summaryrefslogtreecommitdiff
path: root/arch/mips/mm/uasm-mips.c
blob: e15c6700cd0884c7bcf5167c5e95e51bba07382a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * A small micro-assembler. It is intentionally kept simple, does only
 * support a subset of instructions, and does not try to hide pipeline
 * effects like branch delay slots.
 *
 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
 * Copyright (C) 2005, 2007  Maciej W. Rozycki
 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
 * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/types.h>

#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#include <asm/uasm.h>

#define RS_MASK		0x1f
#define RS_SH		21
#define RT_MASK		0x1f
#define RT_SH		16
#define SCIMM_MASK	0xfffff
#define SCIMM_SH	6

/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f)					\
	((a) << OP_SH						\
	 | (b) << RS_SH						\
	 | (c) << RT_SH						\
	 | (d) << RD_SH						\
	 | (e) << RE_SH						\
	 | (f) << FUNC_SH)

/* This macro sets the non-variable bits of an R6 instruction. */
#define M6(a, b, c, d, e)					\
	((a) << OP_SH						\
	 | (b) << RS_SH						\
	 | (c) << RT_SH						\
	 | (d) << SIMM9_SH					\
	 | (e) << FUNC_SH)

#include "uasm.c"

static const struct insn insn_table[insn_invalid] = {
	[insn_addiu]	= {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
	[insn_addu]	= {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
	[insn_and]	= {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
	[insn_andi]	= {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
	[insn_bbit0]	= {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
	[insn_bbit1]	= {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
	[insn_beq]	= {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
	[insn_beql]	= {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
	[insn_bgez]	= {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
	[insn_bgezl]	= {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
	[insn_bgtz]	= {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
	[insn_blez]	= {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
	[insn_bltz]	= {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
	[insn_bltzl]	= {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
	[insn_bne]	= {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
	[insn_break]	= {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
#ifndef CONFIG_CPU_MIPSR6
	[insn_cache]	= {M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
#else
	[insn_cache]	= {M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9},
#endif
	[insn_cfc1]	= {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
	[insn_cfcmsa]	= {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
	[insn_ctc1]	= {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
	[insn_ctcmsa]	= {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
	[insn_daddiu]	= {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
	[insn_daddu]	= {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
	[insn_ddivu]	= {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
	[insn_ddivu_r6]	= {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op),
				RS | RT | RD},
	[insn_di]	= {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
	[insn_dins]	= {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
	[insn_dinsm]	= {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
	[insn_dinsu]	= {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
	[insn_divu]	= {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
	[insn_divu_r6]	= {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op),
				RS | RT | RD},
	[insn_dmfc0]	= {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
	[insn_dmodu]	= {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op),
				RS | RT | RD},
	[insn_dmtc0]	= {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
	[insn_dmultu]	= {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
	[insn_dmulu]	= {M(spec_op, 0, 0, 0, dmultu_dmulu_op, dmultu_op),
				RS | RT | RD},
	[insn_drotr]	= {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
	[insn_drotr32]	= {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
	[insn_dsbh]	= {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
	[insn_dshd]	= {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
	[insn_dsll]	= {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
	[insn_dsll32]	= {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
	[insn_dsllv]	= {M(spec_op, 0, 0, 0, 0, dsllv_op),  RS | RT | RD},
	[insn_dsra]	= {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
	[insn_dsra32]	= {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
	[insn_dsrav]	= {M(spec_op, 0, 0, 0, 0, dsrav_op),  RS | RT | RD},
	[insn_dsrl]	= {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
	[insn_dsrl32]	= {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
	[insn_dsrlv]	= {M(spec_op, 0, 0, 0, 0, dsrlv_op),  RS | RT | RD},
	[insn_dsubu]	= {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
	[insn_eret]	= {M(cop0_op, cop_op, 0, 0, 0, eret_op),  0},
	[insn_ext]	= {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
	[insn_ins]	= {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
	[insn_j]	= {M(j_op, 0, 0, 0, 0, 0),  JIMM},
	[insn_jal]	= {M(jal_op, 0, 0, 0, 0, 0),	JIMM},
	[insn_jalr]	= {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
#ifndef CONFIG_CPU_MIPSR6
	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jr_op),  RS},
#else
	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jalr_op),  RS},
#endif
	[insn_lb]	= {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
	[insn_lbu]	= {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
	[insn_ld]	= {M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_lddir]	= {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
	[insn_ldpte]	= {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
	[insn_ldx]	= {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
	[insn_lh]	= {M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_lhu]	= {M(lhu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
#ifndef CONFIG_CPU_MIPSR6
	[insn_ll]	= {M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_lld]	= {M(lld_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
#else
	[insn_ll]	= {M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9},
	[insn_lld]	= {M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9},
#endif
	[insn_lui]	= {M(lui_op, 0, 0, 0, 0, 0),	RT | SIMM},
	[insn_lw]	= {M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_lwu]	= {M(lwu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_lwx]	= {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
	[insn_mfc0]	= {M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
	[insn_mfhc0]	= {M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
	[insn_mfhi]	= {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
	[insn_mflo]	= {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
	[insn_modu]	= {M(spec_op, 0, 0, 0, divu_modu_op, divu_op),
				RS | RT | RD},
	[insn_movn]	= {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
	[insn_movz]	= {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
	[insn_mtc0]	= {M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
	[insn_mthc0]	= {M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
	[insn_mthi]	= {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
	[insn_mtlo]	= {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
	[insn_mulu]	= {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op),
				RS | RT | RD},
	[insn_muhu]	= {M(spec_op, 0, 0, 0, multu_muhu_op, multu_op),
				RS | RT | RD},
#ifndef CONFIG_CPU_MIPSR6
	[insn_mul]	= {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
#else
	[insn_mul]	= {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
#endif
	[insn_multu]	= {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
	[insn_nor]	= {M(spec_op, 0, 0, 0, 0, nor_op),  RS | RT | RD},
	[insn_or]	= {M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD},
	[insn_ori]	= {M(ori_op, 0, 0, 0, 0, 0),	RS | RT | UIMM},
#ifndef CONFIG_CPU_MIPSR6
	[insn_pref]	= {M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
#else
	[insn_pref]	= {M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9},
#endif
	[insn_rfe]	= {M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0},
	[insn_rotr]	= {M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE},
	[insn_sb]	= {M(sb_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
#ifndef CONFIG_CPU_MIPSR6
	[insn_sc]	= {M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_scd]	= {M(scd_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
#else
	[insn_sc]	= {M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9},
	[insn_scd]	= {M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9},
#endif
	[insn_sd]	= {M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_seleqz]	= {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD},
	[insn_selnez]	= {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD},
	[insn_sh]	= {M(sh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_sll]	= {M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE},
	[insn_sllv]	= {M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD},
	[insn_slt]	= {M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD},
	[insn_slti]	= {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
	[insn_sltiu]	= {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
	[insn_sltu]	= {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
	[insn_sra]	= {M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE},
	[insn_srav]	= {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
	[insn_srl]	= {M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE},
	[insn_srlv]	= {M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD},
	[insn_subu]	= {M(spec_op, 0, 0, 0, 0, subu_op),	RS | RT | RD},
	[insn_sw]	= {M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
	[insn_sync]	= {M(spec_op, 0, 0, 0, 0, sync_op), RE},
	[insn_syscall]	= {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
	[insn_tlbp]	= {M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0},
	[insn_tlbr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0},
	[insn_tlbwi]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0},
	[insn_tlbwr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0},
	[insn_wait]	= {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
	[insn_wsbh]	= {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
	[insn_xor]	= {M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD},
	[insn_xori]	= {M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM},
	[insn_yield]	= {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
};

