrespective
 * of the fact whether the corresponding PFN is valid or not. This achieves
 * constant relationship between address of struct page and its PFN.
 *
 * During boot or memory hotplug operation when a new memory section is
 * added, physical memory allocation (including hash table bolting) will
 * be performed for the set of struct pages which are part of the memory
 * section. This saves memory by not allocating struct pages for PFNs
 * which are not valid.
 *
 *		----------------------------------------------
 *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
 *		----------------------------------------------
 *
 *	   f000000000000000                  c000000000000000
 * vmemmap +--------------+                  +--------------+
 *  +      |  page struct | +--------------> |  page struct |
 *  |      +--------------+                  +--------------+
 *  |      |  page struct | +--------------> |  page struct |
 *  |      +--------------+ |                +--------------+
 *  |      |  page struct | +       +------> |  page struct |
 *  |      +--------------+         |        +--------------+
 *  |      |  page struct |         |   +--> |  page struct |
 *  |      +--------------+         |   |    +--------------+
 *  |      |  page struct |         |   |
 *  |      +--------------+         |   |
 *  |      |  page struct |         |   |
 *  |      +--------------+         |   |
 *  |      |  page struct |         |   |
 *  |      +--------------+         |   |
 *  |      |  page struct |         |   |
 *  |      +--------------+         |   |
 *  |      |  page struct | +-------+   |
 *  |      +--------------+             |
 *  |      |  page struct | +-----------+
 *  |      +--------------+
 *  |      |  page struct | No mapping
 *  |      +--------------+
 *  |      |  page struct | No mapping
 *  v      +--------------+
 *
 *		-----------------------------------------
 *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
 *		-----------------------------------------
 *
 * vmemmap +--------------+                 +---------------+
 *  +      |  page struct | +-------------> |      PFN      |
 *  |      +--------------+                 +---------------+
 *  |      |  page struct | +-------------> |      PFN      |
 *  |      +--------------+                 +---------------+
 *  |      |  page struct | +-------------> |      PFN      |
 *  |      +--------------+                 +---------------+
 *  |      |  page struct | +-------------> |      PFN      |
 *  |      +--------------+                 +---------------+
 *  |      |              |
 *  |      +--------------+
 *  |      |              |
 *  |      +--------------+
 *  |      |              |
 *  |      +--------------+                 +---------------+
 *  |      |  page struct | +-------------> |      PFN      |
 *  |      +--------------+                 +---------------+
 *  |      |              |
 *  |      +--------------+
 *  |      |              |
 *  |      +--------------+                 +---------------+
 *  |      |  page struct | +-------------> |      PFN      |
 *  |      +--------------+                 +---------------+
 *  |      |  page struct | +-------------> |      PFN      |
 *  v      +--------------+                 +---------------+
 */
/*
 * On hash-based CPUs, the vmemmap is bolted in the hash table.
 *
 */
int __meminit hash__vmemmap_create_mapping(unsigned long start,
				       unsigned long page_size,
				       unsigned long phys)
{
	int rc;

	if ((start + page_size) >= H_VMEMMAP_END) {
		pr_warn("Outside the supported range\n");
		return -1;
	}

	rc = htab_bolt_mapping(start, start + page_size, phys,
			       pgprot_val(PAGE_KERNEL),
			       mmu_vmemmap_psize, mmu_kernel_ssize);
	if (rc < 0) {
		int rc2 = htab_remove_mapping(start, start + page_size,
					      mmu_vmemmap_psize,
					      mmu_kernel_ssize);
		BUG_ON(rc2 && (rc2 != -ENOENT));
	}
	return rc;
}

#ifdef CONFIG_MEMORY_HOTPLUG
void hash__vmemmap_remove_mapping(unsigned long start,
			      unsigned long page_size)
{
	int rc = htab_remove_mapping(start, start + page_size,
				     mmu_vmemmap_psize,
				     mmu_kernel_ssize);
	BUG_ON((rc < 0) && (rc != -ENOENT));
	WARN_ON(rc == -ENOENT);
}
#endif
#endif /* CONFIG_SPARSEMEM_VMEMMAP */

/*
 * map_kernel_page currently only called by __ioremap
 * map_kernel_page adds an entry to the ioremap page table
 * and adds an entry to the HPT, possibly bolting it
 */
int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
{
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
	if (slab_is_available()) {
		pgdp = pgd_offset_k(ea);
		p4dp = p4d_offset(pgdp, ea);
		pudp = pud_alloc(&init_mm, p4dp, ea);
		if (!pudp)
			return -ENOMEM;
		pmdp = pmd_alloc(&init_mm, pudp, ea);
		if (!pmdp)
			return -ENOMEM;
		ptep = pte_alloc_kernel(pmdp, ea);
		if (!ptep)
			return -ENOMEM;
		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
	} else {
		/*
		 * If the mm subsystem is not fully up, we cannot create a
		 * linux page table entry for this mapping.  Simply bolt an
		 * entry in the hardware page table.
		 *
		 */
		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
				      mmu_io_psize, mmu_kernel_ssize)) {
			printk(KERN_ERR "Failed to do bolted mapping IO "
			       "memory at %016lx !\n", pa);
			return -ENOMEM;
		}
	}

	smp_wmb();
	return 0;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE

unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
				    pmd_t *pmdp, unsigned long clr,
				    unsigned long set)
{
	__be64 old_be, tmp;
	unsigned long old;

#ifdef CONFIG_DEBUG_VM
	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
	assert_spin_locked(pmd_lockptr(mm, pmdp));
#endif

	__asm__ __volatile__(
	"1:	ldarx	%0,0,%3\n\
		and.	%1,%0,%6\n\
		bne-	1b \n\
		andc	%1,%0,%4 \n\
		or	%1,%1,%7\n\
		stdcx.	%1,0,%3 \n\
		bne-	1b"
	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
	: "cc" );

	old = be64_to_cpu(old_be);

	trace_hugepage_update(addr, old, clr, set);
	if (old & H_PAGE_HASHPTE)
		hpte_do_hugepage_flush(mm, addr, pmdp, old);
	return old;
}

pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
			    pmd_t *pmdp)
{
	pmd_t pmd;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
	VM_BUG_ON(pmd_trans_huge(*pmdp));
	VM_BUG_ON(pmd_devmap(*pmdp));

	pmd = *pmdp;
	pmd_clear(pmdp);
	/*
	 * Wait for all pending hash_page to finish. This is needed
	 * in case of subpage collapse. When we collapse normal pages
	 * to hugepage, we first clear the pmd, then invalidate all
	 * the PTE entries. The assumption here is that any low level
	 * page fault will see a none pmd and take the slow path that
	 * will wait on mmap_lock. But we could very well be in a
	 * hash_page with local ptep pointer value. Such a hash page
	 * can result in adding new HPTE entries for normal subpages.
	 * That means we could be modifying the page content as we
	 * copy them to a huge page. So wait for parallel hash_page
	 * to finish before invalidating HPTE entries. We can do this
	 * by sending an IPI to all the cpus and executing a dummy
	 * function there.
	 */
	serialize_against_pte_lookup(vma->vm_mm);
	/*
	 * Now invalidate the hpte entries in the range
	 * covered by pmd. This make sure we take a
	 * fault and will find the pmd as none, which will
	 * result in a major fault which takes mmap_lock and
	 * hence wait for collapse to complete. Without this
	 * the __collapse_huge_page_copy can result in copying
	 * the old content.
	 */
	flush_hash_table_pmd_range(vma->vm_mm, &pmd, address);
	return pmd;
}

/*
 * We want to put the pgtable in pmd and use pgtable for tracking
 * the base page size hptes
 */
void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				  pgtable_t pgtable)
{
	pgtable_t *pgtable_slot;

	assert_spin_locked(pmd_lockptr(mm, pmdp));
	/*
	 * we store the pgtable in the second half of PMD
	 */
	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
	*pgtable_slot = pgtable;
	/*
	 * expose the deposited pgtable to other cpus.
	 * before we set the hugepage PTE at pmd level
	 * hash fault code looks at the deposted pgtable
	 * to store hash index values.
	 */
	smp_wmb();
}

pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
	pgtable_t pgtable;
	pgtable_t *pgtable_slot;

	assert_spin_locked(pmd_lockptr(mm, pmdp));

	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
	pgtable = *pgtable_slot;
	/*
	 * Once we withdraw, mark the entry NULL.
	 */
	*pgtable_slot = NULL;
	/*
	 * We store HPTE information in the deposited PTE fragment.
	 * zero out the content on withdraw.
	 */
	memset(pgtable, 0, PTE_FRAG_SIZE);
	return pgtable;
}

/*
 * A linux hugepage PMD was changed and the corresponding hash table entries
 * neesd to be flushed.
 */
void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
			    pmd_t *pmdp, unsigned long old_pmd)
{
	int ssize;
	unsigned int psize;
	unsigned long vsid;
	unsigned long flags = 0;

	/* get the base page size,vsid and segment size */
#ifdef CONFIG_DEBUG_VM
	psize = get_slice_psize(mm, addr);
	BUG_ON(psize == MMU_PAGE_16M);
#endif
	if (old_pmd & H_PAGE_COMBO)
		psize = MMU_PAGE_4K;
	else
		psize = MMU_PAGE_64K;

	if (!is_kernel_addr(addr)) {
		ssize = user_segment_size(addr);
		vsid = get_user_vsid(&mm->context, addr, ssize);
		WARN_ON(vsid == 0);
	} else {
		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
		ssize = mmu_kernel_ssize;
	}

	if (mm_is_thread_local(mm))
		flags |= HPTE_LOCAL_UPDATE;

	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
}

pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
				unsigned long addr, pmd_t *pmdp)
{
	pmd_t old_pmd;
	pgtable_t pgtable;
	unsigned long old;
	pgtable_t *pgtable_slot;