#undef M

static inline u32 build_bimm(s32 arg)
{
	WARN(arg > 0x1ffff || arg < -0x20000,
	     KERN_WARNING "Micro-assembler field overflow\n");

	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");

	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
}

static inline u32 build_jimm(u32 arg)
{
	WARN(arg & ~(JIMM_MASK << 2),
	     KERN_WARNING "Micro-assembler field overflow\n");

	return (arg >> 2) & JIMM_MASK;
}

/*
 * The order of opcode arguments is implicitly left to right,
 * starting with RS and ending with FUNC or IMM.
 */
static void build_insn(u32 **buf, enum opcode opc, ...)
{
	const struct insn *ip;
	va_list ap;
	u32 op;

	if (opc < 0 || opc >= insn_invalid ||
	    (opc == insn_daddiu && r4k_daddiu_bug()) ||
	    (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
		panic("Unsupported Micro-assembler instruction %d", opc);

	ip = &insn_table[opc];

	op = ip->match;
	va_start(ap, opc);
	if (ip->fields & RS)
		op |= build_rs(va_arg(ap, u32));
	if (ip->fields & RT)
		op |= build_rt(va_arg(ap, u32));
	if (ip->fields & RD)
		op |= build_rd(va_arg(ap, u32));
	if (ip->fields & RE)
		op |= build_re(va_arg(ap, u32));
	if (ip->fields & SIMM)
		op |= build_simm(va_arg(ap, s32));
	if (ip->fields & UIMM)
		op |= build_uimm(va_arg(ap, u32));
	if (ip->fields & BIMM)
		op |= build_bimm(va_arg(ap, s32));
	if (ip->fields & JIMM)
		op |= build_jimm(va_arg(ap, u32));
	if (ip->fields & FUNC)
		op |= build_func(va_arg(ap, u32));
	if (ip->fields & SET)
		op |= build_set(va_arg(ap, u32));
	if (ip->fields & SCIMM)
		op |= build_scimm(va_arg(ap, u32));
	if (ip->fields & SIMM9)
		op |= build_scimm9(va_arg(ap, u32));
	va_end(ap);

	**buf = op;
	(*buf)++;
}

static inline void
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
	long laddr = (long)lab->addr;
	long raddr = (long)rel->addr;

	switch (rel->type) {
	case R_MIPS_PC16:
		*rel->addr |= build_bimm(laddr - (raddr + 4));
		break;

	default:
		panic("Unsupported Micro-assembler relocation %d",
		      rel->type);
	}
}