	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
	old_pmd = __pmd(old);
	/*
	 * We have pmd == none and we are holding page_table_lock.
	 * So we can safely go and clear the pgtable hash
	 * index info.
	 */
	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
	pgtable = *pgtable_slot;
	/*
	 * Let's zero out old valid and hash index details
	 * hash fault look at them.
	 */
	memset(pgtable, 0, PTE_FRAG_SIZE);
	return old_pmd;
}

int hash__has_transparent_hugepage(void)
{

	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
		return 0;
	/*
	 * We support THP only if PMD_SIZE is 16MB.
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
		return 0;
	/*
	 * We need to make sure that we support 16MB hugepage in a segment
	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
	 * of 64K.
	 */
	/*
	 * If we have 64K HPTE, we will be using that by default
	 */
	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
		return 0;
	/*
	 * Ok we only have 4K HPTE
	 */
	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
		return 0;

	return 1;
}
EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);

#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

#ifdef CONFIG_STRICT_KERNEL_RWX

struct change_memory_parms {
	unsigned long start, end, newpp;
	unsigned int step, nr_cpus;
	atomic_t master_cpu;
	atomic_t cpu_counter;
};

// We'd rather this was on the stack but it has to be in the RMO
static struct change_memory_parms chmem_parms;

// And therefore we need a lock to protect it from concurrent use
static DEFINE_MUTEX(chmem_lock);

static void change_memory_range(unsigned long start, unsigned long end,
				unsigned int step, unsigned long newpp)
{
	unsigned long idx;

	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
		 start, end, newpp, step);

	for (idx = start; idx < end; idx += step)
		/* Not sure if we can do much with the return value */
		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
							mmu_kernel_ssize);
}

static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
{
	unsigned long msr, tmp, flags;
	int *p;

	p = &parms->cpu_counter.counter;

	local_irq_save(flags);
	hard_irq_disable();

	asm volatile (
	// Switch to real mode and leave interrupts off
	"mfmsr	%[msr]			;"
	"li	%[tmp], %[MSR_IR_DR]	;"
	"andc	%[tmp], %[msr], %[tmp]	;"
	"mtmsrd %[tmp]			;"

	// Tell the master we are in real mode
	"1:				"
	"lwarx	%[tmp], 0, %[p]		;"
	"addic	%[tmp], %[tmp], -1	;"
	"stwcx.	%[tmp], 0, %[p]		;"
	"bne-	1b			;"

	// Spin until the counter goes to zero
	"2:				;"
	"lwz	%[tmp], 0(%[p])		;"
	"cmpwi	%[tmp], 0		;"
	"bne-	2b			;"

	// Switch back to virtual mode
	"mtmsrd %[msr]			;"

	: // outputs
	  [msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
	: // inputs
	  [p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
	: // clobbers
	  "cc", "xer"
	);

	local_irq_restore(flags);

	return 0;
}

static int change_memory_range_fn(void *data)
{
	struct change_memory_parms *parms = data;

	// First CPU goes through, all others wait.
	if (atomic_xchg(&parms->master_cpu, 1) == 1)
		return chmem_secondary_loop(parms);

	// Wait for all but one CPU (this one) to call-in
	while (atomic_read(&parms->cpu_counter) > 1)
		barrier();

	change_memory_range(parms->start, parms->end, parms->step, parms->newpp);

	mb();

	// Signal the other CPUs that we're done
	atomic_dec(&parms->cpu_counter);

	return 0;
}

static bool hash__change_memory_range(unsigned long start, unsigned long end,
				      unsigned long newpp)
{
	unsigned int step, shift;

	shift = mmu_psize_defs[mmu_linear_psize].shift;
	step = 1 << shift;

	start = ALIGN_DOWN(start, step);
	end = ALIGN(end, step); // aligns up

	if (start >= end)
		return false;

	if (firmware_has_feature(FW_FEATURE_LPAR)) {
		mutex_lock(&chmem_lock);

		chmem_parms.start = start;
		chmem_parms.end = end;
		chmem_parms.step = step;
		chmem_parms.newpp = newpp;
		atomic_set(&chmem_parms.master_cpu, 0);

		cpus_read_lock();

		atomic_set(&chmem_parms.cpu_counter, num_online_cpus());

		// Ensure state is consistent before we call the other CPUs
		mb();

		stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
					cpu_online_mask);

		cpus_read_unlock();
		mutex_unlock(&chmem_lock);
	} else
		change_memory_range(start, end, step, newpp);

	return true;
}

void hash__mark_rodata_ro(void)
{
	unsigned long start, end, pp;

	start = (unsigned long)_stext;
	end = (unsigned long)__end_rodata;

	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);

	WARN_ON(!hash__change_memory_range(start, end, pp));
}

void hash__mark_initmem_nx(void)
{
	unsigned long start, end, pp;

	start = (unsigned long)__init_begin;
	end = (unsigned long)__init_end;

	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);

	WARN_ON(!hash__change_memory_range(start, end, pp));
}
#endif